
Math 219, Linear Algebra I — Fall 2020
Course website: https://sites.aub.edu.lb/kmakdisi/

Problem set 10, due Saturday, December 5 at 2pm via Moodle

Exercises from Corwin-Szczarba:
Section 10.3, exercises 2, 3, 6, 7.

Additional Exercises (also required):

Exercise A10.1: a) Find the characteristic polynomial of the matrix A =

 0 1 0
0 0 1

−12 4 3

.

b) Show that A is diagonalizable.
c) Find trace(A7).

Exercise A10.2: Diagonalize the following three matrices over C: 0 3− 9i 1
1 2 + 3i 0
0 0 1 + 2i

 ,

 0 −10 0
1 2 0
0 0 3

 ,

−1 1 −2i
1 −1 −2i
2i 2i 2

 .

Exercise A10.3: Let V be a finite-dimensional inner product space, and let P : V → V be a self-adjoint
linear transformation such that P 2 = P .

a) Why is P diagonalizable?
b) Show that if λ is an eigenvalue of P , then λ = 0 or λ = 1.
c) Show that P is the orthogonal projection onto a certain subspace W of V .

Exercise A10.4: Find a basis γ with respect to which both of the following linear transformations on
R3 become (simultaneously) diagonalized (the matrices below are the matrices with respect to the standard
basis):

S =

 0 1 0
1 0 0
0 0 1

 , T =

 2 −1 2
−1 2 2
2 2 −1

 .

Cultural note: A necessary condition for two linear transformations to be simultaneously diagonalized
is for them to commute, i.e., S ◦ T = T ◦ S. But this is not sufficient. (Challenge: prove these statements.)

Exercise A10.5: Show that the complex matrix A =

(
2 i
i 0

)
is not diagonalizable, even though Atr = A.

Why does this not contradict the statement of the spectral theorem?

Exercise A10.6: Let P3 be as usual the space of polynomials f(x) of degree at most 3. Define a linear
transformation T : P3 → P3 by T (f) = (x+ 1)2f ′′ − 4xf ′ + 6f .

a) Find the matrix B[T ]B, where B is the basis B = {1, x, x2, x3} for P3.
(To check your results: you should get T (1) = 6, T (x) = 2x, T (x2) = 4x+ 2, and T (x3) = 12x2 + 6x.)
b) Find a basis for each of ImageT and kerT . Justify your reasoning. Make sure you give elements of

P3.
c) Find the eigenvalues of T , and, for each eigenvalue, find one eigenvector. Again, these should be

elements of P3.
d) Show that T is not diagonalizable.

Look at, but do not hand in:
Section 10.1, exercises 1, 2, 3, 4, 5, 6, 7, 8.
Section 10.2, exercises 3, 5 (note correction), 6 (note correction), 7, 8, 10, 19 (note correction), 18 (in

that order), 21.
Correction for exercises 10.2.5 and 10.2.6: the matrices in question must be square, so both problems

should say “A ∈ M(n, n,C)” instead of “A ∈ M(n,m,C)”.

Correction for exercise 10.2.19: the first term inside the parentheses should be ∥v⃗ + w⃗∥2, not ∥v⃗ + v⃗∥2.
Section 10.4, exercise 1 (feel free to try a couple of others from this section).
Section 10.6, exercises 1cg, 2, 4, 5, 8, 9, 10, 11, 12, 13.
Section 7.5, exercises 9, 10, 11.
Section 10.7, exercises 1, 2. (Read in particular Theorem 7.2 and the subsequent discussion until just

before Proposition 7.3 for Cramer’s rule and its application to A−1.)

“Look At” Exercise L10.1: Which of the following matrices are equivalent? Which are similar? Explain.(
0 0
0 0

)
,

(
0 1
0 0

)
,

(
1 0
0 0

)
,

(
0 1
1 0

)
,

(
1 0
0 −1

)
,

(
1 0
0 1

)
,

(
1 1
0 1

)
.
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“Look At” Exercise L10.2: Let V be a finite-dimensional inner product space, and let T : V → V be a
linear transformation.

a) Use the spectral theorem to show that if T is self-adjoint, then idV + T 2 : V → V is an invertible
linear transformation.

b) Give an example of V and T such that idV + T 2 is not invertible. (Of course, such a T cannot be
self-adjoint.) Preferably find such an example over R; if you have trouble finding the example, then just
settle for an example over C, which is easier.

“Look At” Exercise L10.3: Let V be a finite-dimensional complex inner product space, and let T :
V → V be a unitary transformation. Recall that this means that T ∗ = T−1, which is a fancy way of saying
that T is an isometry: for all v⃗, w⃗ ∈ V , ⟨T (v⃗), T (w⃗)⟩ = ⟨v⃗, w⃗⟩.

a) Show that if λ is a (complex) eigenvalue of T , then |λ| = 1.
b) Show that T is diagonalizable, by imitating the proof of the spectral theorem.

“Look At” Exercise L10.4: Consider the complex matrix M =

(
3 3 + i

3− i 6

)
.

a) Why do we know without any calculation that M is diagonalizable?
b) Find an orthonormal basis {u⃗1, u⃗2} ofC2 consisting of eigenvectors ofM , and find the corresponding

eigenvalues. (Note: do this by the “usual” way.)
c) For z1, z2 ∈ C, let

f(z1, z2) = 3z1z1 + (3 + i)z2z1 + (3− i)z1z2 + 6z2z2.

Find explicit constants C1, C2 > 0 for which you can show that for all z1, z2 ∈ C, we have C1(|z1|2+ |z2|2) ≤

f(z1, z2) ≤ C2(|z1|2 + |z2|2). Suggestion: write
(
z1
z2

)
= w1u⃗1 + w2u⃗2.

Note: if the use of complex numbers throws you off in this exercise, do it first for the real matrix

M =

(
12 3
3 4

)
, and the function f(x1, x2) = 12x2

1 + 3x2x1 + 3x1x2 + 4x2
2 = 12x2

1 + 6x1x2 + 4x2
2, with

x1, x2 ∈ R. Further hint: f(v⃗) = ⟨M v⃗, v⃗⟩.

“Look At” Exercise L10.5: Let V be a finite-dimensional inner product space, and assume given a
self-adjoint linear transformation T : V → V such that T 3 = T .

a) Show that the only possible eigenvalues of T are λ = 0, 1, or −1. As usual, let us call the corresponding
eigenspaces V0, V1, V−1. (It is possible that some of these eigenspaces are just {0⃗}: for example, if T = idV ,
then V0 = V−1 = {0⃗}.)

b) Show that every vector v ∈ V has a decomposition v = v0 + v1 + v−1, with v0 ∈ V0, v1 ∈ V1, and
v−1 ∈ V−1.

c) Define a linear transformation P : V → V by P = (1/2)(T 2 + T ). Show that P is the orthogonal
projection onto V1.

d) Find another “polynomial” Q = aT 2 + bT + cI for suitable a, b, c ∈ R, such that Q is the orthogonal
projection onto V0.

“Look At” Exercise L10.6: A proof of the spectral theorem for commuting self-adjoint linear transfor-
mations, and similarly for commuting normal linear transformations. Throughout this exercise assume that
V is a finite-dimensional complex vector space.

a) If T,U : V → V are commuting linear transformations (so T ◦U = U ◦T ), show that T and U have a
common eigenvector. (Hint: let λ be an eigenvalue of T [remember, the field of scalars is C] and show that
the nonzero eigenspace Vλ = ker(λI − T ) is invariant (i.e., stable) under U , and hence [why?] contains an
eigenvector for U .)

b) If, furthermore, T and U are self-adjoint, show that V has an orthonormal basis of simultaneous
eigenvectors for T and U . Generalize to an arbitrary number of commuting self-adjoint linear transforma-
tions. Bonus: show that the result still holds over R, and, whether over R or over C, that it still holds even
if one has an infinite set of commuting self-adjoint linear transformations.

c) Back to the case of C, Assume that T is normal; this means that T and T ∗ commute. In this case,
show that there exists an orthonormal basis of eigenvectors for T . (Hint: show that T + T ∗ and i(T − T ∗)
are commuting self-adjoint linear transformations.) Bonus: generalize to an arbitrary number of commuting
normal linear transformations.
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