Math 241, Introduction to Abstract Algebra – Fall 2019

Course website: https://sites.aub.edu.lb/kmakdisi/

Problem set 4, due Wednesday, October 2 at the beginning of class

Exercises from Fraleigh:

Section 9, exercises 7, 10.

Note: for exercises 7 and 10 above, your job (unlike last time) is to find sign σ only, by three different methods: (i) by finding N_{σ} , (ii) by writing σ as a product of transpositions, or (iii) by using an expression of σ as a product of cycles.

Section 10, exercises 2, 4, 6, 7, 8, 9, 10, 11, 26, 27.

Note: exercises 6–11 are one unit.

Additional Exercises (also required):

Exercise A4.1: Show that for $n \geq 3$, the alternating group A_n is generated by the set of all 3-cycles. For example,

$$A_4 = \langle (123), (132), (124), (142), (134), (143), (234), (243) \rangle.$$

Incidentally, since $(132) = (123)^{-1}$ and so forth, we can also write

$$A_4 = \langle (123), (124), (134), (234) \rangle.$$

Exercise A4.2: Describe the elements of $D_n \cap A_n$. (The answer depends on $n \mod 4$.)

Exercise A4.3: Using only the definition of the determinant of $A = (a_{ij})_{1 \leq i,j \leq n}$ in terms of permutations, and without using any other properties of the determinant, show that:

- a) det $A^t = \det A$, where A^t is the transpose of A. (Hint: first show sign $\sigma^{-1} = \operatorname{sign} \sigma$.)
- b) If A is upper triangular (for example, if $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{pmatrix}$), then $\det A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{23} & a_{23} \\ 0 & 0 & a_{33} \end{pmatrix}$

 $\prod_{i=1}^{n} a_{ii}$, the product of the entries on the diagonal.

- c) If one exchanges two rows or columns of A, then the determinant changes sign. (Do either rows or columns, and then part (a) will give you the other case.) Hint: cosets of a subgroup $\{1, (ij)\}$ in S_n will play a role here. Try a couple of examples with $n \leq 4$ on scratch paper before figuring out the general proof.
 - d) If any two rows or columns of A are equal, then $\det A = 0$.

Reminder: det
$$A = \sum_{\sigma \in S_n} \operatorname{sign} \sigma \cdot a_{\sigma(1)1} a_{\sigma(2)2} \cdots a_{\sigma(n)n}$$
.

Look at, but do not hand in:

Section 9, exercises 31, 32.

"Look at" Exercise L4.1: Let $\sigma \in S_n$. Consider an adjacent transposition $(i \ i+1)$, and let $\tau = \sigma(i \ i+1)$. Show that $N_{\tau} = N_{\sigma} + 1$ or $N_{\sigma} - 1$, depending on a condition that you must determine. Use this to show that N_{σ} is the smallest number of adjacent transpositions whose product can give σ .

It may help you to start by working out some examples, such as

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & \mathbf{3} & \mathbf{1} & 4 & 2 \end{pmatrix}, \qquad \tau = \sigma(23) = \text{ (why?) } \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & \mathbf{1} & \mathbf{3} & 4 & 2 \end{pmatrix}$$

and various others.