
Chart of orders of growth
logarithmic

growth polynomial growth exponential growth factorial growth{ {
      0.1       2       100                n      n

 n  n  100n  n  n  1.01  2  n!

1 0.00000 1.00000 100 1 1 1.01000 2 1
2 0.69315 1.07177 200 4 1.27E+30 1.02010 4 2
3 1.09861 1.11612 300 9 5.15E+47 1.03030 8 6
4 1.38629 1.14870 400 16 1.61E+60 1.04060 16 24
5 1.60944 1.17462 500 25 7.89E+69 1.05101 32 120
6 1.79176 1.19623 600 36 6.53E+77 1.06152 64 720
7 1.94591 1.21481 700 49 3.23E+84 1.07214 128 5040
8 2.07944 1.23114 800 64 2.04E+90 1.08286 256 40320
9 2.19722 1.24573 900 81 2.66E+95 1.09369 512 362880

10 2.30259 1.25893 1000 100 1.00E+100 1.10462 1024 3628800
20 2.99573 1.34928 2000 400 1.27E+130 1.22019 1048576 2.43E+18
50 3.91202 1.47876 5000 2500 7.89E+169 1.64463 1.13E+15 3.04E+64

100 4.60517 1.58489 10000 10000 1E+200 2.70481 1.27E+30 9.33E+157
1000 6.90776 1.99526 100000 1000000 1E+300 20959.16 1.07E+301 >1E+2567

10000 9.21034 2.51189 1000000 100000000 1E+500 1.64E+43 >1E+3010 >1E+35659
100000 11.51293 3.16228 10000000 1E+10 1E+600 >1E+432 >1E+30102 >1E+456573
1E+100 230.2585 1E+10 1E+102 1E+200 1E+10000 >1E(10^97) >1E(10^99) >1E(10^101)

 ln n



Math 201 — Calculus and Analytic Geometry III
Handout on orders of growth

The purpose of this handout is to give an idea of how one proves that logarithmic growth is much
slower than polynomial growth, which is in turn much slower than exponential growth, which in turn
is much smaller than factorial growth. As an unrelated bonus, we include a proof of the formula
lim

n→∞

(
1 +

c

n

)n

= ec.

Step 1. Linear growth is no worse than exponential growth.
Fix a > 0. We wish to study f(x) =

x

eax
= xe−ax. We are not yet ready to show that

limx→+∞ f(x) = 0. Instead, we will prove the weaker result:

For x ≥ 0, f(x) = xe−ax is bounded.

To do this, we find the derivative f ′(x) = (1)(e−ax) + (x)(−ae−ax) = (1− ax)e−ax. Now e−ax > 0, so
f ′(x) has the same sign as (1−ax). This means (check!) that f ′(x) > 0 for 0 < x < 1/a, and f ′(x) < 0
for x > 1/a. Thus the table of variation for f looks like:

x 0 1/a +∞

f ′(x) 1 + 0 − from here on, f ′ < 0

f(x) 0 ↗ f(1/a) ↘ f(x) stays positive (since x and e−ax > 0)
The point of this is that for x ≥ 0, the values of f(x) = xe−ax are always between 0 and the

maximum value f(1/a) = (1/a)e−a(1/a) = 1/ea. It does not really matter what this maximum value is;
we can just call it Ca = 1/ea = f(1/a) since it is a constant that does not depend on x (even though
it depends on a). We conclude:

(∗) Fix a > 0. Then for all x ≥ 0, 0 ≤ xe−ax ≤ Ca, or equivalently 0 ≤ x ≤ Caeax.

Step 2. Linear growth is much smaller than exponential growth. Let us show for example
that lim

x→+∞
x

ex
= 0. In other words, for sufficiently large x, x is much smaller than ex. The proof is as

follows: we use inequality (∗) above with a = 0.01 to conclude that

For x ≥ 0, 0 ≤ x

ex
= (xe−0.01x) e−0.99x < C0.01e

−0.99x.

But C0.01e
−0.99x → 0 when x → +∞, so x/ex is sandwiched between 0 and something that decays

exponentially. Thus x/ex → 0 when x → +∞ by the sandwich theorem.
Remark: if we had used (∗) with a = 1, we would have deduced only that 0 ≤ x/ex ≤ C1 for all

x ≥ 0. This would have shown that the ratio x/ex = xe−x was bounded, but it would not have shown
that xe−x → 0. This is why we had to decompose the exponential decay into e−x = e−0.01xe−0.99x.
The first factor e−0.01x “neutralizes” the growth of x because of (∗), while the second factor e−0.99x

causes the decay. We can take other values than a = 0.01; any a < 1 would also work in this proof.

Step 3. Polynomial growth is much smaller than exponential growth. Here is a typical

example: we want to show that lim
x→+∞

x100

e0.001x
= 0. Thus the fast growth of x100 is small when compared

to the extremely fast growth of e0.001x. The trick will be to compare x to eax for an extremely small a.
That way, we have

x100e−0.001x ≤ (Caeax)100e−0.001x = (Ca)100e100axe−0.001x = (Ca)100e(100a−0.001)x.

Here we need to choose a so small that 100a − 0.001 < 0. For example, take a = 10−6 so that
100(10−6)− 0.001 = 0.0001− 0.001 = −0.0009. Then we obtain that for x ≥ 0, we have

0 ≤ x100e−0.001x ≤ (C10−6)100e−0.0009x
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and we have again sandwiched the ratio
x100

e0.001x
between 0 and an exponential decay of the form

Ae−0.0009x with the constant A = (C10−6)100. (The exact value of A does not matter for this argument.)

From the fact that 0 ≤ x100

e0.001x
≤ Ae−0.0009x, we conclude by the sandwich theorem that

x100

e0.001x
→ 0.

A similar argument works for any ratio of the form
xc

edx
, where c, d > 0.

Step 4. Logarithmic growth is much smaller than polynomial growth. One way to prove
this is similar to what we did in Steps 1–3. Replace the function xe−ax in Step 1 with the new function
f(x) = x−a ln x for x ≥ 1. The table of variations of this new function is similar to the one in Step 1,
and we conclude that x−a ln x is bounded by some constant C ′a. It is easy to adapt the ideas of Steps

2 and 3 as well, to show results such as
ln x

x
→ 0 and

(lnx)100

x0.001
→ 0 as x → +∞. You should fill in the

details of this approach.
Another way is to write x = et from the beginning, so t = ln x. This transforms the problem of

comparing (ln x)c and xd to the problem of comparing tc to edt, which we have already solved. (We
have x → +∞ ⇐⇒ t → +∞.) This incidentally shows that the constant C ′a above is the same as Ca

from Step 1, because the function x−a ln x becomes e−att which is the function we originally considered.

Step 5. Exponential growth is much smaller than factorial growth. Let us show for example

that lim
n→+∞

100n

n!
= 0. A similar proof works for lim

An

n!
for any A > 1. Let n ≥ 201. Then

0 ≤ 100n

n!
=

100 · 100 · 100 · · · 100
(1) · (2) · (3) · · · (199)

·
(

100
200

)
·
(

100
201

)
· · ·

(
100
n

)
.

Now each of the fractions (100/200), (100/201), . . . , (100/n) is ≤ 1/2, because the denominator is
≥ 200. This allows us to deduce that

0 ≤ 100n

n!
≤ 100 · 100 · 100 · · · 100

(1) · (2) · (3) · · · (199)
·
(

1
2

)
·
(

1
2

)
· · ·

(
1
2

)
=

100199

199!
·
(

1
2

)n−199

=
A

2n
,

where the factor A =
100199 · 2199

199!
does not depend on n. Since A/2n → 0, we can use the sandwich

theorem to deduce that 100n/n! → 0, as desired.

Bonus: proof that lim
n→∞

(
1 +

c

n

)n

= ec. We first prove a preliminary result:

lim
x→0

ln(1 + cx)
x

= c.

This result can be proved by L’Hôpital’s rule (look it up in the book if you do not know it) or by a
direct argument. The direct argument goes as follows: let f(x) = ln(1 + cx). Then f(0) = ln 1 = 0 and
f ′(0) = c (because f ′(x) = c/(1 + cx) due to the chain rule). By the definition of the derivative,

c = f ′(0) = lim
x→0

f(x)− f(0)
x− 0

= lim
x→0

f(x)− 0
x− 0

= lim
x→0

f(x)
x

= lim
x→0

ln(1 + cx)
x

, as desired.

We can now give the proof of our identity. Write an =
(
1 +

c

n

)n

and bn = ln an = n ln(1 + c/n) =

ln(1+ c/n)/(1/n). As n → +∞, we have 1/n → 0. Hence by the above identity bn → c. Since an = ebn

and ex is a continuous function, we conclude that an → ec as desired.
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