
Correlation and Regression 

 

Correlations 

 

 Correlations assume relationships are linear 

 Correlations are range specific 

 Correlations assume data is homogenous 

 Outliers can have large effects 

 Normality only assumed when significance testing  

 

 

 

 

 

 

 

Example of heterogenous subsamples 

deflating the overall r value. 



 

Some examples of linear and non linear relationships. 

 

 

 

 

 

 

 

 

 

 

 



Chart builder for scatter plots 

 

 

 

 

 

Graphs> Chart Builder > Highlight 

Scatter/dot 

Select either (simple scatter) 

Or (for if you have a grouping variable)  

Place your variables in the axes boxes 

And (if appropriate grouping variable 

in ‘set color’  

 

To edit> Double click on graph for chart editor 

You can then change colors/ weightings of lines 

Add fit lines for whole group and subgroups 



Running the correlation 
Analyze > Correlate > Bivariate 

Select the variables of interest 

You can ask for descriptive statistics by clicking on OPTIONS 

 

 

 

 

 

 

 

 

 

 

If you would like to assess the relationship in non parametric data you 

can simply select Kendalls Tau-b or Spearman 



Main output 

 

** = significant 

Report r, p and N (if it differs in the differing correlations) 

 

The write up: 

In a sample of 82 participants bivariate correlations indicate positive significant relationships between self 

esteem and assertiveness: r = .745, p <0.001; self esteem and confidence: r = .727, p < 0.001; and a negative 

relationship between self esteem and confidence: r = -603,  p< 0.001 

For this many variables I would create a correlation table using the lower triangle  

 

 

Descriptive statistics for the variables 

which is needed for your write up 

The top and bottom of the table are 

mirror images you will only need to 

write up one half 



Table 1: 

 Self Esteem  Assertiveness  Social Anxiety  Confidence  

Self Esteem      

Assertiveness  .745**     

Social Anxiety  -.603**  -.376**    

Confidence  .727**  .723**  -.471**   

Mean  15.22  16.94  10.23  24.70  

SD  7.86  8.41  7.14  6.88  

 

Partial Correlations 

If we would like to focus on the association between confidence and assertiveness we can see from Table 1 

that this association is highly significant: r = .727, p < 0.001. However, perhaps this relationship is explained 

by a third variable and is thus a redundant relationship (or a spurious finding) If we were to run a partial 

correlation (Analyze > correlate > partial) between Confidence (X) and Assertiveness (Y) whilst controlling 

for Self Esteem (Z) the relationship between X and Y changes when we control for Z. The relationship 

decreases in significance although continues to be significant: r = .395, p < 0.001.  

 

 

Correlations 

Control Variables assertiveness confidence 

self esteem Assertiveness Correlation 1.000 .395 

Significance (2-tailed) . .000 

df 0 79 

Confidence Correlation .395 1.000 

Significance (2-tailed) .000 . 

df 79 0 

 



Linear Regression 

Before conducting any regression you should run a correlation first to see which variables are significantly 

related to one another – if they are not related there is not much point in running a regression. 

Additionally you should ensure that none of the predictor variables are too highly correlated with one 

another – this will control for multicollinearity  

 

 

 

 

Linear regression  
Analyze > Regression > Linear 

 

 

 

 

For simple linear 

regression> 

Place your IV and DV in 

their boxes 

Leave method as Enter 

OK 

 



The output 

 

 

 

 

The model summary gives you the r2 – the amount of shared variance.  

The ANOVA provides you with the goodness of fit of the statistical model – i.e. if this is significant ten you 

have a good fit of model to the data points.  

The Coefficients gives you the gradient (b) and the constant (a) and the significance of these. Essentially the 

t-tests assess whether your gradient is significantly different from 0. 

 

 

 



Multiple Regression 

 

Most of the time we do not try to predict an outcome variable from one predictor variable... we often have 

several predictors and thus would adopt multiple regression analysis. Multiple regression shows us both the 

separate effects and the combined effects of these predictors on a dependent variable. The separate effect 

of each predictor on a dependent variable is equivalent to different simple linear regressions estimated for 

each predictor.  

 

There are several different methods for running a multiple regression dependent on your particular 

question, hypothesis and on the basis of previous literature. 

 Setwise Method: Tests only one equation including all possible predictors. 

 Hierarchical Selection: (“blocked”, “blockwise”) Enters the predictors in the equation following 

some theoretical considerations. 

 Stepwise Selection: (“enter” or “standard”). Calculates the equation that maximises the explained 

variance with minimum number of predictors. 

 

 

Setwise 

For the set wise model simply place all the variables of interest into the independents box and leave the 

Method box on its default of Enter – this will give you an overall model and R2 although you can still assess 

from the coefficients box which of the variables is having a greater effect and perhaps which ones that are 

not predicting anything at all.  



 

 

Hierachical Selection 

This model is based on some theoretical assumptions- therefore you as a researcher set the order in which 

you enter your variables in ‘blocks’. For example for much of my research I would like to control for time 

one variables and would enter these variables first.  

 

 

 

Setwise: 

Leave method on its default of  

ENTER 

 

Hierachical: 

Place your first theoretically 

driven variable across 

Leave the method as enter 

(unless you would like to select 

stepwise for more than one 

variable) 

Press ‘next’ which will open up 

a new window 

Place your next variables into 

this window.  

You can mixed Hierachical and 

stepwise within the same 

regression. 



 

Stepwise. 

This model is often used as an exploratory model i.e. when it is unknown which variable is going to be the 

greater predictor from the set.   

 

 

 

 

 

 

 

 

 

Insert all the variables of 

interest into the 

‘independent(s)’ box 

Select Stepwise 



 

  

This output box informs you which 

variables have been entered into the 

equation as significant predictors. 

It also tells you which one is a greater 

predictor.  

In this case wellbeing was the greatest 

predictor of college adaptation with 

stress adding significant weight to the 

equation. 

These boxes are all similar to the ones you 

have seen before.  

The model summary now has an R2 for the 

first variable that enters the equation as 

well as an R2 change for the second 

variable and an overall R2 for the two 

variables together. 

When writing this up you will need to 

provide the coefficients’ of each stage. 

The coefficients box also provides you with your tolerance statistics. There are several guidelines for these. 
If the largest VIF is greater than 10 then there is cause for concern, if the average VIF is substantially greater 
than 1 then the regression may be biased (Bowerman & O’Connell, 1990; Myers, 1990) 
Tolerance below 0.1 indicates a serious problem, tolerance below 0.2 indicates a potential problem 
(Menard, 1995) 



  

This box simply tells you the excluded variables at each step and 

includes tolerance tests as well. As can be seen Self Esteem has no 

predictive utility when looking at college adaptation 

For this test of multicollinearity  

high variances should be 

proportioned across all variables 

for the low eigenvalues (bottom 

rows) in this case dimension 3 

has equal proportions across 

PWBS and Stress indicating a 

possible problem 

This box tells you of any case numbers that 

are a significant outlier.  



 

 
 

  

 

 

 

  



 

 

 

 

 
 

 

 

 

 

 

Cooks distance:None have a cooks 

distance greater than 1 and so none of 

the cases are having undue influence 

on the model. 

The average leverage can be calculated 

as (k+1/n) = 4/ 359 = 0.01 and so we 

are looking for values either twice as 

large as this (0.02) or three times as 

large (0.03) dependent on the 

statistician… There are a couple of 

cases that are 0.03 which may be 

problematic. 

Guidelines for Mahalanobis distance 

are with a sample of 100 and three 

predictors, values greater than 15 are 

problematic. We have 3 predictors and 

a larger sample size so the value is a 

conservative cut off, yet none of the 

cases come close to exceeding this. 

The evidence suggests that 15 may be 

problematic on one measure only. 

Regarding the rest of the data there is 

appears to be no influencing cases. 



Chi Square Test of Independence 

This will test the association between two categorical variables. 

Analyze > Descriptive Statistics > Crosstabs 

Place across the variables you are interested in. 

 

 

 

Once you have placed the variables 

of interest across you can select 

Display Clustered Bar Charts (you 

can also do this via Chart Builder) 

You need to select statistics and tell 

SPSS you would like it to calculate 

the chi-square. Additionally I would 

select Phi and Cramer’s V (this is 

your effect size). 

Additionally if you have a 2 x 2 chi 

model (and it is appropriate) you 

can ask for Risk – this is an odds 

ratio. 

 

 

 

 

 

Additionally I would select Cells and 

tick expected – this allows you to 

compare what you have and what 

should be expected so you can see 

where your data deviates.  



 

This table gives you what 

scores are expected if the two 

variables are truly 

independent and your 

observed values. As can be 

seen within the table males 

are slightly less likely than 

expected to have a peer 

mentor in comparison to 

females 

The main analysis box shows you that there is only an approaching significance: χ2 (1) 3.737, p = 

0.053. 

You must always look to the bottom of the table – if this is ≥ 16% then you have violated the 

assumption of normality for chi square and you should be reporting the Fishers Exact Ratio instead. 



 

This box provides your odds ratio and 

the 95%CI of that ratio. 

In this case females are 1.112 times 

more likely to have a mentor than their 

male counterparts. 


