Umver5|ty of
@ Reading
Research Highlights on Energy Storage

Reflections on energy storage research at Reading

Dr Ben Potter
Associate Professor of Energy Systems

2nd March 2017

Energy & Environmental Engineering,
School of the Built Environment,
University of Reading



Table of contents

1. The rise of energy storage

2. Reducing network connection costs with storage
3. Using storage for frequency response

4. Agent-based control of storage

5. Communications & Security

6. Using forecasts to control storage



The rise of energy storage



National Grid’s Future Energy Scenario - Consumer led

Consumer Power
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e Consumer-power: market driven with little government intervention.
e Smaller-scale storage and EVs may well follow this scenario.
e The uptake of storage may also be underestimated.



Storage in all four scenarios
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e FES does not currently include electric vehicle as grid storage

e National Grid's 'Gone Green’ scenario predicts 9.7M EVs by 2040,
and some models predict more than twice this uptake.

e 10% of those EVs charging at the same time using 7 kW home
chargers would result in a power demand of 6.7 GW.



The price of Lithium-lon batteries
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The price of Lithium-lon batteries

e Since 2014, the cost of completed EV battery packs have crashed
from $400/kWh to $200/kWh [1].

e GM has said that it's paying LG $145/kWh for the cells in the 2017
Bolt battery pack [1].



Reducing network connection
costs with storage



Storage

and solar to minimise grid power flow

Maximum demand: 496.58kW
Maximum reverse: 51"1.29 kW
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Selecting the right size storage system

_ Total energy supplied from grid
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Reflections

e Mainly a problem of energy rather than power.
e Daily, monthly and seasonal time-scales at work.

e Business-case modelling is critical to determine the size of the
storage device.
e In this example, it would also be important to asses whether selling

excess solar energy is better than reducing network connection costs.

e Storage should be considered as capable of multiple uses and the
business case based on all these uses.



Using storage for frequency
response




Power is more important than energy for frequency response
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30 August 2012

BESS Rasponse

Power (MW) - Negative for

a
30/08/2012 3am

PJM Regulation Services — String State of Charge
30 August 2012

SOC - String 1 (%) SOC -Swing 2(%) — SOC - String 3 (%) SOC - String 4 (%)

40
30/08/2012 3am

3MW Advanced lead acid battery providing frequency regulation [6].




Frequency response in more detail
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e The revenue for the different types of response are different.

e Not all storage technologies will be suitable for the different types of
response.
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Response times and capacities of energy storage
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Reflections

e A given energy storage solution be attractive for a variety of reasons
e.g. availability, cost, pre-existing.

e However, this solution may not have a sufficient response time for
specific revenue-generating ancillary services such as frequency
response.

e Hybrid storage solutions can combine technologies such as adding
capacitors to a lead-acid system.

e Aggregators may be able to construct a portfolio of controlled
storage to respond across a wide-range of time-scales.

e Communications and control remain an important consideration in
the response time of energy storage.
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Agent-based control of storage




Agent-based control of a neighbourhood

e Agent-based systems can be used to control storage for peak
reduction.

e Can also be used to power loads during a failure of grid supply, but
must prioritise.
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Feeder demand without storage
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Peak reducing with storage
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Feeder demand with power cu
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Agent-based load prioritisation
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Reflections

e Agents work together to find a low cost balanced solution or a low
carbon solution.

e Agents can operate without constant communication with a central
'brain’.

e There will probably always be winners and losers in any single
agent-based negotiation, especially with explicit load prioritisation.

e |t's important to ensure that it's not always the same losers.

e Some smart control schemes struggle to avoid penalising those can't
participate or be flexible with their demand. Those are often the
people who are struggling to pay their bills.
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Communications & Security




IT Structure for smart control (NTVV Project)
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Reflections

e Centralised vs. decentralised intelligence and control can have a big
impact on the number of messages.

e Rather like our transmission network, there will be key pinch points
in the network in the path to central systems or near the most useful
assets.

e The structure used for a small or even medium-scale trials may well
not be appropriate for large-scale roll-out.
e It only takes one security breach for all confidence (and

revenue-generating contracts) to be lost.

e We are likely only underestimating security issues. Professional
support for security is often only brought in after a breach or once
production systems are already in place.
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Using forecasts to control
storage




Challenges with forecasting
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Reflections

e Forecasting is hard but you probably need them to make money.
e It's important to consider what the forecast will be used for.
e Forecasts must be fit for purpose for control systems and visa versa.

e Forecast errors may result in sub-optimal behaviour that leads to the
same people being disadvantaged.

e When forecasting human behaviour, it's sometimes better to just
ask them.
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The End. Thank you.

Make a note of any questions for the panel
Q&A session.
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