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Why Install Energy Storage in LV Networks?

* Power flow congestion management:
— Accommodate additional demand and Low Carbon Technologies

— Manage congestion upstream on the HV and EHV networks

* Voltage Control:

— Accommodate additional demand by preventing voltage sag

— Prevent voltage rise in systems with high solar PV penetrations
e Balancing Service Markets:

— Frequency response can be offered through aggregation
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CUSTOMER LED NETWORK REVOLUTION -
TRIAL RESULTS
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Energy Storage in LV Networks — Results from
the Customer Led Network Revolution
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LV Energy Storage Installation

e 2 Systems installed on the LV network

* 50/100 kVA Inverters

 100/200 kWh of Litium-lon Nano-
Phosphate batteries
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Real power control of voltage
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Real power control of voltage
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ENERGY STORAGE AND REAL-TIME THERMAL
RATINGS
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Energy Storage and Real-Time Thermal Ratings -
Motivation
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By combining these technologies can we decrease the utilisation of
storage for local applications and increase security of supply?
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Powerflow Management with Real-Time Thermal Ratings
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Energy Storage and Real-Time Thermal Ratings - Results
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ELECTRIC VEHICLES AS ENERGY STORAGE IN
LOW VOLTAGE NETWORKS
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Deferring Network Reinforcement via V2G
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The first real world trial of V2G chargers in the UK

Working with Nuvve, Nissan
and Enel

10kW bi-directional chargers

1 at Newcastle University
9 at Nissan Research Centre-
Cranfield
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Response Time
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FREQUENCY RESPONSE IN LOW VOLTAGE
NETWORKS
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What is Frequency Response?

 When the frequency starts to change,
the system operator acts quickly to
restore it to its nominal value

* Primary frequency response providers
will supply or absorb real power
within 10s

* Secondary frequency response
providers will supply or absorb real
power witin 30s

e But will this be quick enough in a low
inertia system with unpredictable
demand and generation?

Newcastle
Q) Lniversity

Frequency (Hz)

Output

Dynamic Response
50.2 ------:/ Incident
50.0%//95 3(? s 6(.) s Time 30/‘m|,ns
i | Secondary (to 30 mins) -
! ) /7
49.8f----- A : /
RoCoF Primary | /
+ : : /
E : ! 7 Reserve —»
495 === - :—---!-— \ e
Steady-
Freq. at :
i \ : state freq.
492 e Dynamic and Non-Dynamic Service
1
\ DeatJband
rd
| |
| |
| |
1 1
1 1
I
0 I,
| 1
| |
| |
I I
e Upper | |
— Reference : :
| |
— | ower 1 1 \
1 — !
49.4 49.6 49.8 50 50.2 50.4 50.6
Frequency (Hz)




AC/AC Converter RT Controller

Real-Time Network Simulator
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Experiment 1: Aims and setup

* Historical frequency data was reproduced on the
laboratory LV network

* The ESS responded according to the EFR response curve,
and managed its state of charge between responses.
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xperiment 1: Results
Experlmenta Investigation
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Experiment 2: Aims and setup

The IEEE 24-bus test network was simulated in the OPAL-RT

Frequency events were created in the simulation, resulting in
frequency changes on the laboratory network

The ESS responded to the frequency change; the resulting power
sighal was measured and fed back into the simulated network

The ESS response was scaled up, representing different ESS
penetration levels
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xperiment 2: Results
Experlmenta Investigation
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Conclusions

* Energy Storage can offer substantial benefits when installed in
LV networks

* Services can benefit higher voltage levels, but will require
coordinated control and aggregated response

* Energy Storage can operate in collaboration with other smart
grid interventions, including RTTR and Demand Response

* Energy Storage can be purpose built, behind the meter, or
Electric Vehicles with V2G functionality

* We have developed simulation, experimentation, and
demonstration approaches to help realise these benefits
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Thanks for your attention! Any questions!?
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