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Abstract— Global navigation satellite system (GNSS) has
been considered as a panacea for positioning and tracking since
the last decade. However, it suffers from severe limitations in
terms of accuracy, particularly in highly cluttered and indoor
environments. Though real-time kinematics (RTK) supported
GNSS promises extremely accurate localisation, employing
such services are expensive, fail in occluded environments and
are unavailable in areas where cellular base stations are not
accessible. It is, therefore, necessary that the GNSS data is
to be filtered if high accuracy is required. Thus, this article
presents a GNSS-based particle filter that exploits the spatial
constraints imposed by the environment. In the proposed setup,
the state prediction of the sample set follows a restricted motion
according to the topological map of the environment. This
results in the transition of the samples getting confined between
specific discrete points, called the topological nodes, defined by
a topological map. This is followed by a refinement stage where
the full set of predicted samples goes through weighting and
resampling, where the weight is proportional to the predicted
particle’s proximity with the GNSS measurement. Thus, a
discrete space continuous-time Bayesian filter is proposed,
called the Topological Particle Filter (TPF).

The proposed TPF is put to test by localising and tracking
fruit pickers inside polytunnels. Fruit pickers inside polytunnels
can only follow specific paths according to the topology of the
tunnel. These paths are defined in the topological map of the
polytunnels and are fed to TPF to tracks fruit pickers. Extensive
datasets are collected to demonstrate the improved discrete
tracking of strawberry pickers inside polytunnels thanks to
the exploitation of the environmental constraints.

I. INTRODUCTION

Safe robot behaviour is one of the most critical require-
ment of service robots in agri-robotics [1]. A robot or a
fleet of robots needs to be aware of, not only the static
environment like buildings and polytunnels but also dynamic
subjects like humans and other robots. This is essential for
safe navigation, collision avoidance, versatile manoeuvring
and the availability of a robot for service on demand. The
static environment can be mapped before operational robots
are deployed via simultaneous localisation and mapping
(SLAM) [2], [3]. Localising and tracking humans, however,
presents new challenges for which the robots are equipped
with different sensors. 2D and 3D lidars are the most widely
used laser-based sensors used for localisation and tracking
of humans [4], and are well known for their wide coverage
angles that provide a 360-degree view of the surrounding.
Radio-Frequency Identification tags (RFIDs) are also popular
in short-range location estimation and can also provide the
identity of the localised person. These sensors, however,
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Fig. 1: A setup for an autonomous fleet of robots to support
fruit pickers. Call-A-Robot (CAR) user interface: (a) ready
to call a robot, (c) robot on the way to picker, (d) robot
arrived at picker’s location and ready to be loaded, (f) robot
sent to in-field storage with picked yield. A human picker
picking strawberries (b) and loading full trays on a robot (e).

require the robot to be in the vicinity of humans, for the
sensor to observe them and hence cannot provide continuous
service. For continuous tracking of humans, it is therefore
imperative that a Global Navigation Satellite System (GNSS)
is used. In this paper, a GNSS-based spatially constrained
particle filter, referred to as Topological Particle Filter (TPF)
is proposed. The state of TPF follows an iterative update,
constrained by the topology of the environment. The topol-
ogy of the environment is captured by the topological map,
which is a discrete representation of the environment and
acts as an input to the TPF. Thus, this setup restricts the
transition of particles only between discrete points, called
the topological nodes, defined in the topological map. As a
result, a particle can only transit from one topological node
to another, if such transition is allowed by the topological
map.

The proposed TPF is tested by tracking fruit pickers inside
polytunnels. In our application, the fruit picker can request a
robot at will. Thus, for the robot to reach the fruit picker, it
needs to know the exact location from where the request was



made. An error in location with variance greater than 0.75m1

in the picker’s estimated location can send the robot to the
wrong lane of a polytunnel, making it impossible for the
fruit picker to access the robot physically. The TPF makes
sure that the picker’s estimated location is accurate enough
for the robot to navigate to the topological node closest to
the picker.

The main contributions of this work are as follows: 1) a
spatially constrained particle filter is designed that enables
the robots to track the workers throughout the operation time
exploiting the constraints imposed by the environment, 2)
a mobile app is designed that the workers can use to call,
cancel and check the status of the incoming robot, 3) the full
system is validated in a real fruit production scenario.

The proposed system was developed as part of the RAS-
Berry (Robotics and Autonomous Systems for Berry produc-
tion) programme [6] which aims to develop an autonomous
fleet of robots to provide support to fruit pickers and other
workers in horticulture industry. The number of applications
range from fruit transportation, UV treatment of fungi to
autonomous picking of ripe fruit. In this paper, we consider
the in-field transportation with the main objective to provide
fruit pickers with an autonomous robotic platform for the
transportation of picked yield. Fruit pickers in polytunnels
are required to send picked yield to a food handling unit
(FHU) as quickly as possible. At FHU the yield is cleaned,
packed and refrigerated before it is sent off to the markets.
These handling units are often situated at a distance from the
polytunnels where the pickers are picking. Furthermore, the
fruit pickers need to finish picking in all polytunnels before
the picked fruits are transported to FHU. Thus, transporting
the yield from the polytunnels to the FHU takes a substantial
amount of time, during which the yield is kept on trolleys
out in the open. This significantly reduces the shelf life of
the yield in the market. Thus, quick transportation of the
yield to the FHU is of the essence. The core component of
the system is a robust picker localisation system which is
described and evaluated in the following sections.

II. RELATED WORK

Detection, identification, localisation and tracking of ob-
jects has been an important subject studied in the robotics
community [7], [8]. There are systems which have achieved
sub-meter level accuracy but at the expense of high-cost
sensors like lidars, high-definition cameras, RTK-supported
GNSS or different combinations of the sensors. Both active
and passive approaches to localisation and tracking are
extensively studied in the literature.

One of the popular passive sensing approaches towards
localisation relies on colour video streams. A colour camera
can provide several local and temporal features, however,
it fails to provide 3D location in real-world [9], [10], [11]
and thus has a limited range of applications. Thus, depth
cameras have received considerable attention since 2010 with
the release of Microsoft Kinect. In [14], the authors proposed

1The standard width of a polytunnel lane is 1.5m.

an algorithm for the Kinect-equipped small-footprint robot
which employs a legs classifier to detect and track the legs
of multiple people in a highly cluttered indoor environment.

Passive sensors like lasers, cameras and RFIDs fail to
provide the identity of localised objects, although some
studies like [12], [13] have developed algorithms which
can identify and track human subjects simultaneously. This
type of identification is system generated and can only
associate a track with a system-generated identifier. In [15],
the authors used a 3D camera (Kinect V2) and a passive
RFID (Impinj R420) to simultaneously track and identify
humans. In their work, the R420’s antenna behaves as a
reference to match the RFID with the skeletons detected
by the depth camera. Though a centimetre-level accuracy
is achieved, the inability of Kinect V2 to detect more than
six skeletons at once, confined the system’s capacity to six
tracks only in a relatively short range.

In [16], an online learning framework taking advantage
of multi-target tracking using 3D-lidar is presented. The
framework detects, identifies and tracks human subjects in
real-time. However, as the case with any homogeneous laser-
based system, the tracker is liable for degraded accuracy
due to false positives and negatives. In [17], a robot self-
localisation scheme is presented which fuses several het-
erogeneous sensors together and leverages their strengths
by adding constraints on the shortcomings of each sensor.
Using different sensor setups the authors were able to achieve
from 37% to 76% accuracy improvements. In [18], multi-
sensor human tracking with a mobile robot using different
variants of the Kalman and particle filters is presented. The
authors demonstrate that in terms of accuracy, the particle
filter outperforms the two variants of Kalman filter but at
the expense of computational load. Another comparison of
Bayesian trackers, exploiting range estimation via received
signal strength of a radio signal is studied in [19]. In this
work, the accuracy of the particle filter is compared with
and outperforms the extended and the conventional Kalman
filters.

Most of these techniques require the tracked entity to be
in the vicinity of the sensor providing the measurements.
In applications where continuous human identification and
tracking is required over a very large coverage area, these
sensors fail to provide a reliable solution. In such scenarios,
the use of GNSS-based service is still the most sensible
option.

III. SYSTEM OVERVIEW

Our project for robotic in-field logistics aims to speed up
the delivery of picked yield from the polytunnels to the FHU
by employing a fleet of yield carrying robots. Such a solution
also reduces the workload on pickers, enabling them to pick
more fruit in less amount of time, thus cutting the labour
cost. In this section, some of the tools designed to achieve
this goal are reported.



Fig. 2: An example state transition diagram for the CAR
system.

A. CAR System

The CAR or Call-A-Robot system is an online mobile-
based application that a fruit picker can use to request,
cancel or to get a status of a particular transportation robot.
Once logged in, the CAR application automatically sends the
identity, timestamp and GNSS coordinates of the fruit picker
to the robot via a coordination system. These coordinates
are obtained from the mobile phone’s internal GNSS or an
external, more accurate GNSS module. The accuracy and
update frequency of the coordinates depend on the GNSS
module used. The CAR state transition diagram for one fruit
transportation task is given in Fig. 2. Once the picker loads
the trays and sends the robot to FHU, another call can be
made.

B. Topological Map

A topological map (Fig. 4) is a discrete representation
of the environment that can be viewed as a tuple T →
〈N,E,A,Nav〉, where N is a set of discrete physical
locations, nj , called topological nodes i.e., N = {n1, n2, ...}.
E ⊆ N ×N , represents the set of possible edges connecting
the topological nodes, where the element at jth row and kth

column of E is defined as

ejk :=

{
1 if nj connects to nk
0 elsewhere

, (1)

where A and Nav are the sets of possible navigation actions
performed by the robot and the mapping of each edge to a
navigation action, respectively. N and E act as inputs to
the TPF for the constraint prediction of the particles. A and
Nav are utilised in topological navigation by the robots as
described in detail in [21].

IV. TOPOLOGICAL PARTICLE FILTER

Unlike the conventional particle filter, TPF tracks the
picker’s closest topological node, rather then the picker itself.
The prediction step involves the transition of particles from
node nj to node nk, only if nj and nk are connected through
an edge ejk ∈ E. This is to ensure that the movement of
particles follow the topological map of the polytunnel. Thus
the samples of TPF cannot jump from one lane to another,
although for practical purposes this constraint is relaxed as

described in Section V. Every particle, pi is associated with
a probability of transition, ri, which is a function of the
particle’s duration at a particular topological node and which
resets to zero once a transition to another node occurs. The
transition probability of ith particle at jth topological node
is given by

ri

(
τ ji

)
= 1− exp(−λτj

i ), (2)

where τ ji is the duration of ith particle at topological node
j. Thus, in the prediction step, the probability of a particle’s
transition from one topological node to another follows an
exponential distribution. As a result, those particles with
large τ (.)i values are more likely to transition to a connected
topological node. The parameter λ is the tuning parame-
ter and depends upon the speed of fruit picker. Particles
associated with a fast picker need to transit more quickly
between nodes as compared to particles associated with a
slow-moving picker. The tuning parameter ensures that the
particles follow a similar motion as the movement of fruit
picker. The value for λ can be dynamic and calculated from
the velocity obtained from the GNSS readings. This paper,
however, assumes a constant value for all fruit pickers.

The correction step of TPF is two-fold and involves,
obtaining weights for all predicted samples based upon the
measurement from the GNSS module and its proximity to
the predicted samples, resulting in a weighted predicted
sample set. This results in every topological node acquiring
a topological mass, which is the product of the number of
predicted particles in that node and their associated weights.
The closest node is then selected as the node with maximum
topological mass. This is followed by a resampling step,
where new particles are drawn with repetition from the
predicted sample set, where the probability of selecting a
particle is proportional to its weight.

The samples of the particle filter will not navigate between
two lanes as no edge in E connects the topological nodes
of any two lanes (see Fig. 4). Except at the entrance of the
polytunnel where the topological nodes from different lanes
are connected (white edges), demonstrating the possible
movement of pickers from one lane to another. In this way,
the samples of TPF always remains in the topological nodes
belonging to the lane where the picker is picking. For this
concept to work, the particle filter must be initialised in the
correct lane. A wrong initialisation will result in all of the
particles reside in the wrong lane and will never recover
back to the lane where the picker is picking. To solve this
problem, only a small portion of the particle set is allowed
to move freely between topological nodes irrespective of an
edge connection between the nodes. This ensures that the
particle filter can gradually recover back to the correct lane if
initialised in the wrong lane. This, however, comes at a cost.
A consistent bias in the GNSS reading will allow the TPF to
jump back to the wrong lane despite a correct initialisation.
This concept is demonstrated with example in Section V.



The TPF Framework

The step-by-step implementation of the TPF is explained
in this section, for which the following notations are defined:
gt is the GNSS reading at time-step t, pit(j) and ṕit(k) is
the representation of ith particle located at jth topological
node and its predicted state at kth topological node at time
t, respectively. Pt, Rt, Ṕt and Wt are the sets of all par-
ticles, their probabilities of transition, their predicted states
and their associated weights, respectively. Total number of
particles are denoted by Ns.
0) Initialisation: Create Pt=0 by generating pit=0(.) ∈ N ∀ i
s.t. pit=0(.) ∼ N

(
gt=0, σ

2
)
.

Explanation: Initialisation is performed by generating Ns
particles in the topological nodes that are in the radius of
σ2 of initial GNSS reading g0. Thus, generating P0, the set
of particles at t = 0. The value of σ2 determines the spread
of particles across the topological nodes in the first time-step.
A more relaxed approach is to generate Ns particles across
all topological nodes.
1) Prediction: Generate Ṕt from Pt using Rt.
Explanation: In the prediction step, all particles pit(.), are
updated to ṕit(.) according to their probabilities of transition
ri(τ

(.)
i ) ∈ Rt. For example, a particle pit(j) at node nj is

updated to ṕit(k) at node nk, according to its probability of
transition ri(τ

j
i ) if nj and nk are connected through an edge

in E i.e, ejk 6= 0. Note that if the transition probability is
too low (small τ (.)i ), the predicted particles will remain at
the same topological node. Hence, ṕit(.) = pit(.).
2) Weighting: Generate Wt by calculating wit∝

∥∥ṕit(.)− gt∥∥
∀ ṕit(.) ∈ Ṕt.
Explanation: Normalised weights are calculated for all pre-
dicted particles. These weights are proportional to the dis-
tance between the GNSS location and predicted samples.

3) Update: Calculate T(.) =
∑
i∈n(.)

(
ṕit (.)wit

)
∀ n(.) ∈ N .

Explanation: The sum of weighted predicted particles occu-
pying a topological node gives the node a topological mass
T . The coordinates of the topological node with the largest
topological mass are considered as the estimated location by
TPF:

TPF output = max
n(.)

(T(.)). (3)

4) Resample and reiterate: Sample from Ṕt with probability
Wt allowing repetition, thus generating Pt+1. Go to Step 1.
Explanation: New samples are drawn with repetition, from
the predicted samples, where the probability of selection is
proportional to the weights calculated in Step 2. This new set
of samples are fed back as an input to TPF in the prediction
step.

V. EXPERIMENTAL SETUP

Our framework has been fully integrated into the Robot
Operating System (ROS) [20]. The data collected and exper-
iment performed in this work were carried out on Ubuntu
16.04 LTS with ROS Kinetic.

1) Polytunnels: Experiments were performed in opera-
tional polytunnels at Maidstone, Kent, UK. Each polytunnel
is 135 m long with five rows of raised beds of strawberry
plants and four lanes for the fruit pickers to navigate.
The topological map consists of 46 nodes per lane, thus
each polytunnel is divided into 184 discrete points. These
polytunnels were installed with three Kodak Pixpro 360
camera which provided the overhead images and timestamps
used to find the ground truth of the pickers at different points
in the polytunnel.

2) Thorvald Robotic Platform: is a multi-purpose, highly
modular and versatile agri-robotic platform (see Fig. 1).
For the presented experiments, the width of the robots was
adjusted to fit the narrow lanes of the polytunnels and
the configuration adjusted to carry at least four trays of
strawberry produce. Two Thorvald robots were used in these
experiments for the transportation of picked strawberries
from polytunnels to the FHU.

3) Smart Trolley: A fruit carrying trolley that could hold
up to four trays of produce, equipped with a Garmin Glo 2,
a GNSS module, a cellphone/tablet for the CAR application
and a power bank. The Garmin Glo 2 was programmed
to bypass the cellphone’s internal GNSS. Thus, the CAR
application could obtain GNSS coordinates directly from
GLO 2 via a Bluetooth connection.

4) Scenario: Each fruit pricker is provided with a smart
trolley that can carry up to four trays of strawberries. Once
the trays on the trolley are (almost) full, a robot can be
requested via the CAR application. The summoned robot
will already be loaded with empty fruit trays by workers at
the FHU. Once the robot arrives at the location of the picker,
it is stocked with full strawberry trays while the trolley is
loaded with empty trays provided by the robot. The fruit
picker can now keep on picking while the robot transfers the
full strawberry trays to FHU. For this cycle to work, it is
imperative that the robot arrives at the correct lane in the
polytunnel. Failure of which will require the fruit picker to
carry full trays of produce to the robot. This will require
the fruit pickers to exit the polytunnel and enter the lane
where the robot is waiting to be loaded, as the pickers cannot
jump to a neighbouring lane directly due to the obstruction
provided by the raised beds carrying strawberry plants.

5) Results: These experiments were performed in real
operational polytunnels utilising two Thorvald robots, two
smart trolleys and two human pickers. The topological map
for the polytunnels used during the experiments is shown in
Fig. 4. The black edges connect the topological nodes of the
same lane, while the white edges tie two neighbouring lanes
together at the front and rear of the tunnel. The white edges
are necessary to track the picker when they are making a
transition from one lane to another.

Fig. 3a and 3b, show the pickers picking strawberries in
lane D and lane C, respectively. The raw GNSS locations are
also plotted as blue markers, while the green markers are the
outputs of TPF. The red markers represent the closest nodes
to the raw GNSS measurements. Feeding the raw GNSS
measurements to the robots will result in the robot navigating
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Fig. 3: Markers: TPF (green), GNSS closest node (red), raw GNSS (blue). Parameters: λ = 0.1, Ns = 250. Fruit picker at
lane D (a) and lane C (b). (c) Avg. RMSE of TPF and closest node using raw GNSS measurements inside a polytunnel.

Fig. 4: Topological map of two polytunnels used in the experiments.
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Fig. 5: Markers: Green-TPF, Red-GNSS based closest node, Blue-Raw GNSS. Parameters: λ = 0.1, Ns=300. TPF
performance comparison with raw GNSS for 135 meter long lanes of two polytunnels. Picking lanes: C and K.

to the wrong lane at certain timestamps. While the observed
TPF output always stays in the correct picking lane.

In Fig. 3c, the average root mean square error (avg.
RMSE) is obtained for TPF and compared with the raw
GNSS-based closest node approach. The avg. RMSE is cal-
culated by comparing the estimates of TPF with the ground
truth location of the pickers obtained with the overhead
cameras. Maps of two polytunnels with markers representing
TPF, GNSS based closest node and raw GNSS measurements

are plotted in Fig. 5. The TPF correctly gets initialised in lane
C and lane K of the polytunnels and stays in this lane despite
the consistent erroneous measurements obtained via GNSS
device. The closest node approach fails at multiple instances,
providing the system with picker’s position in lane B, D, J
and L which were unoccupied.

A likely scenario is when the TPF gets initialised in a
lane where the picker is not present. This will render all the
samples of TPF to navigate between the topological nodes
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Fig. 6: TPF recovery from wrong initialisation. Parameters:
λ = 0.1, Ns=250. Markers: Green-TPF, Blue-Raw GNSS.

that belong to an unoccupied lane of the polytunnel. To solve
this problem, the TPF only allow a small number particle to
navigate freely without following the constraint set by the
topological map. This results in the output of TPF recover
to the correct lane of the polytunnel after a few updates. This
behaviour is observed in Fig. 6, where the picker is picking
in lane D but due to noisy first GNSS readings the TPF gets
initialised in lane E. The recovery of TPF to lane D can be
observed after a few iterations.

VI. CONCLUSIONS

This paper proposes a novel discrete space continuous-
time particle filter which exploits the topology of the envi-
ronment to constrain the state transition of the particle filter.
The proposed filter is deployed for tracking fruit pickers
inside polytunnels. The resultant filter shows considerable
improvement over the GNSS-based closest topological node
approach. Promising results are obtained through experi-
ments performed in fully operational strawberry polytunnels.

One of the observed issue with TPF is its failure to detect
the correct lane in case of consistent bias in the GNSS data.
This issue, however, can be resolved in a number of ways.
One can dynamically estimate the bias in GNSS data by
utilising a sensor like a lidar on the robot. As the robot
approaches a picker the data from the lidar can be used to
obtain an accurate estimate of pickers location for a brief
period of time and for calculating the GNSS bias which can
be removed prior to feeding the data to TPF. Another method
to detect the correct picking lane is by tagging the front of
every lane with an RFID chip. The chips can be then used
to detect pickers when entering a lane of the polytunnel.
Once the lane is detected, a hard constraint can be imposed
on the samples of TPF that will cease the particles to jump
to a topological node that does not belong to the detected
lane, even in the presence of biased GNSS measurements.
Furthermore, the GNSS data can be passed through a bias
reducing algorithm as presented in [22], [23].
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