Crop/Weed Discrimination for Autonomous Weeding Robots

Dr Grzegorz Cielniak

Lincoln Centre for Autonomous Systems
University of Lincoln

1st Online Conference on Agri-Food Robotics, March 2020

Challenges

Natural variation in crops/weeds

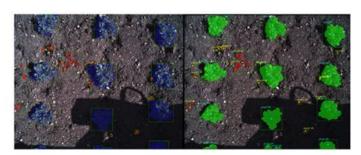
Changes due to plant growth

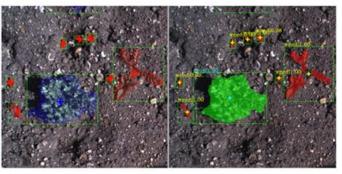
Changing weather and lighting conditions: challenge for current sensing technology

Irregular arrangements of crop beds

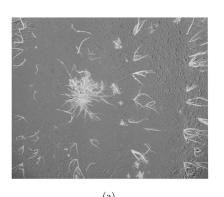
Data-driven techniques need loads of data: not there yet

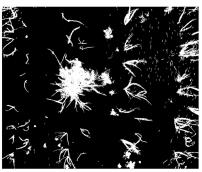
Generalisation between crops and fields

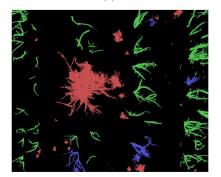


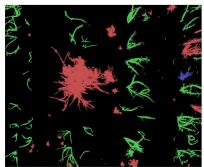


Segment Vegetation then Discriminate





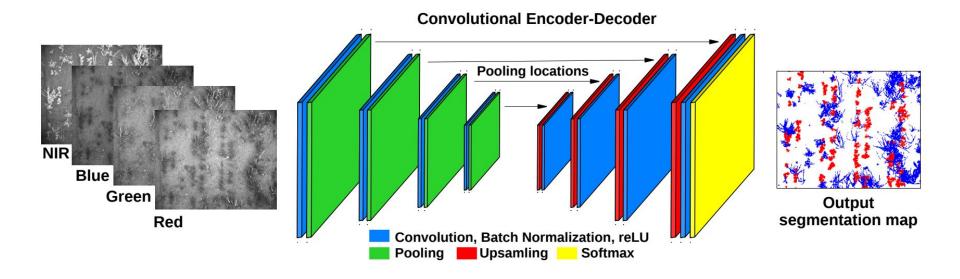




Method	Otsu	RATS	max-tree			
Dataset		Onions 2017				
Precision	74.41%	47.78%	75.36%			
Recall	80.25%	87.54%	83.32%			
F_1	77.22%	61.82%	79.14%			
Parameters	-	$\eta = 8$	$\Delta = 30$			
Dataset		LowVeg				
Precision	0.40%	0.44%	75.66%			
Recall	96.33%	95.77%	64.96%			
F_1	0.80%	0.88%	69.90%			
Parameters	_	range	$\Delta = 25$			
Dataset	Sugar Beets 2016					
Precision	59.93%	50.52%	76.21%			
Recall	96.81%	98.64%	93.87%			
F_1	74.03%	66.82%	84.13%			
Parameters	-	$\eta = 14$	$\Delta = 45$			

	positional information								
Descriptor (len)	Crop		Weed		κ	Acc[%]			
	p[%]	r[%]	p[%]	r[%]	, n	Acc[/0]			
	Sugar Beets 2016								
position (1)	85.79	94.14	83.92	66.23	0.64	85.32			
HOG (200)	85.02	94.91	84.81	62.97	0.62	84.98			
LBP (18)	89.56	94.58	86.30	75.58	0.73	88.67			
AP:A+I+S (9)	91.93	94.30	86.92	82.08	0.78	90.44			
			Carrots	2017					
position (1)	47.90	21.47	67.23	87.33	0.10	64.18			
HOG (200)	45.28	40.75	68.88	72.70	0.14	61.31			
LBP (18)	53.51	52.97	74.08	74.49	0.28	66.82			
AP:A+I+S (8)	57.70	54.48	76.04	78.35	0.33	69.96			

CNN-based Classification

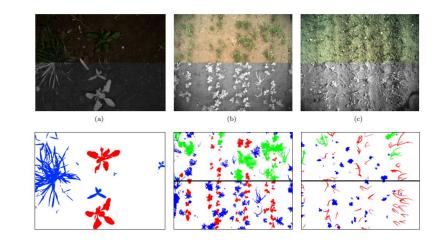


Crop to Crop Transfer

Tested on 3 crops: sugar beet, carrots and onions

Possible, only minor hit on the performance

Reduces training time by 80%

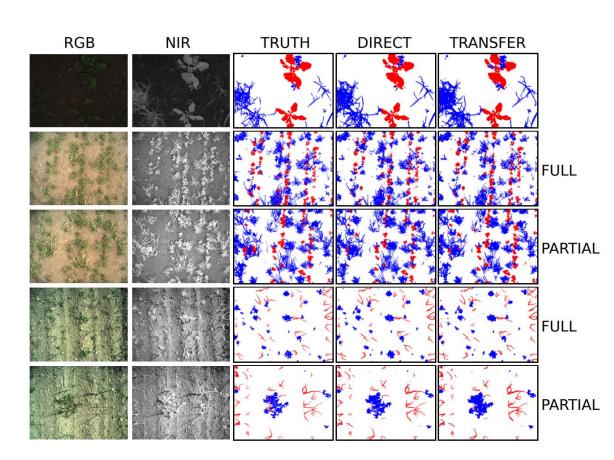


	Data			Pixel-based				1				
train weights	weights	test	tost	test	iter.	So	oil	We	eed	Cr	ор	κ
	test		(× 1000)	p	r	p	r	p	r	n l		
	Train on crop X, test on crop X, with fully labelled data								ata			
SB16	1 7 5	SB16	45	99.91	98.99	66.05	94.48	94.71	97.46	91.24		
CA17-f		CA17-f	28	98.16	96.38	80.63	87.02	75.97	77.68	83.24		
ON17-f	_	ON17-f	39	99.62	98.72	83.76	92.79	72.28	86.64	84.88		
	N		Train on c	rop X, r	etrain a	nd test o	n crop	Y, with j	fully labe	elled data		
SB16	CA17-f	SB16	9.7	99.94	98.58	59.67	95.58	92.29	97.31	88.74		
SB16	ON17-f	SB16	7.4	99.93	98.28	52.92	96.24	92.33	95.60	86.42		
CA17-f	SB16	CA17-f	5.5	97.81	96.58	81.97	85.12	75.29	79.56	83.05		
CA17-f	ON17-f	CA17-f	5.9	98.15	96.26	81.03	86.51	74.27	79.07	83.05		
ON17-f	SB16	ON17-f	9.0	99.62	98.65	82.44	92.22	71.39	86.43	84.21		
ON17-f	CA17-f	ON17-f	6.9	99.51	98.62	89.31	87.59	65.80	89.24	83.26		

Rapid Annotations

Classification performance 2% less than on full labels

train	weights	test	κ					
	202							
SB16	_	SB16	91.24					
CA17-f	_	CA17-f	83.24					
ON17-f	_	ON17-f	84.88					
1	with fully la	belled data	ı l					
SB16	CA17-f	SB16	88.74					
SB16	ON17-f	SB16	86.42					
CA17-f	SB16	CA17-f	83.05					
CA17-f	ON17-f	CA17-f	83.05					
ON17-f	SB16	ON17-f	84.21					
ON17-f	CA17-f	ON17-f	83.26					
partiali	partially labelled data for retraining							
CA17-p	SB16	CA17-f	79.37					
CA17-p	ON17-f	CA17-f	79.04					
ON17-p	SB16	ON17-f	83.52					
ON17-p	CA17-f	ON17-f	82.66					



Current/Future Work

Transfer learning

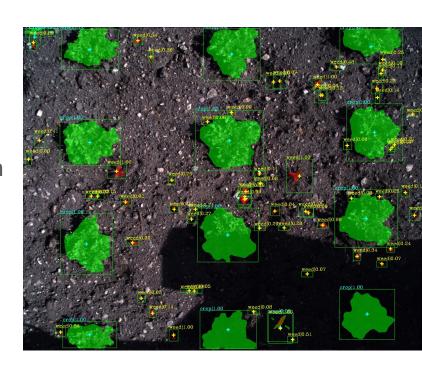
Reducing annotation effort

Semi-automated clustering-based learning with minimal feedback from the user

Exploiting the spatial structure of rows (when available)

Locating stems of plants

Temporal models for prediction of appearance



References

People

Dr Petra Bosilj, Dr Michael Stout, Prof. Tom Duckett and Dr Grzegorz Cielniak

Publications

- Bosilj et al. 2019, Transfer learning between crop types for semantic segmentation of crops versus weeds in precision agriculture. Journal of Field Robotics
- Bosilj et al. 2018, Analysis of morphology-based features for classification of crop and weeds in precision agriculture.
 IEEE Robotics and Automation Letters
- Bosilj et al. 2018, Connected attribute morphology for unified vegetation segmentation and classification in precision agriculture. Computers in Industry

Projects

- Development and field testing of the next generation of vision-guided weeding systems, IUK 2019
- Integration of the Vision-based Weed Identification System into Robotic Weeders, BBSRC 2017
- 3D Vision-based Crop-Weed Discrimination for Automated Weeding Operations, IUK/BBSRC 2016