Comparing Geometries of Reflection Groups

Introduction

Dihedral groups, denoted D_n , are structures that include all possible transformations of a n —sided shape that do not warp its underlying structure; this includes all rotations and reflections. Despite their simplicity, they are significant in many fields including group theory, geometry, and chemistry.

These groups, and many others, can be described with a group presentation. Group presentations take a set of group elements S who's products of powers give every possible group element, and a set of relator, every combination of generators that equal the identity, and provide us with a recipe for creating the group [3]:

$$G = \langle S | R \rangle$$
.

Coxeter groups are important examples of groups with a special presentation – every element of the generating set is self-inverse! Due to this, we do not obtain any expressions that are produced by exponentiating one element (barring the generator themselves).

Coxeter Systems

Definition [2]: Taking M_S as a $n \times n$ symmetric matrix with entries $M_{i,j} \in$ $M_{\mathcal{S}}$

$$M_{i,j} = \begin{cases} 1, & \text{if } i = j, \\ n \in \mathbb{N} \cup \{\infty\}, & \text{if } i \neq j \end{cases}$$

and $S = \{s_1, s_2, ...\}$. The group W, defined by the finite presentation $W = \left\langle S \middle| \left(s_i s_j \right)^{M_{i,j}}, i, j \in \{1, \dots, n\} \right\rangle,$

is a Coxeter group attached to a Coxeter system (W, S, M_S) .

We can describe D_n in this way with a 2-generator Coxeter system:

$$D_n \cong W = \langle s, t | s^2, t^2, (st)^n \rangle$$

with $S = \{s, t\}.$

Blow-ups

 D_n does not immediately admit to a 3-generator Coxeter system – to achieve one, we must identify a pseudo transposition and perform a blowup:

Definition [1]: A generator of a Coxeter group t is a pseudotransposition if given a Coxeter system (S, W, M_S) , the following conditions are met: 1. t is contained in a subset $J \subseteq S$ where for any $s \in S \setminus J$ $M_{s,u} = 2$ for all $u \in J$.

2. The parabolic subgroup generated by J, denoted W_I , is of $I_2(2k)$ for odd k > 2.

Definition/Lemma [1]: Given a Coxeter system (S, W, M_S) with a pseudotransposition, we define a new generating set:

$$S' = \{tvt, w_I\} \cup (S \setminus \{t\})$$

where t is our pseudotransposition, $v \in J$ such that $M_{t,v} \neq 2$, and w_I is the longest element in W_I . The new Coxeter matrix M_S , has entries

$$M'_{x,y} = \begin{cases} \frac{M_{tv}}{2} & if \ x = tvt, y = v, \\ M_{x,y} & if \ x, y \in S \cap S', \\ M_{v,y} & if \ x = tvt \ and \ y \in J \setminus \{t, v\}, \\ 2 & if \ x = w_J \ and \ y \in (\{tvt\} \cup J) \setminus \{t\}, \\ \infty & if \ x \in \{tvt, w_J\} \ and \ y \in S \setminus J \ and \ M_{t,y} = \infty, \\ 2 & if \ x \in \{tvt, w_J\} \ and \ y \in S \setminus J \ and \ M_{t,y} \neq \infty, \end{cases}$$

The Coxeter system (S', W, M_S) is called a blow-up of (S, W, M_S) .

 D_n can be blown up and gives a 3-generator Coxeter system:

$$D_n = \left\langle j, k, l \middle| j^2, k^2, l^2, (jk)^{\frac{n}{2}}, (jl)^2, (kl)^2 \right\rangle$$

where j, k, l are identified as v, tvt, w_I respectively.

Remark: We can only blow-up D_n if n = 2k where k is odd

Cayley Graphs

Definition [3]: For a group G with a symmetric generating set S, the Cayley graph, denoted $\Gamma(G,S)$, is defined as the set of elements of G is the vertex set, and 2 vertices g, h are connected by an edge if there exists some $s \in S$ such that g = sh.

Cayley graphs give us a way of interpreting how group elements are related with respect to the generating set. We can use the Coxeter presentations to produce Cayley graphs of D_n .

 $D_6 = \langle j, k, l | j^2, k^2, l^2, (jk)^3, (jl)^2, (kl)^2 \rangle$

 $D_{14} = \langle s, t | s^2, t^2, (st)^{14} \rangle$

Conclusion

We observe that with a 2-generator Coxeter system isomorphic to D_n , the Cayley graph forms an 2n-gon. In the instances we can perform a blow up of D_n , we find the 3-generator system produces a Cayley graph that forms an n-gonal prism.

It appears that introducing the element w_I as a generator during the blow-up causes "small squares" to form resulting in a prism.

References

[1] Y. Santos Rego, P. Schwer, The galaxy of Coxeter groups. Journal of Algebra, Volume 656, 2024

[2] K. S. Brown, Buildings. Springer Science & Business Media, 2013.

[3]C. Löh, Geometric Group Theory: an introduction. Springer, 2017.

Student Researcher: Adam Lear Supervisor: Yuri Santos Rego

