1. Aims

- View morphology changes in block copolymer constrained by spherical boundary using computational methods.
- II. Expect increase in boundary condition to force polymer to go from perpendicular to parallel to the walls.
- III. Find future material for use in battery technology, fire resistance, nanotechnology and medicine. [1]

 ∞ 0

Equation 1:

 $\psi = \psi_A - \psi_B$

Boundary condition where ψ_A

is the affinity of polymer A and

 ψ_B of polymer B (blue).

2. Background / application

- Cubic boundaries in prior research suggest external fields (electric fields) induce morphology change. [2]
- "Hybrid simulations" balance speed and accuracy, ideal for large-scale simulation
- Applications in drug-delivery and energy storage. [3]

3. Method

0

 R_0

- Computational method Cell Dynamics Simulation (CDS).
- Simulate spherical boundary (see Eq. 2).
- Increase boundary condition (change "affinity" of polymer wall, so it becomes more/less attracted to blue/yellow polymer regions) (see Eq. 1).
- View the morphology change!
- (BONUS) Add nanoparticles to see effect on morphology change.

4. Results (see Fig. 1a - 1d)

Segments transitioned (changed morphology) from perpendicular to parallel to the walls. The nanoparticles inside the blue polymer remained there throughout the transition!

a) $\psi = 0.0$, segments "perpendicular" to

b) $\psi = 0.2$, NPs stay in blue region

Equation 2:

 R_1

 $d=R_1-R_0$

Distance between inner and outer wall boundaries.

walls

Hybrid Simulations Using Spherical Boundaries

c) $\psi = 0.5$, transition from perpendicular to parallel

 $d) \psi = 1.0$, fully parallel, all NPs inside blue region!

Terminology

- Spherical boundary the walls of a sphere.
- **Boundary condition attraction** of walls to yellow/blue polymer.
- Morphology shape of molecule.
- Nanoparticles (NP) particles on scale of 10^{-9} m.
- Block copolymer (BCP) linked polymers in block, toothpastelike fluid when heated.

5. Conclusions

I.

- By increasing the boundary condition, the morphology changes as expected.
- II. Location of NPs incredibly useful for drug delivery.
- Consistent results with experimental research.

Figure 1: Background image, compiled images of morphology change in spherical BCP, with set distance, d = 40 between walls, and varying boundary condition, ψ , a) $\psi =$ 0.0 (perpendicular to the walls), b) $\psi = 0.2$, c) $\psi = 0.5$ and d) $\psi = 1.0$ (parallel to the walls).

References

- [1] A.-C. Shi and B. Li, "Self-assembly of diblock copolymers under confinement," Soft Matter, vol. 9, no. 5, pp. 1398–1413, 2013.
- [2] M. Pinna, J. Diaz, C. Denison, "Lamellar Block Copolymers Under Shear Flow," 2022.

[3] M. Pinna, S. Hiltl, X. Guo, A. Boker, and A. V. Zvelindovsky, "Block Copolymer Nanocontainers," ACS nano, vol. 4, no. 5, pp. 2845-2855, 2010.

Student: Christopher Denison

Supervisor: Dr Marco Pinna & Dr Javier Diaz

DISCOVER LNCN.AC/UROS @UOL_LALT **#UROS2022**