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Abstract. In this paper, we present a new application of on-line trajec-
tory planning for autonomous sprayers. The current generation of these
vehicles use automatic controllers to maintain the height of the spray-
ing booms above the crop. However, such systems are typically based
on ultrasonic sensors mounted directly on the booms, which limits the
response of the controller to changes in the terrain, resulting in a sub-
optimal spraying process. To overcome these limitations, we propose to
use 3D maps of the terrain ahead of the spraying booms based on laser
range-finder measurements combined with GPS-based localisation. Four
different boom trajectory planning solutions which utilise the 3D maps
are considered and their accuracy and real-time suitability is evaluated
based on data collected from field tests. The point optimisation and
interpolation technique presents a practical solution demonstrating sat-
isfactory performance under real-time constraints.

Keywords: trajectory planning, outdoor mapping, agricultural sprayers

1 Introduction

The aim of agricultural robotics is to enable automated operation of different
farming processes by developing robust and autonomous agricultural vehicles.
These intelligent machines will perform tasks like ploughing, spraying or harvest-
ing autonomously with minimal intervention from a human user. This work is
concerned with enabling autonomy for horizontal boom sprayers (see Fig. 1). The
modern generation of these vehicles feature adjustable spraying booms which
can be automatically controlled to maintain a constant distance from the crop.
This is a critical process as the height of the boom affects the amount and
distribution of the sprayed substance. The current boom control systems rely
on boom-mounted ultrasonic sensors for measuring the height and level of the
booms. The ultrasonic sensors, whilst inexpensive, are relatively slow and pro-
vide noisy information for only a small patch of the terrain immediately below
the spraying boom. This results in a sub-optimal spraying process and also re-
stricts the maximum speed of the sprayer, since only a reactive control strategy
is possible.

This paper investigates a control system based on alternative sensing tech-
nology employing laser range-finders (LRF) and predictive terrain modelling



2

Fig. 1: Horizontal boom sprayer.

enabling a longer “look-ahead”. The core component of the proposed system
is a local 3D map of the terrain, reconstructed from a scanning laser range-
finder and precise pose information provided by GPS and IMU sensors. With
this approach the terrain is sensed in advance, so that the trajectory planner
and controller have more time to adjust the height of the booms. The approach
not only improves the control accuracy but can also enable new applications
such as terrain-based vehicle steering or variable-rate spraying, leading towards
development of fully autonomous spraying vehicles. The initial results demon-
strating the feasibility of the laser-based mapping in the proposed scenario were
presented in [5]. In this work, we extend the approach by presenting on-line
trajectory planning for the boom controller.

2 Related Work

Recent advances in agricultural robotics have resulted in a number of robotic
prototypes for various scenarios and different stages of plant production. Exam-
ples include autonomous robots designed for operations involving spraying [10],
mechanical weeding [9], crop scouting [1], etc. Robotic applications in agriculture
can bring numerous economic, societal and environmental benefits (e.g. reduced
production costs, more friendly working environments, reduced contamination
risks, etc.) [8]. However, the future development of such systems will have to ad-
dress several challenges arising from the complexity of farming processes, outdoor
environments, and the mechanics and physical size of agricultural machinery.

Two important challenges addressed in our work are related to 3D mapping
and on-line trajectory planning. So far, the majority of outdoor mapping applica-
tions consider urban environments (e.g. [6]) where there are physical, man-made
structures which assist in the registration of 3D scans, improving the quality of
the resulting maps. The existing on-line trajectory planning solutions for mobile
robots were mostly applied to vehicle navigation (e.g. [2]) whilst the majority of
planning solutions for agricultural machinery consider coverage path planning
solutions (e.g. [7]) for subsequent use by GPS-enabled auto-steering systems.
In contrast, our work concentrates on the novel application of laser range-finder
sensing, combined with GPS and IMU information, to build a scrolling 3D model
of the terrain/crop and an on-line planning solution which can be used for im-
proving the control of the sprayer booms (see Fig. 1).



3

3 Methodology

3.1 System Overview

The main components of the horizontal boom sprayer consist of a spraying vehi-
cle and an adjustable spraying boom which can be folded and unfolded for eas-
ier transportation and storage. The length of the booms depends on the sprayer
model and ranges from 12 to 18 meters on each side of the vehicle. The proposed
laser-based boom controller uses information from the following sensors:

– a GPS receiver (Trimble) providing global position measurements at a reg-
ular rate of 4Hz. The GPS operates in a differential mode, thus achieving a
theoretical accuracy of a few centimetres;

– an IMU (Xsens MTi-30) providing 3D orientation measurements based on
the information from the integrated accelerometer, gyroscope and magne-
tometer, at rates up to 100Hz;

– an outdoor laser range scanner (Hokuyo UTM-30LX-EW) providing 2D dis-
tance information covering 270◦ field of view and 30 m range. For each
measurement, up to 1080 points are obtained at a frequency of 40 Hz;

– sprayer’s telemetry, providing information about the current boom configu-
ration through the internal CAN bus.

All these components are connected to a laptop with an Intel CORE i7 pro-
cessor running Ubuntu and Robot Operating System (ROS). GPS, IMU and
laser sensors are attached to the front of the vehicle so that a map of the height
of the terrain/crop can be built and used to dynamically control the configu-
ration of the movable booms to reach the optimal spraying height. The whole
system is divided into four interrelated processing components including local-
isation, map building, trajectory planning and controller, as shown in Fig. 2.
The main contribution presented in this paper is the on-line trajectory planning
component.

Fig. 2: System overview.
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3.2 Self-localisation and Mapping

The self-localisation component computes the best estimation of the position
and attitude of the vehicle X = (x, y, z, R) from data provided by the GPS
and IMU sensors. To estimate X we are using a Kalman Filter approach which
combines GPS and IMU measurements xxx = (xGPS , yGPS , zGPS , RIMU ) together
with a motion model f() (a constant speed model in our case) using the following
formula:

X̂(t+∆T ) = f(X̂(t)) +K(t)
(
xxx(t)− h(f(X̂(t)))

)
. (1)

The weighting factor K(t) is computed using the Kalman Filter equations, ∆T
is the discretisation step and h() is the measurement function that relates the
GPS and IMU data x to the estimation X̂.

Thanks to the precise localisation estimate obtained from the self-localisation
component, the mapping component can compute the position of laser points in
3D coordinates. By accumulating laser measurements zzz = (z0, . . . , zk) while the
vehicle is moving, it is possible to build a local 3D representation correspond-
ing to the crop canopy/terrain. To avoid excessive memory and computational
requirements related to 3D point clouds, we use a height map M̂ which approx-
imates the ground surface by using a 2D discrete grid. As the vehicle moves
around the field, the rolling map is updated. The size of M̂n×m depends on
the length of the boom (n) and the length of the vehicle (m). Each cell in the
grid stores the height of the canopy at that position (see Fig. 3). The quality of
the map is further enhanced by spatial smoothing which eliminates some of the
smaller gaps in the map. We also store the average height value of all the points
projected into a cell together with their number, which is used as a confidence
measure. This confidence value is used for spatial smoothing but also by the
planner presented in the following section.

3.3 Trajectory Planning

The trajectory planner is responsible for computing an optimal boom trajectory
based on the 3D map provided by the mapping component. The trajectory Π(t)
is a sequence of configurations qqq1, . . . , qqqm which best fit the map surface whilst
being feasible and safe. The boom is attached to the vehicle by its middle part.
The left and right booms are connected to the middle by two joints. The whole
boom can be moved up and down, tilt around the central point and also, each
of the side can be folded with respect to the middle part. Thus, the boom has
four joints whose position defines the configuration qqq = (d, θ, αr, αl), as shown
in Fig. 4. We define the size of qqq as r (= 4 in our case).

To evaluate the fitness of a particular boom configuration, we consider the
average distance from the boom to the crop/terrain and compare it with the
desired spraying distance H. Consequently, we define the score of a configuration
as

score(qqq) =
1

2

n∑
i=1

(
height(yi, qqq)− (M̂(yi) +H)

)2
, (2)
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Fig. 3: Top view of the sprayer projected on the height and information maps
when the vehicle is turning.

Fig. 4: Boom configuration viewed from the rear of the vehicle.

where height() is the height of the point y of the boom given a configuration qqq
which can be calculated as:

height(y;qqq) =


d− L0

2 sinθ + (y + L0

2 cos θ) tan(θ − αl), y < −L0

2 cos θ
d+ y tan θ, |y| < L0

2 cos θ
d+ L0

2 sin θ + (y − L0

2 cos θ) tan(θ + αr), y > L0

2 cos θ

(3)

To take into consideration the dynamics of the booms so that the trajectories
are smooth enough, we introduce a damping term that penalises variations along
the trajectories:

damping(qqqt) = (qqqt − qqqt−1)
T
W (qqqt − qqqt−1) , (4)

whereW is a weighting matrix responsible for setting a trade off between smooth-
ness and spraying distance. As a result, for the whole trajectory Π(t) consisting
of m configurations, we need to find rm different values.
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Constraints. To guarantee the feasibility and safety of the trajectory, the tra-
jectory planner must satisfy a set of constraints:

– Initial configuration: the trajectory must start in the current configuration of
the boom because it will be sent to the controller as soon as it is computed:
qqq0 = qqqcurr. The number of constraints needed to satisfy this condition is r.

– Configuration limits: values of any configuration qqqi are bounded by the lower
and upper limits in the configuration space: qqqmin ≤ qqqi ≤ qqqmax, resulting in
2rm constraints.

– Speed limits: The speed of the booms is also limited. This restriction con-
strains the possible values for a configuration depending on the previous one
in the sequence: ∆qqqmin ≤ qqqi+1 − qqqi ≤ ∆qqqmax. Similarly to configuration
limits, this condition results in additional 2rm constraints.

– Safety constraints: to guarantee a safe trajectory, the booms must always be
above the surface of the canopy: h(yj ;qqqi) > M̂(yj). This condition must be

met for each cell of the map M̂ which results in additional mn constraints.

In summary, the full problem requires finding rm optimal values under a set
of r +m(4r + n) constraints.

Optimisation solutions. To tackle the problem of constrained optimization we
apply first the well-known techniques (i.e. full numerical and discrete combinato-
rial optimisations) and demonstrate their deficiencies when it comes to practical
implementations and then two alternative hybrid solutions (safety planning &
local optimisation, and point optimisation & interpolation) that bring the pro-
posed solution to real-time performance at the cost of sub-optimal accuracy.

Full numerical optimisation: This approach tries to find the optimal values
for the whole trajectory at the same time while considering the constraints. It
is based on an iterative approach which starting from a candidate trajectory
looks for a better one while the constraints are still satisfied. In our approach,
we consider the penalty and barrier methods. Both methods add an artificial
term g(qqqt) representing the constraints to the objective function:

Π(t) = arg min
qqq1,··· ,qqqm

m∑
t=1

score(qqqt) + damping(qqqt) + γkg(qqqt). (5)

The penalty weight γk is updated at each iteration k until convergence. The
penalty method penalises solutions outside the constraints by increasing the
score if a particular constraint is not satisfied. However, the procedure can get
stuck if the shape of the objective function presents local minima. The second
approach, defines a barrier function which has a vertical asymptote at every
limit of the constrained set of solutions. This fact makes mandatory that all the
considered solutions must be inside the valid set until convergence, requiring
small step sizes and resulting in slow convergence.

Discrete combinatorial optimisation: This approach considers only a limited
set of values for each variable for optimisation and selects the best one based
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on the associated score value. In each step, only feasible and safe configurations
are considered for evaluation, which ensures satisfying all the constraints. This
approach is similar to the Dynamic Window Approach [3] if we consider each
step of the trajectory. The greedy solution obtained from DWA is not enough to
avoid deadlocks, however, which makes it necessary to consider every possible
trajectory. The number of possible configurations grows exponentially with the
length of the trajectory making this approach impractical even for very short
sequences.

Safety planning and local optimisation: This approach reduces the size of
the problem by dividing configuration variables into two types. The height of
the whole boom is used to compute a safe trajectory over the canopy. For each
row, the average height is set to the desired spraying distance. In the cases
where the canopy is higher than the desired height, then the booms are raised
to the minimum safe value. The rest of the parameters - tilt and incline angles
- are set to accurately resemble the actual shape of the canopy, while the other
constraints are satisfied. The approach relies mainly on the height variable and
therefore always results in safe trajectories which are, however, not optimal.

Point optimisation and interpolation: The characteristics of the booms in-
cluding their very limited speed and typically smooth surface of the canopy,
allow for optimisation of only a few selected points along the trajectory which
is interpolated between the points. The safety and feasibility constraints are
considered along the whole trajectory but, due to a large distance between the
optimised points, the constraints are easier to satisfy. Some feasibility problems
might appear if the canopy is not as smooth as expected, making it impossible
to find a feasible interpolation among the points.

4 Experiments

To evaluate the performance of the presented planning solutions, we collected
sensory data while the vehicle was driven on a field with short stubble (see
Fig. 1) traversing a total distance of 290m, gathering around 4.5M laser mea-
surements together with GPS and IMU data. The spraying vehicle featured 32m
long booms and a setup with 10m between the sensor and the booms. We have
also introduced a set of virtual obstacles of different size and location (see Fig. 5).

4.1 Results

Due to the prohibitive computational requirements for full numerical and discrete
combinatorial optimisations we only present detailed accuracy analysis for the
two practical methods. Fig. 7a presents the average error between each configu-
ration and the desired spraying distance calculated by both methods. The local
optimisation technique raises the whole boom platform even if a small obstacle
is present, increasing the distance from each point on the boom to the canopy.
In contrast, the point optimisation method relies on all configuration variables
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Fig. 5: Dataset used in the experiments: the layout of virtual obstacles (black
rectangles) and vehicle trajectory (red line).

and thus the height of the boom is not used as much as in the first method and
results in superior performance. The differences in the use of the height variable
when negotiating obstacles for both methods are shown in Fig. 7b. Figure 7c and
7d present values of all configuration variables for both methods. It is remark-
able that because of the different use of the height variable in both methods,
the other configuration components behave completely differently. On one hand,
as the height value forces the whole boom to move above the obstacles in the
safety planning method, the boom angles are set down so that the distance to
the canopy is reduced. On the other hand, the point optimization method does
not set the height above the obstacles so that the other variables are still re-
quired to guarantee the safety, setting the angle values to increase the height of
the boom. Fig. 6 illustrates selected boom configurations for different situations
obtained with the point optimisation method.

(a) No obstacles. (b) 1m tall obstacle.

Fig. 6: The point optimisation method - example boom configurations.
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(a) Average error. (b) Boom platform height.

(c) Configuration variables: safety plan-
ning & local optimization.

(d) Configuration variables: point opti-
mization.

Fig. 7: Our results: blue dots indicate the presence of virtual obstacles.

We have also assessed real-time suitability of each proposed planning method.
Table 1 presents the time required to calculate a single trajectory by each method
for different size of the map (Map 1: m = 10, Map 2: m = 200). In both cases,
the width of the map is the same (n = 640). The full numerical optimisation is
unable to obtain feasible solutions even for different step size values, and fails
due to the presence of local minima. The discrete combinatorial method suffers
from the curse of dimensionality and is very slow (i.e. taking hours) even for
very small maps. Both of the practical methods proposed are fast enough to
be used in on-line applications as they can process several maps a second. The
point optimization method method is more than two times slower than the safety
planning because the optimization is performed in the full configuration space.

5 Conclusions

In this paper, we propose on-line trajectory planning for autonomous sprayer
vehicles. Using the localisation information obtained from GPS and IMU mea-
surements and the observations from the laser range scanner we propose a map-
ping system to represent the height of the crop canopy ahead and around the



10

Method Map 1 Map 2

Full numerical Out of bounds Out of bounds
Discrete combinatorial 2 hours > 12 hours

Safety planning 4 ms 90 ms
Point optimization 8 ms 220 ms

Table 1: Computational time required by the planning methods on an Intel
CORE i7 processor.

spraying vehicle. The popular (i.e. optimal) planning methods have been anal-
ysed and discarded as they are not suitable for the problem considered. The two
practical methods have been evaluated on real data gathered from a spraying
vehicle and augmented with virtual obstacles to stress the characteristics of the
methods presented. Future work will consider the problems arising from high
dimensionality of the state space which might be addressed by using randomised
planning methods such as Rapidly-exploring Random Trees [4]. In the current
form, a trajectory is computed from scratch when a new map is provided. It
will be interesting to take advantage of previous computations to calculate new
trajectories. The future system will also combine trajectory planning for both
the boom platform and the spraying vehicle.
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