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Abstract. The subject’s body movements are still the main challenge
to physiological monitoring using thermal imaging. Traditional thresh-
olding, edge detection, and tracking techniques can handle small head
motions, but have difficulty in coping with large movements. In this pa-
per, we propose a calibration method integrating the RGB-D camera and
thermal camera to allow free body movements in practice. Especially, two
smart schemes are designed to make the chessboard pattern with black
and white squares visible to both cameras during the calibration process.
To accurately evaluate the facial temperature evolution of a subject, the
RGB-D sensor is utilized to guide the localization of the ROIs in the
thermal data by mapping the extracted face and landmark points of the
RGB image to the thermal image. As a result, we achieve accurate and
robust ROI detection and tracking, thus leading to better estimation of
physiological parameters.
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1 Introduction

The thermal infrared sensor [15] is capable of recording small facial tempera-
ture variations because of its high sensitivity to thermal radiations emitted from
the skin. Compared with traditional contact and wearable devices [25, 27], the
thermal imaging process can be carried out in a contactless and unobtrusive way
without discomfort. More importantly, the collected thermal data can be used to
measure the physiological parameters such as the body temperature, respiration
rate, and heartbeat rate. Thus, thermal imaging makes continuous health moni-
toring of human beings convenient and comfortable but not noticeable, especially
benefiting the neonatal infants, children, and elderly people.

Many approaches have been proposed for the physiological monitoring based
on thermal imaging [2, 6, 8, 11, 16, 23]. The first key step is to identify the regions
of interest (ROIs) like forehead, nose, mouth, cheeks, ears, and neck from the
detected face, and track them in each frame image appropriately. Usually, the
mean thermal signal of the nostril region carries the breathing information, and
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the average temperature change along the superficial blood vessel in the neck
area reveals the heartbeat information. The accurate and robust segmentation
of these ROIs is crucial to the overall performance. The main challenge comes
from the head movements of the subjects. In most previous works [4, 6–8, 11,
23, 28, 29], the subjects were instructed to stay still during the course. However,
they usually exhibit small head motions. More practically, large movements can
often be found.

To overcome the inaccuracy caused by small movements of the subjects, Fei
et al. [12] applied a tracker based on iterative image registration [20] to the nasal
tip area. Aiming at automatically following the breathing signal, a robust and
stable Bayesian tracker utilizing the mean shift localization (MSL) [14]-based
particle filtering was proposed in [30]. This tracker can cope with significant
head movements, but it fails in the scenario that more than one window of the
tracking ROI is lost or blocked during the process. In addition, the particle filter-
ing is computational expensive. In [11, 22], the authors adopted the coalitional
tracking algorithm [10] to deal with the subject’s motion during the breathing
measurement. It employs a cluster of collaborative particle filter trackers and
optimizes the multi-tracker interaction through game theory to gain both ac-
curacy and robustness. It is worth noting that the behavior of the coalitional
tracker is not absolutely deterministic due to the stochastic components of the
particle filter trackers. The nostril ROI is then extracted by conducting integral
projections on the edge image obtained from the original thermal face image
applying a 3 × 3 Sobel edge detector. The leftmost and rightmost maxima of
the vertical integral projection generate the respective left and right outer edges
of the nostril, and the peak of the horizontal integral projection produces the
nostril’s base edge.

To actively track the mouth-nose region, Chauvin et al. [6] modified the
tracking, learning, and detection (TLD) predator approach [17] to make it adap-
tive to the thermal data. With a manually initialized ROI, the TLD algorithm
produces the coordinates and size of the bounding box for each frame using
a minimum set of features. If the tracker module loses the ROI, the detector
module will reinitialize the tracker with a new bounding box obtained by an
exhaustive search using a sliding-window method. Therefore, this technique can
handle relatively large head movements. Similarly, they implemented the 3 × 3
Sobel operator to extract the contours of the mouth-nose ROI and then yielded
the mask by setting all the pixels with a gradient value less than the specified
threshold to zero. The ROI is attained by employing the mask operation on the
contour image.

In [29], Yang et al. manually initialized a region for the first frame, which
is then divided into a series of nested regions (Ri) based on an incremental
temperature step (∆T ) and a reference temperature (Tref ) which is the mean
temperature of all the pixels on the bounding box of the initialization region. By
selecting the optimal threshold (T ∗ = Tref +i∗∆T ) that makes the area of region
Ri∗ drop sharply against the area of region Ri∗−1, the ROI of the first frame is
chosen as the region with largest connected component in Ri∗ . Correspondingly,
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the ROIs of the subsequent frames are attained by employing the same T ∗ to
compute the isotherm and tracking the contour utilizing energy minimization.

In practice, traditional thresholding (e.g., Otsu’s adaptive thresholding [4, 19,
23]) and edge detection (e.g., Prewitt operator [1–3]) are also widely used for the
ROI segmentation. In some investigations [5, 16, 28], the ROIs are even manually
placed to ensure the high accuracy of segmentation, which is time-consuming and
susceptible to subjective errors.

Ideally, the person under estimation should be able to move around without
constraints. To cope well with such free head movements, in this work, we pro-
pose to calibrate the thermal sensor with the RGB-D sensor for producing more
reliable ROI segmentation results, taking advantage of the RGB-D imaging in
face detection and landmark points extraction.

2 Methodologies

Most of previous approaches for measuring the physiological data generally work
under certain environments such as temperature controlled room, subjects sit-
ting comfortably in a chair (remaining still or with small movements), facing to
the camera, and within a specific distance from the camera. Sudden tempera-
ture changes and body movements are the main challenges to the physiological
monitoring. Although researchers investigated different methods [2, 4–6, 11, 16,
22, 23, 28, 29] to alleviate small head motions of the subjects, large or free head
movements in real applications are still a major factor affecting the overall accu-
racy. The direct segmentation of the thermal images using thresholding and face
landmark points detection applying the Dlib algorithms [18] usually produce re-
sults with noises. To accurately evaluate the facial temperature evolution of the
subjects, a RGB-D camera can be potentially utilized to guide the localization of
the ROIs in the thermal data. This necessitates a stereo calibration between the
thermal and RGB-D sensors using a chessboard pattern with black and white
squares.

As illustrated in Fig. 1, the thermal and RGB-D sensors are mounted on
top of a robot at 1.3 m and 1.1 m from the floor, respectively. The comfortable
distance between the robot and the subject is about 1.0 m. The chessboard
can be easily detected by the RGB camera, however the black and white squares
cannot be differentiated by the thermal camera as their heat radiations are more
or less the same. To make the chessboard pattern visible to both sensors during
the calibration process, we design two smart schemes.

2.1 Calibration using combined chessboard

The 8 × 6 chessboard pattern with 23.5 mm black and white squares is used
for the calibration, where all the black squares in a thick white cardboard of
A4 paper size are first removed, and then heated using a 300 W incandescent
lamp for several minutes (see Fig. 2). At the same time, a thin black sheet of
the same size is cooled down in a fridge for a few minutes to bring it to a low
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Fig. 1. RGB-D and thermal sensors mounted on top of a robot.

temperature. The two sheets are then combined together so that both cameras
can see a black and white chessboard pattern, as the white cardboard and black
sheet appear as white and warm, and black and cold in the RGB-D camera and
thermal camera, respectively (see Fig. 3).

2.2 Calibration using electrically-heated chessboard

The combined chessboard is visible to the thermal camera for at most 5 minutes
as the temperature difference between the white board and black sheet diminish-
es, and the operation procedure is not very convenient. Sometimes, the heating

Fig. 2. Lamp for heating the white board.
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Fig. 3. Calibration of the RGB-D camera and thermal sensor using a combined chess-
board. (a) Detected pattern in RGB image and (b) detected pattern in thermal image.

and cooling processes need to be carried out twice for one calibration. Each time
before calibration, it also takes some time to finish the heating and cooling. To
overcome these shortcomings, we design an electrically-heated chessboard, which
consists of a 3 mm black acrylic sheet at the back and a 1.5 mm bi-color (black
on white) laminate sheet at the front. The chessboard pattern is manufactured
by precisely carving the black squares using a laser cutter. Each corner of the
white and black squares is then associated with a resistor. When the power is
on, the resistors emit radiations, which can be detected by the thermal camera,
as depicted in Fig. 4.

In comparison with the combined chessboard, the calibration procedure by
this pattern can be conducted immediately after turning on the power. Moreover,
the resistors can be heated for a much longer time, enabling to perform multiple
calibrations continuously. It is worthy to note that the resistors may be over-
heated after too long time (e.g., more than 30 minutes), which could affect the
calibration results.

3 Experimental Results

As demonstrated in Fig. 1, the RGB-D camera used in the experiments is Mi-
crosoft Kinect V1 [21] with an 8-bit RGB resolution of 640 × 480 pixels and
an 11-bit monochrome depth of the same resolution. Its frame rate is 9-30 Hz.
The higher the resolution, the lower the frame rate. In addition, the sensor has
a practical distance ranging from 1.2 m to 3.5 m, and an angular field of view
(FOV) of 57◦ (horizontal) and 43◦ (vertical). Meanwhile, the employed thermal
sensor is Optris PI 450 [24], which has a high sensitivity to temperature (0.04
◦C) and an image resolution of 382×288 pixels. Its frame rate ranges from 27 Hz
to 80 Hz. The sensor lens has a relatively narrow FOV and a fixed focus length
(38◦ horizontally and 29◦ vertically with 15 mm lens).

It takes about 3-5 minutes to complete the calibration process, where 80 or
150 sets of 48 corner points are recorded. Based on the pinhole camera model,
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Fig. 4. Calibration of the thermal camera with the RGB-D sensor using an electrically-
heated chessboard. (a) Detected pattern in RGB image, (b) resistors for heating the
chessboard, (c) thermal image of the heated chessboard, and (d) detected pattern in
thermal image.

the intrinsic parameters of both cameras together with the rotational and trans-
lational transformation between cameras are estimated via stereo calibration.
Face detection and landmark points extraction in the RGB images are obtained
by utilizing the Dlib machine learning toolkit [18] based on the histogram-of-
oriented-gradient (HOG) features [9]. Since the target person is assumed not
to move significantly between two consecutive frames, the face detection task is
performed in a local window corresponding to the face previously detected, thus
speeding up the detection process. If this cannot be done, the face detection is
carried out completely in the new frame image.

As a consequence of the calibration process, the translation vector and ro-
tation matrix are utilized to map the detected face and landmark points in the
RGB image to the thermal image (see Fig. 5). It can be seen that the person can
move around freely and the calibration results are very encouraging. The robust
detection results in the thermal data lead to accurate ROIs, which will produce
much better physiological measurements.

As described in Fig. 6, the facial ROIs (forehead, nose, and cheeks) in the
thermal image can be properly located with respect to the calibrated landmark
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Fig. 5. Calibration results overlaying on the RGB and thermal images in three orien-
tations.

points. For instance, the forehead center can be considered as the middle of
the two eyebrow corner points. Accordingly, the average temperature in the
forehead area is computed as the body temperature. The evolutions of the mean
temperature in the nose and cheek areas along the timeline are used for the
measurement of the respective respiration and heartbeat rates applying harmonic
analysis. Fig. 7 displays an example of the physiological monitoring results by fast
Fourier transform (FFT) [6, 16], where the dominant frequency with the highest
peak magnitude in the temperature signal’s spectrum is identified, and then
multiplied by 60 to obtain the respiration or heartbeat rate in cycles per minute.
Compared with the ground truth data obtained by a contact thermometer and
a wearable oximeter, the calculated body temperature error is within 1 ◦C, the
estimated respiration rate of 15 breaths per minute (BPM) is accurate, while
the measured heartbeat rate of 95 beats per minute (BPM) needs to be further
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Fig. 6. Physiological monitoring. (a) Facial ROIs and (b) normalised temperature sig-
nal of the nose ROI.

Fig. 7. Measured body temperature, respiration rate (RR), and heartbeat rate (HR)
from different facial ROIs based on 10-sec thermal data.

improved. The relatively big bias of the heartbeat is because of its larger variation
range than that of the respiration, and it can be reduced by denoising the input
temperature signal.

4 Discussion

During the calibration, two conditions need to be satisfied: i) both cameras de-
tect a complete chessboard, and ii) all the corner points on the chessboard can
be identified by both cameras. In presence of more than one subjects, the cali-
bration procedure can still be done, as demonstrated in Fig. 8. Furthermore, the
calibration approach can address the issue of prohibiting subjects from wearing
glasses mentioned in many existing methods [1–5, 30]. Nevertheless, we noticed
that the calibration can only be successful when the chessboard is placed within
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Fig. 8. Calibration process in presence of multiple subjects.

an effective distance range of 60-90 cm because of the different FOVs of the
two cameras, especially the limited FOV of the thermal sensor. This means that
many adjustments have to be conducted to match the FOV of the thermal cam-
era with the other RGB camera (Kinect V1 in this work). In practice, having a
motorized pan-tilt unit (PTU) to mount the two cameras could help with this
difficulty.

Another reason is that the lens of the thermal camera has a fixed focus
length, which means that the acquired image is very clear at a specific distance
range, but becomes a bit blurring outside of this range. For average temperature
measurement within a ROI, it is not really a problem since it already acts as a
low-pass filter, but this could be an issue for extracting a very small feature (e.g.,
chessboard corner points) on a wide range of distance. Since thermal cameras of
high cost with lens of adaptive focus lengths are available on the market, this
problem can be alleviated.

To speed up the calibration, a chessboard with bigger square size (e.g., 6× 3
with 35.0 mm squares) can be implemented. Particularly, it is more convenient
and faster to complete the calibration procedure using the combined chessboard.
Moreover, the range of the effective distance between the chessboard and the
sensors is enlarged to 70-150 cm. Additionally, the frame rates of the RGB
and thermal cameras may not coincide with each other. However, this will not
greatly influence the ROIs detection and tracking, as the subjects usually keep
still within a very short period of time. Thus, the same calibration results are
valid for a few consecutive frames. It real applications, this can also be used to
accelerate the calibration process.

Due to the narrow FOV and fixed focus length of the thermal sensor, the
effective distance between the subjects and the cameras for physiological moni-
toring after calibration is within a limited range as well. For the 8×6 chessboard,
it is about 1.0 m. In case that the 6 × 3 chessboard is used for calibration, this
distance becomes 1.0-1.1 m. For both cases, the subject’s moving forward or
backward from the sensors will make the calibration results on the thermal data
shifted (see Fig. 9). This problem can be solved by keeping the distance between
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Fig. 9. Deviations of face landmark points on thermal images when the subject moves
(a) backward and (b) forward.

the subject and the cameras through robot navigation, or employing a costly
thermal sensor with multiple lens.

5 Conclusion

With the advent of portable and affordable thermal cameras of high performance
(e.g., FLIR ONE [13] and Seek CompactPRO [26]) that can be easily attached to
smartphones, thermal imaging is becoming more and more popular and it plays
an important role in contactless physiological monitoring. Taking advantage of
both the RGB-D and thermal imaging, we develop a calibration approach to
tackle large or even free head movements occurring in thermal-based measure-
ments of physiological parameters. The experimental results demonstrate that
the calibration of thermal sensor with RGB camera is feasible and the proposed
two calibration strategies benefit the ROIs segmentation and tracking, thus lead-
ing to more promising estimation results than existing methods. In future work,
we will apply the circle-pattern chessboard instead of traditional square-pattern
chessboard to further improve the calibration accuracy and finally produce bet-
ter physiological monitoring results.
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