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Abstract. The ActiVis project aims to deliver a mobile system that
is able to guide a person with visual impairments towards a target ob-
ject or area in an unknown indoor environment. For this, it uses new
developments in object detection, mobile computing, action generation
and human-computer interfacing to interpret the user’s surroundings and
present effective guidance directions. Our approach to direction genera-
tion uses a Partially Observable Markov Decision Process (POMDP) to
track the system’s state and output the optimal location to be investi-
gated. This system includes an object detector and an audio-based guid-
ance interface to provide a complete active search pipeline. The ActiVis
system was evaluated in a set of experiments showing better performance
than a simpler unguided case.
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1 Introduction

There are an estimated half a billion people that live with mild to severe vision
impairment or total blindness and this number is expected to significantly rise
with an ageing population [7]. There has been a rise interest from industrial
partners in utilising modern technology to make their products more accessible,
and improvements in modern computing power and image processing capabilities
have made this easier. This work is part of the ActiVis3 project, which aims
to enable people with vision impairments to independently navigate and find
objects within an unknown indoor environment using only a mobile phone and
its camera. Our solution is inspired by active vision research [3], but it replaces
the electro-mechanical servo typically found in active vision systems with a user’s
arm and hand, as pictured in Fig. 1. This paper expands upon concepts proposed
in [4, 14] and extends the concept presented in [15] with a fully working system.

ActiVis uses the camera’s current and previous image data as input and
leverages its understanding of inter-object spatial relationships to determine the
best navigation action to find the target object. For this, we expanded upon our
previous work and implemented a Partially Observable Markov Decision Process
(POMDP) on a mobile phone that generates real-time navigation instructions
for the user. The current paper includes the following main contributions:

3 http://lcas.github.io/ActiVis
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Fig. 1. The system in use during an experiment with a blindfolded participant.

– a new controller that enables object search and guidance on a mobile phone;
– a complete system pipeline that includes audio interface, object detection

and human control;
– experiments that evaluate the efficacy of the proposed system.

Section 2 discusses relevant previous work, followed by a description of the
active vision system and controller in Section 3. The experiments and their
results are discussed in Sections 4 and 5. The paper is concluded in Section 6.

2 Previous Work

Early attempts to solve this guidance problem used markers encoded with object
or environmental information and a smartphone that scans the environment for
these simple patterns [9, 16]. The device uses audio feedback to read out the em-
bedded information or guide the user towards the markers. While improvements
to feature detectors have made it viable to replace markers with real objects [18],
an alternative guidance approach is proposed in VizWiz [5] which uses a Me-
chanical Turk worker to manually locate and guide towards the desired object
within a user-provided picture.

The issue with a marker-based approach is that it requires significant effort
to place and maintain them in an environment, which is remedied by markerless
systems. However, both of these methods use passive guidance approaches that
rely on the user placing the desired marker/object within the camera’s view by
themselves before any guidance is provided. VizWiz [5] can leverage a human’s
understanding of the environment to guide a user to the correct location, but
there is significant lag and a reliance on a good internet connection and remote
worker being available. Previous work on the ActiVis system [15] addressed the
passive guidance issue by implementing a Markov Decision Process (MDP) that
gives the user pointing instructions to find an out-of-view object, showing that
this is a viable method for object search. However, that work used QR-codes to
simulate real objects and on-screen prompts to present the guidance instructions.
In this paper we expand the control model, replacing the QR-codes with real
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Fig. 2. The system control loop including a human and the controller.

objects and providing audio guidance, thereby implementing a complete object
detection and guidance pipeline for people with vision impairments.

Object detectors can be broadly classified in two-stage models, which use an
external algorithm to select regions of interest where to perform object infer-
ence [19], and single-stage models, which generate multiple windows of different
sizes and checks each window for any objects. Between these two classes, there is
a speed-accuracy trade-off, where the two-stage models typically produce more
accurate results, but are slower and require more computing resources [12]. On
the other hand, single-stage models, such as SSD and MobileNet [13, 2], pro-
duce less accurate results but require significantly less parameters and FLOPS
to perform object inference than the two-stage models.

3 Active Vision System

A complete system diagram for ActiVis is given in Fig. 2. This diagram shows
a typical feedback control loop that generates a control signal to minimise some
error signal, e, and drive the output to some reference, r. In our case, the system
incorporates a human within the loop; r is the target object and y is the actual
observation of the mobile device’s camera.

Adding a human into the loop requires an additional block, H, representing
a human that receives a control signal, u, from the controller, K. However, the
challenge is that a person may interpret u in some unpredictable way, resulting
in the signal u∗ that points the camera, P , to a new object observation, y. It is
therefore important to design K to be robust enough to accommodate different
user habits and limitations, to ensure that u∗ tracks u as closely as possible. The
object detector’s classification error, n, is added to the feedback loop as a noise
signal that affects K’s output.

In our previous work [15], we assumed a perfect object classifier and solved
the problem using an MDP. In this paper we remove that assumption and re-
place the MDP with a POMDP-based controller that can handle uncertainties
in the object detection and classification output. Our new controller works by
generating a trail of virtual waypoints for the user to point the camera towards,
which eventually leads to the target object. The waypoint positions are based on
the model’s pre-trained internal knowledge of the inter-object spatial relation-
ships and they are placed in a way that maximises the probability of the user
finding the target object.
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Fig. 3. Images from the OpenImage dataset [10] containing some typical objects.

3.1 Controller Design

A POMDP is an extension to a MDP that handles cases where the state is
not directly observable, allowing it to be used in more realistic scenarios. The
implication, however, is that a POMDP-based agent does not know its state at
any point in time, but must infer it based on the known model parameters and
sensor accuracy, which in our case is the object detector’s accuracy. This state
inference relies on a so-called belief meta-state, which is updated with additional
observations to reflect the likelihood that the agent is in any given state. The
belief state is fully observable by the agent and is used to infer the mobile device’s
current state and generate the next action.

A POMDP model is described by the 8-tuple (S,A,T,R,Ω,O,b, γ), where
S represents a finite set of discrete states, A is a set of discrete actions, T is
a matrix containing the probabilities of transitioning from state s to state s′

(where s, s′ ∈ S) after executing action a (where a ∈ A), and R is the reward
the agent receives for executing a and reaching s′. Ω is the set of possible state
observations, while the matrix O contains the probabilities of making observation
o ∈ Ω when in s after executing a. Finally, b is the belief vector containing the
state probability distribution and γ is a discount factor that prioritises long-term
over short-term rewards, which affects the model’s convergence rate.

Parameters The state is given by s = 〈u, n, v〉, where u is the object within
view, n is the number of search steps taken during the search and v is a binary
variable indicating whether a waypoint has been visited before. The possible
actions that dictate the location where the mobile device will generate the next
waypoint are given by A = {UP, DOWN, LEFT, RIGHT}. T was determined
by extracting the inter-object spatial relationships for a limited number of ob-
jects, in terms of the actions A, from the OpenImages [10] dataset. For example,
by iterating over the images containing the objects of interest, we can see that
the object ‘monitor’ is located above (i.e. UP) the object ‘keyboard’ in 16% of
the images containing both objects (see Fig. 3). The transition function for this
case is t(s, a, s′) = t(keyboard,UP,monitor) = 0.16.
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Table 1. The reward function for the POMDP.

Reward condition POMDP MDP [15]

r(o = otarget) 10000 10000
r(v = true) -75 -10
r(n > nmax) -75 -10
otherwise r(·) -100 -1

The reward function encourages the device controller to search for the target
object by giving a substantial reward if the object is found, while penalising
the controller for every action that does not result in a successful object detec-
tion. Furthermore, additional penalties are given if the controller generates a
waypoint in an area it has explored before (v = true) or when it exceeds some
search-length threshold denoted by nmax. The reward values were empirically
determined starting from the implementation of our previous MDP model [15],
the rewards of which are summarised in Table 1 together with the new ones. The
penalty given for every waypoint generated that does not lead to the target was
significantly increased for this model to offset the delay before large penalties
are introduced and increase the model’s urgency.

The state observations are identical to the states that the mobile device can
enter into. In this case, however, uncertainty is introduced into the observation
by the object detector. Instead, the previous search locations and search time are
fully observable, since they can be tracked by the mobile device. O therefore only
contains the classification/misclassification probabilities of the object detector.
These values were found by performing a set of classification tests with the object
detector and generating a confusion matrix to populate O.

Training We encoded 15+1 objects into the current system, including a ‘noth-
ing’ item in case the detector does not see anything of interest:

U = {nothing,monitor, keyboard,mouse, desk, laptop,mug,window,
lamp, backpack, chair, couch, plant, telephone, whiteboard, door}.

We set nmax to 11 waypoints, after which the agent gets penalised for every
additional waypoint it generates that does not lead to the target object. This
results in a total of 352 reachable states (nstates = 16× 11× 2), with any state
containing the target object acting as a terminal state.

The POMDP model is trained to generate a policy that contains the opti-
mal belief-action mapping, which the controller can use to produce the optimal
waypoint locations. This is done by the model exploring the entire state-action-
observation space and optimising the policy to maximise its long-term cumula-
tive reward. However, b is a vector of continuous probability distributions with
infinite combinations, making POMDPs time-consuming or even impossible to
solve exactly. This was the case for our moderately-sized state space, so we
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opted for an approximate method instead, using the Point-Based Value Itera-
tion (PBVI) algorithm [17] implemented in the AI-Toolbox library4. The PBVI
algorithm speeds up the training process by selecting a smaller subset of repre-
sentative belief points from b and tracking these points only. Using the PBVI
algorithm, we generated a total of 15 policies, one for each target object.

3.2 Guidance System Implementation

We implemented the object detector and the POMDP controller in an Android
app and combined it with an audio interface that provides non-visual guidance
instructions. We use non-intrusive bone-conducting headphones to transmit the
audio signals to the user without blocking other ambient sounds. The app runs
in real-time on an Asus ZenPhone AR with Android 7.0 and ARCore5 enabled.

Audio Interface To describe the waypoints’ pan and tilt positions, we im-
plemented an improved version of the interface described in [4] that uses a
spatialised audio signal. However, since our headphones bypass the ear’s pin-
nae that allow a person to localise the height [20], we spatialise the audio in
the pan dimension only. To convey the tilt angle, we instead exploit a human’s
natural association of high and low sound sources with a high and low sound
frequency, respectively [6], and adjust the sound source’s pitch accordingly. A
similar approach was used in [22].

Object Detector To recognise objects we used SSD-Lite, which is a single-
stage object detection and classification network based on the SSD architecture
that implements MobileNetV2 [21]. This is a lightweight model that requires
relatively little memory to perform inference tasks, making it suitable for mo-
bile platforms. This model achieves a mean average precision (mAP) of 0.22
with 4.3M parameters and 0.8B FLOPS on the COCO dataset [11]. The full
SSD model achieves a slightly higher mAP (0.25), but with significantly more
parameters (34.3M) and FLOPS (34.36B).

The network was trained with a maximum of 10,000 object samples for each
class in U, taken from the OpenImages dataset [10], with a 60-20-20% split
for training, validation and testing respectively. We set a relatively high confi-
dence threshold of 0.7 to reduce the likelihood of false-positives. Training for 120
epochs, with 1000 iterations each, we achieved a mAP of 0.16 on this dataset
and produced a TensorFlow Lite model that is Android-compatible. We used this
model to finally implement our SSD-Lite object detector on the mobile device.

Waypoint Generation To search the target object, the system uses the policy
file from the POMDP training process, which defines the best location of next
waypoint based on the device’s current state. This state is tracked by the device

4 http://github.com/Svalorzen/AI-Toolbox
5 http://developers.google.com/ar/
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throughout the app’s runtime by performing object detection and recording the
previous search locations and waypoint positions. The latter are obtained by
discretising the world into a 6×6 grid, where each cell represents a 35◦ rotation,
and setting the relevant grid unit’s v value when visited. This setup gives the
state access to perfectly observable n and v parameters, while the observation u
is generated by the object detector. When the device makes a new observation,
either because the user rotates the device past 35◦ or sees a new object, the
device triggers the controller to generate a new waypoint location. The controller
uses o to update b and queries the policy for the best location to place the new
waypoint. The policy output is an action from A that indicates the next adjacent
grid square to place the waypoint, e.g. an ‘UP’ output would result in a waypoint
being placed one grid square above the current view.

4 Experiment Design

To evaluate the guidance system’s effectiveness, we designed a set of experiments
to measure its performance in driving a user towards a target object within a
static environment. We conducted an additional set of experiments with an al-
ternative system that relies on a user’s intuition and prior knowledge to generate
actions instead, to act as a baseline measurement for our system’s results.

Both experiment environments and the object placements within them were
modelled on a typical office and care was taken to ensure that both environments
were unique in layout and object placement, though some cross-experiment oc-
currences appear with the larger, more static objects (e.g. door, desk). Also,
to minimise any cross-experiment learning effects, two different sets of objects
were used for each experiment. If any (medium-small) objects occurred in both
experiments, they were placed at different positions. In particular, the objects
in the guided case experiment are Ug = {door, desk, chair, whiteboard, mouse,
laptop, backpack, mug}, while the objects in the unguided case are Uug = {door,
desk, chair, whiteboard, mouse, monitor, telephone, keyboard}.

We recruited 10 participants (8 male, 2 female; average age 29.2 years) for
the experiments, including 2 legally blind participants. The other 8 participants
were blindfolded. A time limit of 45 seconds was set for each experiment run,
which ended either by finding the target object or reaching the time limit. There
was one experiment run per target in each respective environment, giving 8
experiment runs for each the of guided and unguided cases.

4.1 Unguided Case

For this experiment, the mobile camera and object detector acts as the partic-
ipants’ eyes and informs them about the objects within the camera’s view. It
is then up to the participant to exploit their prior knowledge and intuition to
manipulate the camera and find the target object. In this case, the human acts
as both the controller and the actuator. Similar to other commercially avail-
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able applications, such as SeeingAI6 and TapTapSee7, the unguided version of
our app only reads out the objects upon the user’s request by tapping on the
screen. When the target object comes within the camera’s view and is correctly
detected, the device vibrates to inform the participant.

4.2 Guided Case

In this experiment, we evaluate the performance of the guidance system in an
object search task, where the perception and control tasks are performed by
the guidance system and the participant acts as the actuator, interpreting con-
trol signals and outputting actuation forces on the camera sensor (see Fig. 2).
To reduce the possibility of the participants ignoring the guidance instructions
to find the target object by themselves, they were not told which objects they
were actually looking for. This also helped to focus on the performance mea-
surement of the guidance system only, isolating it from external factors such as
user common-sense or other biases. A new run then started with the experiment
staff selecting the (unknown) target object for the user.

5 Results

5.1 Target Acquisition

As in [15], we use the target acquisition rate (TAR) to compute the proportion
of objects that the participants found during an experiment. For example, a
TAR of 0.5 indicates that a participant found the target object in 50% of the
searches. Taking each participant’s TAR as a datum, the unguided case produced
a higher average TAR (0.54 vs. 0.46), meaning that the participants found 8%
more objects without guidance instructions. However, the Kruskal-Wallis (KW)
test for non-normal data shows that statistically there is no significant difference
between these results (pkw = 0.16), meaning we cannot conclude which exper-
iment produced the best TAR. All the experiment results are summarised in
Table 2.

5.2 Time to Target

The time it takes to find a target object is an important indicator of system
performance, where less time indicates a shorter search time and increased per-
formance. The data for the search times in the guided and unguided experiments
are shown in Fig. 4. It can be seen that the guidance system reduced the overall
time to find each target object. This is confirmed by the data that show an av-
erage search time of 12.5s for the guided experiment and 17.2s for the unguided
case (pkw = 0.045), an improvement of around 27%. These results compare also
favourably with those obtained in our previous version of the system [15], where

6 http://www.microsoft.com/en-us/ai/seeing-ai
7 http://taptapseeapp.com
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Table 2. A summary of the experiment results.

Guided Unguided KW Statistic

TAR [%] 46 ± 13 54 ± 15 0.16

Time to target [s] 12.5 ± 11.9 17.2 ± 11.5 0.045

Pan Angle Displacement [rad] 0.68 ± 1.1 0.99 ± 1.2 0.029

Tilt Angle Displacement [rad] 0.68 ± 1.1 1.04 ± 1.2 0.011

Linear Displacement [rad] 0.23 ± 0.22 0.36 ± 0.22 0.012

Fig. 4. A set of boxplots comparing the total linear and angular displacements, as well
as the time to target for each experiment.

an average time-to-target of 34s was recorded.However, it should be noted that
the system implementation and experimental design in the current paper are
significantly different from our previous work, so this comparison is interesting
but not indicative of any major improvement.

5.3 Movement

Finally, to give an indication of the effort required to find each target, we look at
the mobile device’s displacement data. In this case, less device displacement is
desirable, since it implies less physical exertion was demanded from the user. The
device displacement was measured in both linear (x, y, z) and angular (pan, tilt)
dimensions. Integrating these data, we obtain the total absolute displacement in
each dimension. These results are plotted in Fig. 4.

The boxplots for the total angular displacement show a consistent reduction
in radians in the guided case for both the pan (0.68 rad vs. 0.99 rad, pkw = 0.029)
and tilt dimensions (0.68 rad vs. 1.05 rad, pkw = 0.011). The guidance system
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therefore reduces the total angular displacement to find the objects by 31% and
35% for the pan and tilt dimensions, respectively. The total linear displacement
is also reduced when using the guidance interface by approximately 36% (0.23 m
vs. 0.36 m, pkw = 0.012). These results are summarised in Table 2. To conclude,
the data show that the guidance interface reduced the total angular and linear
displacement required to find the target objects in all dimensions by at least
31%, reducing the total effort required by the user.

6 Conclusion

In this work, we presented ActiVis, a mobile guidance system to scan the envi-
ronment for finding objects, which uses a POMDP-based controller and a vision-
based object detector, combined with an audio interface, to generate instructions
for the user. We implemented this system on an Android app and tested it with
a group of 10 participants to evaluate its effectiveness compared to an unguided
object detector. The key results from these experiments are that the guidance
system improved the participants’ target-searching performance, reducing the
total search time and overall camera manipulation effort required to find an
object in an unknown environment. From these results, we can reasonably con-
clude that our new active search approach is potentially useful for similar mobile
applications to help people with visual impairments.

The system can benefit from future work that focuses on improving the flex-
ibility and usability of the system. New datasets that include the 3D positions
of the objects and camera, similar to what has been done in robotics [1] but
with a more diverse set of real scenes, would make it possible to train our model
with more accurate transition and observation models and possibly extend it
to be able to cope with depth. The usability of the system can potentially be
improved with a more sophisticated audio interface and adding adaptive control
algorithms that change the interface’s behaviour based on the user performance
over time [8].
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