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Abstract—We address possible solutions for a practical
application of Markov Logic Networks to online activity
recognition, based on domotic sensors, to be used for monitoring
elderly with mild cognitive impairments. Our system has to
provide responsive information about user activities throughout
the day, so different inference engines are tested. We use an
abstraction layer to gather information from commercial domotic
sensors. Sensor events are stored using a non-relational database.
Using this database, evidences are built to query a logic network
about current activities. Markov Logic Networks are able to deal
with uncertainty while keeping a structured knowledge. This
makes them a suitable tool for ambient sensors based inference.
However, in their previous application, inferences are usually
made offline. Time is a relevant constrain in our system and
hence logic networks are designed here accordingly. We compare
in this work different engines to model a Markov Logic Network
suitable for such circumstances. Results show some insights about
how to design a low latency logic network and which kind of
solutions should be avoided.

I. INTRODUCTION

Ageing population has arisen new challenges in healthcare

systems [1]. Among other concerns, chronic illnesses have

a huge social and economic impact on modern societies.

Addressing these conditions in their early stages aims to

extend user autonomy, avoid acute care expenses, delay user

institutionalization an thus increase their well-being. Also,

adapting a dwelling to fit patient needs is preferable [2] from

a medical point of view, because it eases the psychological

impact of illness.

Patients with mild cognitive impairments are functionally

independent. This means they usually cope with their

Activities of Daily Living (ADLs): such as grooming,

cooking or toileting. They may have occasional episodes

of disorientation, memory loss or cognitive difficulties [3].

Activity Recognition (AR) is a valuable tool to effectively

identify ADLs, so that experts can track anomalies in users

condition while keeping as much of their autonomy as

possible.

During this monitoring, it is important to minimize changes

on patient lifestyle. Domotic sensors are a good choice for

this task: they are cheap, pervasive and unintrusive. A domotic

sensor is an electronic measurement device typically used to

provide information to home appliance control systems. They

are designed for mass production and as part of everyday

home appliances. On the other hand, they provide a limited

amount of information. Despite the wide range of different

manufacturers and protocols, they usually are not open.

In the best case, we will be dealing with partial and

incomplete information. Markov Logic Networks (MLNs)

allow to perform reasoning based on such kind of

observations [4]. At the same time they offer a formal

knowledge representation, which can easily be used by experts

to outline new elements. These advantages have already been

addressed by other authors. Nevertheless, they mostly focus

on offline analysis of recorded datasets.

The main contribution of this paper is to provide a

comparison of three different MLNs frameworks that provide

AR inferences about on-going activities. These are evaluated

in the context of the ENRICHME1 project, which proposes

an Ambient Assisted Living (AAL) environment for users

with mild cognitive impairments that interacts through a robot

companion. The latter can also be seen as a mobile sensor,

capable of improving AR with ad-hoc information. To be

effective, however, it must rely on prompt ambient sensors

based inferences. Furthermore, in our evaluation we stress out

the impact of network complexity on the inference computing

times.

The reminder of the paper is organized as follows. We

present different approaches to AR and MLN in Section II.

A brief theoretical introduction to MLNs is given in Section

IV. We also make a short survey on different MLN engines.

Our inference system is part of an AAL system described in

Section III. In order to meet its requirements, in Section V we

describe a set of experiments comparing different frameworks.

Lastly, conclusions on outcomes from each framework are

depicted in Section VI.

II. RELATED WORK

Requisites like modularity, distribution and invisibility have

been identified by [5], [6] as key elements in Smart Homes

Design. Domotic sensors easily cover these requisites, making

them a popular solution in AAL. European funded projects

like SWEET-HOME [7], LsW [8] or Aladin-e [9] already

1ENabling Robot and assisted living environment for Independent Care and
Health Monitoring of the Elderly (ENRICHME) - http://www.enrichme.eu
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take advantage from this kind of sensors in AAL. Most

domotic sensor protocols support wireless interfaces. Wireless

sensors can be easily deployed on pre-existing houses, usually

with a lower cost and overall impact. For instance, the

CASAS project [10] relies on wireless sensors to achieve

an “easy-to-install” smart home with AR capabilities. They

use a Support Vector Machine (SVM) system to acquire

knowledge of the environment status, user interests, habits and

capabilities.

MLNs are also widely adopted in AR for AAL projects.

They were first proposed by Richardson and Domingos [4] to

combine both probabilistic and logical reasoning. A MLN can

be described as a set of weighted first-order logic formulas

or clauses. These clauses describe a knowledge base which is

able to deal with imperfect and contradictory evidences. This

flexibility is provided by their respective clause weights. They

describe probability of occurrence, thus providing additional

tolerance to their logic.

Typically, MLNs have been used for vision based AR [11],

[12]. They are a very flexible tool, e.g., they have been

extended to support event calculus to model vision based

activities with some degree of temporal inertia [13].

In [14], authors make an extensive use of domotic sensors

to detect ADL using MLN, supported by acoustic information

gathered by ambient microphones. They statistically process

sensor outputs before generating network evidences. This is

a key step with high influence on results of the AR. Hybrid

approaches address this step using Neural Network (NN) [15]

or a Hidden Markov Model (HMM) [16] to generate evidences

for a MLN.

Online reasoning is another relevant issue in AR for AAL.

A responsive system needs to be aware of current user needs,

which will likely depend on ongoing activities. The CASAS

project [10] performs this with real-time activity labeling,

while Chen et al. [17] do online AR using a sliding window

to support an ontology-driven approach.

Although formal methods exist to model situations in the

healthcare domain [18], in the current work there is no need to

identify and describe specific activities, since ADL are widely

accepted and used since first proposed in [19].

We consider a system that uses MLNs to support online

reasoning. This constrain limits the complexity of the MLN,

so it must be taken into account.

III. SYSTEM OVERVIEW

In most of AAL projects, sensor selection and deployment

define what can be detected and where. Sensor locations

remain fixed once the system is running, limiting possible

sensing reconfigurations. Uncovered areas may affect the

ability to detect and react to some situations, which

undermines system usability.

The ENRICHME project proposes the introduction of

a robot companion into the AAL environment. The robot

interacts with the user and, at the same time, provides

additional sensing information about user activities. In this

way, sensing can be adapted to focus always on the user.

The robot sensing capabilities range from human tracking

information to physiological data, multimodal interaction and

quality of the living environment (e.g. light, particles in

the air, temperature). In order to provide this information,

the robot makes use of advanced sensing devices such as

thermal camera, RGBD camera, environmental sensor and

RFID reader. RFID tags provide information about relevant

items being moved or used, which are related to user activities.

The robot can also make use of the distributed sensing

environment to improve its behaviour with additional data.

This distributed sensing environment consists in commercial

wireless domotic sensors (e.g. presence detectors, contact

sensors, temperature sensors, etc.). Using both sensing sources,

the ENRICHME system can perform long-term human

behaviour analysis. This analysis will extract information

about typical behaviour patterns and anomaly detection to

health professionals, who will assess the evolution of the user’s

cognitive impairment.

An Ambient Intelligence Server (AIS) is in charge of

gathering all sensor information coming from the robot and

the domotic network. It is located on a dedicated embedded

computer and it shares a common communication and storage

interface with the robot. Domotic sensor information is

captured using an abstraction layer based on OpenHAB [20].

This software allows to abstract sensor values from specific

domotic protocols or vendors. OpenHAB can simultaneously

integrate a broad range of different kinds of domotic network

technologies into an uniform interface. It also offers sensor

information recording services through different databases. In

our case, we use a MongoDB2 database for persistent storage.

Both OpenHAB and MongoDB are interoperable with the

Robot Operating System3 (ROS) running on the robot, making

possible the exchange of information with the latter. Sensor

information flow from its different sources to the database, as

shown on Fig. 1. This feature allows the robot companion to

have full access to ambient sensor records and interact with

the domotic network.

The inference engine used for AR also resides on the

AIS. It uses the database to build evidence, so robot sensor

information is also available for inference. Both elements

benefit from this common infrastructure.

IV. MARKOV LOGIC NETWORKS

This section describes briefly the main concepts behind

MLNs, and introduces the MLN engines evaluated in the

experiments.

A. Concepts and Theory

A MLN can be described as a collection of pairs

L = (Fi, wi), where Fi is a clause and wi its weight.

Clauses are first-order logic formulas, composed by constants,

variables, functions, and predicates.

• Constants are possible objects in the domain. In

our case, one of the domains is activity, and

2http://www.mongodb.org/
3http://www.ros.org/
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cooking [none] at lounge cooking at toilet 

at lounge

Fig. 4. Snapshots captured during evidence generation for MLN inference.

C. Proposed Networks

In order to measure each MLN performance, three different

setups have been chosen to analyse increasing levels of

complexity, and tested:

• Network 1 (N1) – sensor based network: each sensor is

related to an activity;

• Network 2 (N2) – sensor/time based network: time is

included as a new domain to describe activities;

• Network 3 (N3) – sensor/time based network with inertia:

activities depend both on current and past sensor values.

Each network includes additional domains and predicates,

increasing the complexity of the inference process. More

domains implies new groundings an thus an increase in the

number of possible worlds. Similarly, introducing additional

predicates, which link different domains, contributes to this

increase. Effectively, each network adds complexity to the

overall inference process.

The above setups have been implemented using the three

different MLN engines described in Sec. IV-B: Alchemy,

ProbCog and Tuffy. The clause weights learning was

performed using a pseudo-log likelihood algorithm. Each

engine has some differences in its syntax that must be taken

into account. Tuffy does not allow the use of implications

(⇒) or inclusions (∧) in clauses, so we have restricted all

the functions to disjunctive clauses. Also, Alchemy does not

support domain declaration in the network description file.

Apart from these minor differences, we used the same network

configuration for all the engines.

The first network configuration maps sensor values with

a particular activity. However, since several activities might

be happening simultaneously, such evidences do not provide

reliable information.

The second network configuration includes time as an

additional domain. Activities happen within a given time slot.

We used the temporal extension of MLNs proposed by [27]

to model time slots. This network’s test was performed with

small sets of timeslots to limit the network complexity by

introducing a high number of constants.

The complexity of the system could be varied by increasing

the number of sensors and rooms, expanding the number

of constants in their respective domains. However, a similar

effect can be obtained by with the size of the considered time

domain, which can be arbitrarily constrained by considering

different numbers or lengths of time slots. The latter has the

advantage of not requiring additional resources or datasets with

different networks.

The third network included also more complex activity

descriptions. For instance, the entering activity was modelled

by an activation of the presence detector at the entrance,

preceded by an activation of the main door’s contact sensor.

An evidence was selected for each network.

D. Results

Using the aforementioned common network configurations,

each engine was tested 50 times on both datasets. The results

of our comparison are illustrated in Fig. 5, which shows the

average completion time and standard deviation for all the

engines and networks: black for network N1, grey for N2,

and light grey for N3. As expected, the computing time was

higher as the complexity of the network increased (light grey

bar).

Alchemy clearly outperforms the other engines. Even N3’s

inference time is lower on Alchemy than the average inference

time on Tuffy for N1. Its standard deviation is also very low,

which implies a highly predictable inference time.

ProbCog perform reasonably well in terms of average

times, but the degradation of the deviation times is worse.

Its inference time ranges are therefore bigger.
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Fig. 5. MLN engines inference times comparison.

Tuffy has the worst performance of all the engines

considered in these tests. Its inference times are constantly

bigger than the ProgCog worst time results.

We have also obtained time metrics from each query,

presented in Fig. 6. Each network has a different colour

and symbol: red circle for N1, green triangle for N2 and

blue square for N3. Again, more complex networks (N2, N3)

have longer inference times, independently from the query.

In all the considered situations, Alchemy’s inference time

-first set of plots- is almost independent from the given

evidence and network. Also, ProbCog’s inference times are

evidence-independent too, but only for networks N1 and

N2. Its performance decreases considerably for network N3,

showing not only longer times, but also higher deviations,

depending on the query. These effects are even more evident

for the Tuffy engine, where a given query may affect

remarkably the respective inference times.

Network Engine
Average inference time (s)

gathered evidences randomized evidences

N1
Alchemy 0.01 0.01
ProbCog 0.90 0.97

Tuffy 4.75 3.53

N2
Alchemy 0.41 0.39
ProbCog 1.75 1.89

Tuffy 5.87 4.46

N3
Alchemy 0.76 1.40
ProbCog 2.95 3.52

Tuffy 7.99 7.21

TABLE II
INFERENCE TIME COMPARISON BETWEEN GATHERED AND RANDOMIZED

EVIDENCES

Regarding random evidence experiments, random sensor

activity level shows very similar results compared with our

previous tests. Table II compares inference times between

gathered and randomized evidences. Alchemy is still the

fastest engine in all cases, followed by ProbCog and Tuffy.

However, if we compare results within the same network

and engine, there is some differences between both datasets.

Tuffy engine significantly increases its performance using

randomized inputs with all network configurations. In contrast,

ProbCog performance is worse using randomized datasets than

using gathered evidences with all network configurations. Its

inference time increases more than a 7% with any network.

Finally, Alchemy presents none or little change with networks

N1 and N2, but a significant increase in its average times with

network configuration N3. It almost doubles its inference time

after randomizing the evidences. Hence, engine comparison

with our datasets can be considered as a reasonable approach,

but not as a reliable metric of each network complexity.

VI. CONCLUSIONS

In this paper we introduced and compared the

responsiveness of different MLN engines, in the context

of our ENRICHME monitoring system for elderly with mild

cognitive impairments, to check if these tools can address the

required needs for online inference. All the considered engines

were able to process the proposed networks. Their execution

times were all under 10 seconds, which unsurprisingly

increase with the complexity of the network.

In order to overcome the limitations of our dataset, we also

run the experiments using randomized evidences. They showed

similar trends regarding to engines comparison, but average

inference times themselves presented some differences. An

specific dataset does have influence on the average inference

times of a MLN, no matter the selected engine. Tuffy engine

performed better with these inputs than with our dataset.

Therefore, our results are useful to compare different engines,

but analysis of a network implementation under an specific

engine does require bigger datasets for validation.

In general, Java based engines were the ones performing

worst. Since we are dealing at the moment with small

inference problems, the Java Virtual Machine causes a

significant overload compared with the total inference time.

It also makes use of databases to store temporal information,

which is an additional overload justifiable only on larger and

more complex systems. Obviously, Tuffy is optimized for

different kinds of MLNs.

From these preliminary results, Alchemy seems to have

the best response of all, followed by the ProbCog engine.

ProbCog is an interpreted code in Python, which has its impact

on performance in this case. Alchemy is the only engine

relying on a compiled code and, as a result, it is clearly

faster. Ironically, using some of their features could have

decreased both engines performance. Indeed, they allow the

use of implications (⇒) and inclusions (∧) in clauses, but we

have restricted our implementation to disjunctive clauses only

to ensure that all engines used the same formulas. This had a

positive impact on Alchemy and ProbCog’ speeds, thanks to

the avoidance of an internal clause conversion stage. A good

selection of network clauses has a great impact on the overall

computing times.

This paper presented essential but still preliminary results,

which must be extended to include more complex scenarios

and additional quality metrics. Labelled datasets with

associated images will be used to establish a baseline for

our future networks. Also, comparisons with other datasets

will be carried out to prove network validity and reliability.
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Fig. 6. MLN engines inference time comparison among different networks.

Finally, massive datasets with enough variability could reveal

input combinations where engines perform differently, as

our experiments with randomized input suggest. On-line

performance of MLN engines is a challenging topic that still

requires further analysis.

ACKNOWLEDGMENT

The research leading to these results has received funding

from the EC H2020 Programme under grant agreement No.

643691, ENRICHME. Authors also want to thank Fibar Group

for providing the wireless domotic sensors for this work.

REFERENCES

[1] B. Rechel, E. Grundy, J. M. Robine, J. Cylus, J. P. MacKenbach, C. Knai,
and M. McKee, “Ageing in the European Union,” The Lancet, vol. 381,
no. 9874, pp. 1312–1322, 2013.

[2] K. Van Haitsma, K. Curyto, A. Spector, G. Towsley, M. Kleban,
B. Carpenter, K. Ruckdeschel, P. H. Feldman, and M. J.
Koren, “The preferences for everyday living inventory: scale
development and description of psychosocial preferences responses in
community-dwelling elders.” The Gerontologist, vol. 53, no. 4, pp.
582–95, aug 2013.

[3] R. C. Petersen, B. Caracciolo, C. Brayne, S. Gauthier, V. Jelic, and
L. Fratiglioni, “Mild cognitive impairment: a concept in evolution,”
Journal of Internal Medicine, vol. 275, no. 3, pp. 214–228, 2014.

[4] M. Richardson and P. Domingos, “Markov logic networks,” Machine

learning, vol. 62, no. 1-2, pp. 107–136, 2006.

[5] M. Amiribesheli and A. Bouchachia, “Smart Homes Design for
People with Dementia,” 2015 International Conference on Intelligent

Environments, pp. 156–159, 2015.

[6] R. Li, B. Lu, and K. D. McDonald-Maier, “Cognitive assisted living
ambient system : a survey,” Digital Communications and Networks,
vol. 1, no. 4, pp. 229–252, 2015.

[7] M. Vacher, F. Portet, P. Chahuara, S. Caramihai, C. Munteanu,
I. Mocanu, and S. Mocanu, “Indoor Personal Monitoring , Supervising
and Assistance Sweet-Home and AmiHomeCare case studies,” Journal

of Control Engineering and Applied Informatics, vol. 16, no. 1, pp.
50–61, 2014.

[8] F. Müller, P. Hoffmann, M. Frenken, A. Hein, and O. Herzog, “Lsw:
Networked home automation in living environments,” Ambient Assisted

Living, Advanced Technologies and Societal Change, pp. 19–24, 2014.

[9] E. Maier and G. Kempter, ALADINa magic lamp for the elderly?, Berlin,
Heidelberg, 2010, p. 12011227.

[10] D. J. Cook, A. S. Crandall, B. L. Thomas, and N. C. Krishnan, “CASAS:
A Smart Home in a Box,” Computer, vol. 46, no. 7, pp. 62–69, jul 2013.

[11] M. Beetz, M. Tenorth, D. Jain, and J. Bandouch, “Towards automated
models of activities of daily life,” Technology and Disability, vol. 22,
no. 1-2, pp. 27–40, 2010.

[12] G. Cheng, Y. Wan, B. P. Buckles, and Yan Huang, “An Introduction
To Markov Logic Networks and Application in Video Activity
Analysis,” in International Conference on Computing, Communication

and Networking Technologies, Hefei,, 2014.

[13] A. Skarlatidis, G. Paliouras, and A. Artikis, “Probabilistic Event
Calculus for Event Recognition,” ACM Transactions on computational

Logic, vol. 16, no. 2, 2015.

[14] P. Chahuara, A. Fleury, and M. Vacher, “Using Markov Logic Network
for On-Line Activity Recognition from Non-visual Home Automation
Sensors,” Ambient Intelligence, pp. 177–192, 2012.

[15] K. S. Gayathri, S. Elias, and B. Ravindran, “Hierarchical activity
recognition for dementia care using Markov Logic Network,” Personal

and Ubiquitous Computing, vol. 19, no. 2, pp. 271–285, 2015.
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