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Abstract— The life span of ordinary people is increasing
steadily and many developed countries are facing the big
challenge of dealing with an ageing population at greater risk of
impairments and cognitive disorders, which hinder their quality
of life. Monitoring human activities of daily living (ADLs) is
important in order to identify potential health problems and
apply corrective strategies as soon as possible. Towards this long
term goal, the research here presented is a first step to monitor
ADLs using 3D sensors in an Ambient Assisted Living (AAL)
environment. In particular, the work here presented adopts a
new 3D Qualitative Trajectory Calculus (QTC3D) to represent
human actions that belong to such activities, designing and
implementing a set of computational tools (i.e. Hidden Markov
Models) to learn and classify them from standard datasets.
Preliminary results show the good performance of our system
and its potential application to a large number of scenarios,
including mobile robots for AAL.

I. INTRODUCTION

The life span of ordinary people is increasing steadily
and many developed countries are facing the big challenge
of dealing with an ageing population at greater risk of
impairments and cognitive disorders, which hinder their
quality of life. According to the United Nations [1], 2 billion
persons are expected to be over 60 by 2050. This increment
in the elderly population is accompanied by future shortages
of available health workers and doctors as stated by the Or-
ganization for Economic Co-operation and Development [2].
Thus, monitoring human activities of daily living (ADLs) is
important in order to identify potential health problems and
apply corrective strategies as soon as possible.

Towards this long term goal, the research here presented
is a first step to monitor ADLs from depth data in an
Ambient Assisted Living (AAL) environment. In particular,
we consider human actions captured by an RGB-D camera,
where a skeleton representation of the body is extracted from
depth images and its joints tracked over time, as shown
in Fig. 1. The spatio-temporal interaction between different
joints is captured by applying a new 3D Qualitative Trajec-
tory Calculus (QTC3D) [3], which allows to represent and
classify different human actions in a domestic environment.
Using QTC3D relations of body joints, we then learn Hidden
Markov Models (HMMs) to represent each actions as a
sequence of joint interactions.

Spatial relations between body joints have been used as a
feature for action recognition in the past [4], however only
relative distance between joints was used as a spatial feature.
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Fig. 1: Human skeleton (left), and Discrete Frenet Frames of two
body joints Pk and Pl (right).

In contrast, in this work we extend these relations between
joints using QTC3D, which provides a richer representation of
relative spatio-temporal relations such as ”joint A approaches
joint B” or ”joint A is stable with respect to joint B.” Finally,
the different human actions are encoded by sequences of
QTC3D states that are represented using HMMs. The final
trained HMMs are then used to classify new actions carried
out by persons. Two main contributions are therefore pro-
vided by this paper:

• The first application of QTC3D to the problem of human
action recognition from depth data;

• The development of computational tools for the practi-
cal implementation and evaluation of such application.

In this work, we have applied our approach to classify
actions from ADLs that are selected taking into account
the ability groups, such as feeding and transferring, defined
in widely used assessment indexes for carers and nursing
homes. Preliminary results show the good performance of
our system and its potential application to a large number of
scenarios, including mobile robots for AAL.

The reminder of the paper is as follows: Sec. II reviews
some relevant qualitative and numerical solutions to human
action recognition, including depth-only and skeleton-based
approaches; Sec. III presents the original QTC formalism
and its extension to QTC3D; Sec. IV explains the actual
implementation of the HMMs used for action recognition;
Sec. V describes the experiments and illustrates the results
for several ADLs; finally, Sec. VI discusses advantages and
current limitations of the proposed methods, as well as
directions for future research work.

II. RELATED WORK

Action recognition is a well established research area.
Different approaches, mostly vision-based, have been pro-



posed in the past to solve this problem [5]. With the recent
introduction of depth sensors and related algorithms for body
parts tracking [6], new powerful solutions for 3D action
recognition have being devised. In this context, a significant
number of approaches based on Qualitative Spatial Repre-
sentations and Reasoning (QSR) [7] have become relevant.

In [8], for example, an activity graph-based approach is
used alongside several possible qualitative representations for
describing video activities. The work in [9] proposed a model
for activity monitoring based on QSR, generative models and
HMMs. The work in [10] shows an application of the Laban
Movement Analysis as a qualitative categorization of motion
behaviours to label human emotion from movements, which
are observed with a stereo vision system. Recently, authors in
[11] presented an application of a 2D Qualitative Trajectory
Calculus (QTC)to model human-robot spatial interactions,
where human actions consisted of walking patterns.

The work in [12] proposes a qualitative representation of
human motion based on “Posebits” features that describe the
variation of distance, articulation angles or relative position
of body parts. In [13], instead, actions are represented using
body motion attributes, which are partly pre-defined by an
expert and partly obtained by real data on 2D images, and
modelled as latent variables to select the most discriminative
set. The authors in [14] adopt 2D trajectory descriptors
to represent body movements as sequences of joints dis-
placements, including relational features, to describe joints
distances and orientations in each frame. Since they are based
on 2D data only, the last two approaches are view-dependent.

A large number of numerical rather than qualitative ap-
proaches are based on depth data from RGB-D cameras. The
work proposed in [15], for example, uses random occupancy
patterns for recognising actions from depth data. In [16], the
dynamics of the actions are modelled into an action graph,
which is trained on a bag of 3D points. The authors in [17]
propose a solution that generates 4D normals using depth,
time, and spatial coordinates to create a histogram which
encodes the distribution of the surface normal orientation.
Another system is presented in [18] that generates motion
maps by accumulating the differences between depth frames,
and then used Histogram of Oriented Gradients (HOG) to
describe those maps. A support vector machine (SVM) is
used to classifying human actions.

Many recent solutions perform action recognition based
on the body skeleton and joints that is possible to extract
from depth data. In [19], for example, features are collected
in random sub-volumes around the local area surrounding
skeletal joints using the Iterative Signature Algorithm.

The work presented in [4] uses skeleton-based features
are enriched with local occupancy patterns to improve the
classification, and a final pool of informative “actionlets”
are obtained through a mining process. In [20], eigen-joints
are obtained from joint position differences.

In [21], instead, joints are grouped to obtaining an ori-
entation invariant descriptor. The joints are modelled with a
Gaussian Mixture Model and encoded as a Fisher vector,
which is used for action classification with a one-vs-all

SVM. Finally, the authors in [22] propose a view invariant
descriptor based on histograms of 3D joint positions, voted
with a Gaussian weight function. Features are extracted with
Linear Discriminant Analysis to obtain a series of symbols,
which are classified with a HMM.

Our approach, based on qualitative spatio-temporal rep-
resentations of body joints, provides an alternative solution,
powerful yet simple, to the aforementioned systems. It is
based on a recent extension of QTC that, in previous
versions, was limited to 2D motion only and therefore
was unsuitable for 3D action recognition. Extending this
representation to 3D allows us to be view-independent for
future applications in mobile robotics.

III. 3D QUALITATIVE TRAJECTORY CALCULUS
The Qualitative Trajectory Calculus (QTC) is a mathemati-

cal formalism to represent qualitative information about mov-
ing objects, specifically considering relative spatio-temporal
relations between couples of moving points [23]. There are
different variants of this calculus, mostly dealing with points
in 2D. For the purpose of this paper, however, we consider a
recent extension of QTC that represents the relative motion
between 3D points, including relations about distance and
orientation, called QTC3D [3]. We start by introducing a
simple version of QTC in 2D, where the qualitative relations
between two moving points Pk and Pl are expressed by the
symbols qi ∈ {−,+, 0} as follows:
q1) −: Pk is moving towards Pl;

0: Pk is stable with respect to Pl;
+: Pk is moving away from Pl;

q2) same as q1, but swapping Pk and Pl;
q3) −: Pk is moving to the left side of

−−→
PkPl;

0: Pk is moving along
−−→
PkPl;

+: Pk is moving to the right side of
−−→
PkPl;

q4) same as q3, but swapping Pk and Pl.
A string of QTC symbols {q1, q2, q3, q4} is a compact
representation of the relative motion in 2D between Pk and
Pl. For example, {−,−, 0, 0} could be read as “Pk and Pl

are moving straight towards each other”. Obviously, the side
relations cannot equally apply to the 3D case, therefore q3
and q4 have been replaced in QTC3D by three new symbols
that consider the relative roll, pitch and yaw of the frames Fk

and Fl associated to Pk and Pl respectively. In particular, if
xk(t) is the positions of point Pk at (discrete) time t, then Fk

is the Discrete Frenet Frame [24] identified by the following
tangent tk, normal nk and binormal bk (see Fig. 1):

tk(t) =
xk(t+ 1)− xk(t)

|xk(t+ 1)− xk(t)|

bk(t) =
tk(t− 1)× tk(t)

|tk(t− 1)× tk(t)|
(1)

nk(t) = bk(t)× tk(t)

Similarly, tl, nl and bl define a frame Fl for point Pl. We
can compute then a rotation matrix R that aligns Fk with
Fl as follows:

Fl = RFk ⇒ R = FlF
−1
k (2)



If rij is the element in the i-th row and j-th column of
R, the roll α, the pitch β and the yaw γ necessary to align
Fk with Fl can be calculated as follows [25]:

α = tan−1(r21/r11)

β = tan−1(−r31/
√
r232 + r233) (3)

γ = tan−1(r32/r33)

where, by considering the quadrant of the inverse tangent’s
argument, all the three angles are within the interval (−π, π].

The signs of α, β and γ lead to the three new qualitative
symbols, q5, q6 and q7 respectively, where the latter assume
the value −, 0 or + depending on whether the angle is less
than, equal to or greater than zero. Note that, for practical
reasons, a threshold εangle is set around zero so that very
small angles are indeed considered qualitatively 0. A similar
approach is tipically applied to the distance used to compute
q1 and q2, for which a threshold εdist around zero is also
used. A method for empirically tuning these thresholds is
discussed in [26]. Finally, the string skl = {q1, q2, q5, q6, q7},
replacing q3 and q4 with the newly create symbols, consti-
tutes the QTC3D relation between points Pk and Pl.

IV. QTC3D-BASED HIDDEN MARKOV MODELS

The objective of this work is to be able to classify different
activities that people carry out during their daily life. For this
purpose we use an ADLs dataset containing daily activities of
a person recorded with an RGB-D camera. Each example in
this dataset consists of a sequence of depth images captured
while the person performs a specific action, e.g. eating.
Example images for different actions are shown in Fig.2.
Each image in the dataset includes the skeleton of the person
performing the action, including the positions of the joints,
also shown in the Fig. 4 These joints are used to analyse
human movements. At every time instant, QTC3D strings
are associated to each possible couple of joints to form the
current body state; temporal state sequences are analysed
then to recognise the action performed by the subject.

Formally, an action A carried out by a person, e.g. eating,
is composed of a sequence of body positions S(t) assumed
by the person during the action, i.e. A = {S(1), ..., S(T )},
where T is the number of depth images for the action
in the dataset. In our qualitative representation, each
body position S is defined by a set of QTC3D strings
between all the possible couples of joints (Pk, Pl), that is
S = {skl | k = 1, ..., N ∧ l = 1, ..., N ∧ k 6= l ∧ kl 6= lk},
where N is the total number of joints and each couple
is represented only once, i.e. (Pk, Pl) and (Pl, Pk)
are equivalent. As shown in (1), QTC3D uses temporal
information to calculate the relative motion between joints.
Therefore, to compute S(t) we need the joints’ position
from the depth images at time t− 1, t and t+ 1.

In our system, the classification is performed by sev-
eral independent banks Bi of HMMs, each one corre-
sponding to a particular action Ai. The bank Bi contains
one HMM for each possible couple of joints, which are
H = |S| in total. This number can be easily calculated as

eat skeleton for eat

callCellphone skeleton for callCellphone

Fig. 2: Examples of actions from ADLs dataset [4] captured by an
RGB-D camera, including skeleton and joints.

H =
(
N
2

)
= N !

2!(N−2)! , where N is the number of joints. This
structure allows us to add new actions to the recognition sys-
tem without need to retrain previous banks. The same applies
to new joints, which can be easily added by incorporating
additional HMMs trained separately with new QTC3D string
sequences.

A. Clustering and Training

Following existing literature, the length of each HMM (i.e.
number of hidden states) is fixed a priori. We make use of this
property to initialize the transition and emission matrices of
the HMMs based on the following clustering method applied
to QTC3D training strings. Differently from other standard
solutions (i.e. uniform matrix initialization), our approach is
fully repeatable and, in our experience, does always lead to
fast convergence of the HMM training algorithm.

Clustering is done only once before actual training of the
HMMs to initialize the respective transition and emission
matrices. For this purpose, we consider an action Ai and
a particular couple of joints (Pk, Pl), for which there is a
specific HMM in the respective bank Bi. We take then all the
possible QTC3D strings sikl(t), with t = 1, ..., T , for all the
training data sequences (i.e. depth videos) relatively to action
Ai. After removing duplicates, we group them in C1, ..., CM

clusters, where M is the number of hidden states of the
HMM. To make this initialization process be driven by data
only, we use agglomerative clustering [27]. The algorithm
starts with one cluster for each sample; at every iteration,
it merges the clusters that are close to each other, until it
reaches a stopping condition, which in our case is the fixed
number M of clusters (i.e. same as hidden states).

The distance used by the clustering algorithm is a standard
one used in most QTC applications, given by the sum of the
distances between corresponding symbols in two different
QTC3D strings. So, if a and b are two QTC3D strings of
length n, aj and bj their jth symbols, and dq(aj , bj) the



distance between the two symbols defined as follows:

dq(aj , bj) =


0 aj = bj

1 aj = +, bj = 0

1 aj = −, bj = 0

2 aj = −, bj = +

(4)

then the total distance between a and b is simply given by
the following sum:

dQTC(a, b) =

n∑
j=1

dq(aj , bj) (5)

The actual initialization of the transition matrix, having
size M ×M , consists in counting all the transitions from
elements of cluster Cm to elements of cluster Cn, and
normalizing across all the transitions from Cm to any other
cluster. Similarly, the initialization of the the emission ma-
trix, having size M ×Q (where Q = 35 is the total number
of possible QTC3D strings), is performed by counting all the
training strings with identical values associated to a particular
cluster Cm. Normalization in this case is done across all the
possible strings associated to the same cluster.

The above initialization procedure is repeated for all the
HMMs (i.e. all the couples of joints) of the current bank Bi

relatively to action Ai, and then again for all the other banks
relatively to other actions. After that, the actual training of
each HMM is done by refining the initial matrices with the
Viterbi Algorithm and QTC3D string sequences.

B. Classification

Some previous works have considered coupled or linked
HMMs to compute an action probability for each single
joint [28]. In our case though, a relatively simple and
straightforward approach based on independence and product
of probabilities has proved to be successful in practice.

Every bank Bi is made of H separate HMMs, one for
each couple of joints (Pk, Pl). Given a new QTC3D string
sequence sikl(t), the respective HMM returns a probability
of action Ai for the particular couple of joints. Assuming
independence of the latter, a total probability for the bank can
be computed as the product of the single HMMs probabilities
(Fig. 3a). That is, if ph(Ai) is the output probability of

a single HMM, then pB(Ai) =
H∏

h=1

ph(Ai) is the total

probability for Bi (normalized across all the actions / banks
of HMMs)

Eventually, the action Aj selected by the classification is
the one that maximize pb (Fig. 3b), that is:

j = arg max
i

pB(Ai) (6)

V. EXPERIMENTS
To test the validity of our approach we have designed a set

of experiments in which we applied our QTC3D representa-
tion together with HMMs to classify different sequences of
actions corresponding to various ADLs.

In our experiments we used the MSR Daily Activity 3D
dataset [4], which contains human actions captured using a

(a) Structure of the single Bank of Hidden Markov Models
HMMi

kl, each associated to action i and joints (k, l) to
compute the probability of an action being occurred pB(Ai).

(b) Selection of the action Aj which has max probability
pB(Aj).

Fig. 3: Architecture of the classification system: In input the
sequences of QTC3D strings sikl(t) and as output the action Aj

which has max probability of being occurred.

Kinect camera. This dataset provides also the skeleton and
joints of the persons performing the activities. The dataset
contains 16 different activities carried out in a living room.
Since the aim of this work is to monitor activities for daily
living, we have selected a subset of actions that are directly
related to ADL. We based our selection on the ability groups
presented in the Bristol activities of daily living scale [29]
and the Katz index of independence in activities of daily liv-
ing [30]. In particular, our subset of actions includes eating,
which is related to the feeding activity; laying down on sofa,
sitting down, sitting still, standing up, and walking, which
are related to mobility; the calling cellphone action, which
is related to more general telephoning activity; and finally
using vacuum cleaner, as part of housekeeping. Example
frames for the previous activities are shown in Fig. 4.

Each one of the selected eight actions is carried out by
10 different people. Every person performs the action twice:
once while sitting on the sofa, and once by standing still.
In total our dataset contains 160 sequences. Each sequence
represents a specific action carried out by one person in one
of the two states (sitting or standing).

For the rest of this section we apply the following pa-
rameters in our approach. For the conversion from skeletal
joints coordinates to QTC3D strings we apply the thresholds
εdist = 10−2 m and εangle = 3 · 10−3 rad, which were em-
pirically determined to obtain good results. The number of
clusters used for the HMM creation was set to 5, since this
valued provided the better classification results. In the Viterbi



eat lay down on sofa sit down sit still

stand up walk call cellphone use vacuum cleaner

Fig. 4: Example frames of selected activities from the MSR Daily Activity 3D dataset [4].

algorithm used for training the HMMs we set a maximum of
100 iterations and a tolerance value for convergence of 10−4,
which are the standard values used in similar systems and
always lead to convergence in our experiments. Furthermore,
pseudo-emissions and pseudo-transitions are enabled so the
minimum probability of occurring a transition/emission is
10−15. This low probability allows us to overcome the
problem of a lack of sufficient amounts of training data and
unobserved transitions therein [11].

In the first experiment we applied a leave-one-out cross-
validation approach to test our classifier. In this approach,
we selected one sequence as test and used the rest of the
159 sequences to train our HMMs. We repeated this process
160 times, each time selecting a different sequence as test.
The resulting confusion matrix is shown in Fig. 5. The
average correct classification rate (using the average over the
diagonal) for this experiment was 75.00% . As we can see in
the confusion matrix in Fig. 5 most the actions are detected
with high accuracy. However, our system tends to confuse
the actions eat and callCellphone. We guess this confusion
is due to the similar movement (hand approaches the head)
that is carried out during both actions. A solution to this
problem would consist on analysing the object that is held
by the person as suggested in [4].

In the second experiment we applied a cross-subject
setting in which we divided the dataset in two halves with
the actions of five different people each. The first half is used
to train the model, the other half is used for testing it. We
repeated this process 10 times and calculated the average
and standard deviation for every action. The main goal of
this experiment is to see how well our classifier generalizes
when trying to classify new actions from previously unseen
people. The classification results for this experiment are
shown in Fig. 6, with an average correct classification rate of
68.63%. As we can see in the confusion matrix in Fig. 5 the
classification results decrease when we transfer our classifier

Fig. 5: Confusion matrix corresponding to the leave-one-out cross-
validation testing.

to new people. This makes sense since different people
have different ways of carrying out the same activities.
Furthermore, the number of samples used for the training is
significantly inferior. This reduces the overall performances
of the system especially for very similar actions.

Finally, our correct classification rates are comparable to
the state of the art in action recognition where only body
joints are considered [4]. However, our QTC3D representation
provides richer and more intuitive information about the
spatio-temporal relation between those moving joints.



Fig. 6: Confusion matrix corresponding to the cross-subject testing.

VI. CONCLUSIONS
We presented a new application and practical implemen-

tation of QTC3D to recognise human actions. Our correct
classification rates are in accordance to state of the art in
similar action recognition system based on depth data and
human joints, showing that our QTC3D approach is suitable
for ADLs classification.

Future work includes extending our approach to select
couples of joints that provide the most informative spatio-
temporal relations for ADLs classification. Moreover, it
would be interesting evaluate different generative models in
order to determine the most suitable QTC3D relations for
describing specific activities.

The long term goal of this work is to develop a mobile
robot for AAL that pro-actively searches for the best location
to observe and successfully recognise ADLs in challenging
domestic scenarios.
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