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Abstract

Cognitive visual tracking is the process of observing and understanding the
behaviour of a moving person. This paper presents an efficient solution to
extract, in real-time, high-level information from an observed scene, and
generate the most appropriate commands for a set of pan-tilt-zoom (PTZ)
cameras in a surveillance scenario. Such a high-level feedback control loop,
which is the main novelty of our work, will serve to reduce uncertainties in
the observed scene and to maximize the amount of information extracted
from it. It is implemented with a distributed camera system using SQL
tables as virtual communication channels, and Situation Graph Trees for
knowledge representation, inference and high-level camera control. A set of
experiments in a surveillance scenario show the effectiveness of our approach
and its potential for real applications of cognitive vision.
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1. Introduction

We are motivated by the desire to develop cognitive visual systems. In
the context of surveillance, the theme of this paper, by cognitive we mean a
system which can not only track targets, but identify them, and explain what
is taking place, especially taking account of any possible causal relationships.

This paper describes a system which supports work towards this goal. In
a previous paper [1] we have considered the issues of low-level data acquisi-
tion processes, and how these processes communicate. In the current paper
we are more concerned with augmenting this architecture with contextual
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information to enable top-down processing. In particular we aim not only to
generate inference from low-level visual primitives, but to use this inference
to influence decisions about active visual sensing in a dynamic environment.

A typical application of an intelligent surveillance system would be to
keep track of all targets in a scene and acquire high-resolution images of
their faces for identification. In [1], in common with many other similar
implementations, the system attempted to satisfy the first part of this goal
using two simple, hard-coded rules: if a new target was observed by an over-
head static camera, a PTZ device was immediately dispatched to acquire and
track it autonomously at a pre-specified zoom level. However our objective in
the current work is to couple high-level inference to sensing strategies. Prior
domain knowledge is captured via fuzzy metric-temporal logic rules, and
these are unified with instantaneous knowledge acquired to generate scene
situation descriptions using the inference engine developed by [4]. We use
this current state of the world, as determined by the inference, to help de-
cide what the next sensing action should be, thereby completing a high-level
sensing-perception-action control loop. Thus, in contrast to most previous
work, we are concerned in this paper with using inference to generate ef-

fective camera actions and, by means of these, to influence future inference
outcomes. This is a major contribution to the current state-of-the-art in ac-
tive vision and intelligent surveillance. To present and demonstrate a limited
but fully operational multi-camera system with high-level active sensing is
also an important contribution of our work.

The paper is organized as follows: Section 2 presents relevant work in
cognitive computer vision and camera control. System architecture and al-
gorithms for low-level visual processing are introduced in Section 3. Section 4
illustrates the solutions implemented for on-line inference and high-level cam-
era control, while Section 5 describes their application to specific scenarios
of visual surveillance. Several experiments are presented in Section 6. Con-
clusion and future work are finally discussed in Section 7.

2. Related Work

In view of the different nature of knowledge, a modular scheme to de-
scribe behaviour understanding framework was proposed by Kanade in [5].
Our own interpretation of this is an architecture to perform human behaviour
interpretation, drawing inspiration heavily from Kanade and Nagel [6] (see
Fig. 1). At the bottom is the Sensor Actuator Level (SAL), which provides
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Figure 1: Modular scheme for behaviour interpretation [6].

image data and information about camera parameters. The above Image Sig-
nal Level (ISL) is where low-level image measurements are processed in order
to extract features in each image. The following layer Picture Domain Level
(PDL) is responsible for locating the moving blobs in 2-D representations.
At the Scene Domain Level (SDL), models and algorithms are based on 3-D
configurations of objects in the scene. The information obtained from the
lower-levels is forwarded to the Conceptual Primitives Level (CPL) in order
to determine tentative descriptions at each time step. At the Behavioural
Representation Level (BRL), the object behaviour is modelled based on the
tentative descriptions derived from CPL. Annotation of the behaviour in
natural language is accomplished in the Natural Language Level (NLL).

Here we consider previous work on human activity analysis and behaviour
understanding which fall within the top modules (conceptual and behavioural
levels) of this architecture. We also review some of the previous camera
control strategies.

2.1. Behaviour Interpretation

From the algorithmic point of view, most previous work has modelled
human behaviour by considering one of two different approaches based on the
direction of data flows: on the one hand, bottom-up approaches aggregate
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low-level visual data into human behaviours using a set of motion patterns [7,
8, 9, 10]. These often incorporate aspects of machine learning, which makes
them extendible, but usually only via the acquisition of a large corpus of
training data. In contrast, top-down techniques, such as [11, 12, 6], predefine
a set of motion patterns that represent the set of object behaviours to be
instantiated. This kind of approach generally lacks a learning ability but does
represent human behaviours in an intuitive and “human-readable” manner,
which can be easily extended by expert knowledge. Additionally, they do
not depend on the specific data from the training set.

Among the bottom-up approaches, Binford et al. [7] describe a solution
using Bayesian belief networks to control inferences over a complex, multi-
level representation system based on generalised cylinders. Intille and Bo-
bick [8], instead, propose an automated annotation system to interpret sport
scenes using belief networks. They exploit temporal structure descriptions to
represent the logical and temporal relationships between agent goals. Belief
networks are applied to represent and recognize individual agent goals from
visual evidence. In [9], Remagnino et al. present an agent based surveillance
system which supplies textual descriptions for the dynamic activity occurring
in the 3D world to monitor scenes involving both pedestrians and vehicles.
The descriptions are derived by means of dynamic and probabilistic inference
based on geometric information provided by a tracking module. A behaviour
agent is assigned to each tracking object, which uses a Bayesian network to
infer the fundamental features of the objects’ trajectory, and a situation agent
is used to interpret pairwise interactions when two objects are close. Robert-
son and Reid developed a system in [10] for human behaviour recognition
in video sequences by defining actions using feature vectors that comprise
trajectory information and a set of local motion descriptors. Bayesian fusion
of these feature vectors compose spatio-temporal actions, which were gath-
ered to build up a database. Action recognition is achieved via probabilistic
search in the database. HMMs which encode scene rules are used to smooth
sequences of actions.

Turning to top-down solutions, Ayers et al. [11] describe a system which
recognizes human actions in an environment with prior knowledge about the
layout of the room. Based on low-level information obtained from three tech-
niques, namely skin detection, tracking and scene change detection, action
recognition is modelled by a state machine. Textual description of recog-
nized actions is generated by reducing a video sequence into a smaller series
of key frames. Kojima and Tamura address in [12] the generation of natural
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language descriptions of human activities from video images. The proposed
method generates textual description by extracting semantic features of hu-
man motions and associating them with concept hierarchy of actions. Nagel
et al. [6] developed a system that makes use of so-called Situation Graph
Trees (SGTs) as representation formalism for behavioural knowledge. They
used it for on-line analysis and generation of natural language descriptions.
In the present work we explore the use of this representation and inference
mechanism as a means to control sensing actions.

2.2. Camera Control Strategies

Camera control can be related either to monocular or multi-camera con-
figurations, and can be categorized in passive control and active control.
Camera control is essential to perform navigation and monitoring tasks, as
well as to obtain and keep the identities of tracked objects. The problem
with general, unconstrained environments involving several objects is that
information gained from fixed sensors is either too coarse or noisy to allow
correct identification, and often too focused and narrow to keep track of all
the objects, or to capture good identification features at the right time.

Here we categorize the strategies of camera control into three different
models in terms of the attributes of the evidence the commands depends
on: picture domain camera control (PDCC), scene domain camera control
(SDCC) and conceptual level camera control (CLCC).

PDCC depends on control demands purely based on image information.
It is the simplest approach to surveillance in which the goal is simply to track
a hot-spot, i.e., selecting a localized interesting object (or group of objects)
and keeping it centred in the field of view (FoV) of a PTZ camera, and/or
preserve its size constant. This approach assumes that only one interesting
object/group is in the FoV, whereas all the other blobs are either generated
by noise or non-interesting objects. Examples for this kind of control are
the works of Tordoff and Murray [13] and Denzler et al. [14]. Both address
the choice of focal length for a single active camera when tracking a single
target. The former tries to preserve the scale of the object, the latter chooses
those observation parameters that yield a minimum uncertainty in a Kalman
filter context. Another example is the person-following active camera system
proposed by Prati et al. [2], where the camera control is implemented through
a simple heuristic rule that re-centres the target in the FoV whenever it is
close to the image’s border.
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Scene domain control is a more complex approach than PDCC. The
surveillance goals are typically similar, but control demands are determined
via 3D-scene information. The advantage of SDCC is that the 3D represen-
tation permits more flexible and reliable handling of complex appearance,
disappearance, trajectory modelling and other target’s interactions with the
environment. Some examples are Tsuruoka et al. [15], who present a sys-
tem that tracks a lecturer in a classroom using foreground segmentation on
a fixed camera’s image and a fuzzy control scheme to steer an active cam-
era for close-up views. Another example is the “Face Cataloger” application
presented by Hampapur et al. [16], which uses multiple active and passive
cameras. The active ones are directed by simple geometric reasoning and
static rules to acquire frontal face images. Recent work by Del Bimbo et

al. [17] addresses the difficulty in positioning active cameras according to
seemingly simple rules. Sommerlade and Reid [18] extend the approach of
[14] to the scene domain, facilitating camera hand-off. In both these works
however, the resulting control uses only the information about the position
of targets and sensors.

Although much work remains to be done in terms of validation, control
at the conceptual level (CLCC) is a high-level approach with the potential
to meet the requirements of increasing complexity in surveillance tasks. A
spatio-temporal description of the interesting object, with respect to other
objects or to what is considered background, becomes necessary (e.g. a
description of what kind of behaviour demands attention). An example is
the home supervision project in [19], where the detected fall of a person
results in the ringing of an alarm. Rules are encoded using conditions on
spatio-temporal observations by human experts [20] and currently do not
address any uncertainty in the observations.

Our work is in the same vein as the former in the sense of encoding expert
knowledge, but, contrary to previous work, we also feed back the resulting
inference into the data acquisition process: by appropriately controlling the
active cameras, we are closing the perception-action-cycle using high-level
reasoning.

3. Distributed Camera System and Visual Processing

In this section we introduce, and partly extend, the architecture described
in [1], a schematic of which is illustrated in Fig. 2. The system comprises a
set of distributed static and PTZ cameras with visual tracking algorithms,
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Figure 2: System architecture.

together with a central supervisor unit. The different modules in the figure
are organized according to a hierarchical structure with a Visual Level at the
bottom, a Conceptual Level at the top, and an Integration Level interfacing
the two. These three levels are our own interpretation and simplification
of the schematic in Fig. 1. The Visual Level contains all the hardware and
software from picture domain level downward. The Conceptual Level, in-
stead, covers the conceptual primitives and above. Finally, the Integration
Level is our implementation of the scene domain, with additional modules
for handling high-level commands. This is discussed further below and in
Section 4.

In our current system, there are two active cameras (Sony DFW-VL500
with Directed Perception DTU-D46 pan-tilt unit) and an Axis 212 used as
static camera. Each camera has a dedicated computer unit for visual process-
ing and control, so that camera and unit, together, constitute an independent
“tracker” module. The Tracker Static Camera (TSC) and the Tracker Ac-
tive Cameras (TACs) are connected and synchronized with the Supervisor
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Tracker (SVT) via TCP/IP.
The SVT includes three parallel processes – Data Integration, Command

Dispatch and High-Level Reasoning, which all reside on a separate server
machine. A key component of the system is the use of a central SQL database,
which provides a reference application for the asynchronous communication
between processes, as well as an efficient way to store large amounts of visual
information and possible inference results.

Additional processes can similarly read from and write to the database,
and they can be physically located on the SVT server or remote from it. We
have implemented three such additional processes: a face recognition [21], a
simple action classification [22] and a gaze direction detection [23]. Currently,
only the face recognition, discussed in Section 3.5, is fully integrated into our
system.

The remaing part of this section illustrates the SQL communication mech-
anism and the execution steps from target’s detection with the static camera
to actual tracking with the active camera. Further details on the system
architecture can also be found in [1].

3.1. SQL Communication

Asynchronous inter-process communications and archiving of data are
achieved in a simple and effective way via a central repository, implemented
using an SQL database. Visual tracking data from static views are stored
dynamically into tables of the database via client calls to the SQL server.
The SVT determines if active zoom cameras should be dispatched to observe
a particular target, and this message is effected via writing demands into
another database table.

The SQL server includes the following tables:

• Calibration Table to store calibration information for all the trackers;

• Observation Table for observations/estimates generated by trackers and
SVT;

• Command Table for high-level commands sent by the SVT;

• Image Table for stabilized images produced by the TACs.

Additional tables for inter-process communication within the SVT are intro-
duced and discussed later in Section 4.
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The basic scheme of communication among trackers, database and super-
visor is illustrated in Fig. 3:

1. first, in an offline and one-off procedure, the cameras retrieve the cal-
ibration data stored in a common repository (i.e. Calibration Table),
consequently used to convert pixel locations to world coordinates;

2. a background subtraction algorithm, described in Section 3.2, is used
to detect potential human targets with the TSC in form of regions of
interest (ROI). Using the previous calibration data, the absolute 2D
position of these targets is computed and stored in the Observation
Table;

3. the SVT reads the Observation Table, resolves the data association and
computes a 3D estimate for every target’s trajectory. These estimates
are processed to generate camera commands sent via the Command
Table, as described in Section 3.3.

4. The TAC receives commands from the Command Table and computes
an approximate configuration of pan-tilt-zoom to predict the position
of the target and initialize the tracking (see Section 3.4). Stabilized face
images of the target are finally stored in the Image Table for archiving
or identification purposes.

3.2. Detection with Static Camera

The static camera of our system (TSC) is used for real-time human de-
tection on wide-angle image sequences. To detect people, we use an imple-
mentation of the Lehigh Omnidirectional Tracking System (LOTS) algorithm
[24]. This is based on a background subtraction technique that uses two grey-
scale images of the background and two per-pixel thresholds. The latter treat
each pixel differently, allowing the detector to be robust to localized noise in
low-size image regions, and evolve according to a pixel label provided by a
light version of the traditional connected component analysis. Small adjacent
regions detected by LOTS are clustered together, and their centroid calcu-
lated to give the target position. The background subtraction well suits our
current installation of the static camera because the targets, being observed
from the top, do not overlap in this case (see Fig. 4). Details of the original
LOTS algorithm can be found in [25].
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Figure 3: Communication steps between TSC, SVT and TAC to get stabilized images of
a target.

3.3. Integration and Control with the Supervisor Tracker

The SVT is responsible for the data fusion, reasoning and camera control
strategy. As anticipated in Fig. 2, this can be thought as a set of semi-
independent processes using bi-directional communication, via SQL queries,
for information exchange.

The main purpose of the Data Integration module is to collect sensor
observations from one or more cameras and generate proper trajectories of
the current targets, which can be used for reasoning and active tracking. This
module uses an efficient multi-target tracker based on Kalman filters with a
constant-velocity model and nearest-neighbour data association [26]. It reads
the targets’ coordinates from the Observation Table, which are provided by
the static camera, and computes the 3D estimates (position and velocity) of
the targets’ heads, assuming they all have the same height. These estimates,
then, are written back to the same table. In this way, it is possible to identify
the trajectory of a target, as a sequence of estimates with a unique ID, from
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Figure 4: People detection with the TSC using LOTS background subtraction. The
centroid of each red cluster, corresponding to a human target, is marked with a cross.

the anonymous and noisy detections provided by the static camera.
The High-Level Reasoning of the SVT contains a representation of the

knowledge upon which on-line inference is performed, thus to provide a con-
ceptual interpretation of the visual scene and generate opportune high-level
commands for the cameras, such as “track target” or “acquire face image”.
The Command Dispatch module is responsible for sorting and delivering
these commands, which are sent to the destination cameras through the
Command Table of the database together with any requisite argument, like
camera number or target ID. This part is discussed further in Section 4.

3.4. Tracking with Active Camera

The control command sent to a client with an active camera (TAC) com-
prises a target identification number together with a position and uncertainty
on the ground plane common to the system. Combined with the expected
height of targets, this is turned into a bounding box in three dimensions. The
active camera is then steered using positional control to centre the projec-
tion of this area in the camera’s view. Once the camera is sufficiently close,
a standard face detection method [27] is run on the observed area. If a face
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is detected, the client switches to velocity control mode and tracks the target
using a visual tracking method based on level sets [28]. The focal length
for the observation of the target is directly obtained from the perspective
projection equation [3] and the requirement that the projection of the target
should cover a fixed fraction of the image. This yields the appropriate zoom
setting, as the cameras are intrinsically calibrated with a cubic mapping of
zoom setting to focal length. The client transmits the stabilised face images
from the visual tracking algorithm to the database, and stops tracking the
target upon receipt of a tracking command where the target ID differs from
the current one.

3.5. Face Recognition

Face images obtained by the TAC are used to determine the target’s
identity. For this purpose, we use the original face recognition algorithm
proposed by Everingham et al. [29] and extended by Apostoloff et al. in [21].
A pictorial model is used to compute the locations of facial features, which
form a descriptor of the person’s face. When sufficient samples are collected,
identification is performed using a random-ferns classifier by marginalising
over the facial features. This confers robustness to localisation errors and
occlusions, while enabling a real-time search of the face database.

Unfortunately, many of the face images sent by TACs are unsuitable for
recognition purposes because they are not frontal views, or because they are
affected by motion blur caused by pan-tilt movements, zoom changes and
human motion. A mechanism for quality assessment is therefore necessary
in order to choose only the best face images in a sequence. In our imple-
mentation, a pre-filter is integrated into the face recognizer to select the best
images before performing any further analysis. This pre-filter is designed to
be computationally inexpensive, still keeping high reliability, and is consti-
tuted by two parts: a simple face detection and a blur detection. The first
one is based on the OpenCV implementation of the Viola-Jones algorithm
[27], discarding face images which are too small (less than 20 x 20 pixel) or
not sufficiently aligned. The second one makes use of the solution proposed
in [30] to measure the sharpness or blurriness of an image and detect the best
face among a pool of snapshots.
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4. High-Level Reasoning and Camera Control

In intelligent surveillance, cameras must be appropriately tasked to collect
and communicate the information relevant to the problem at hand. The level
of intelligence of the system depends on the camera control strategy to some
extent. Apart from hardware mechanical problems, the greatest challenge
in setting up an automatic control system is a non-trivial trade-off between
conflicting sub-goals, such as cost of commissioning a surveillance camera,
flexibility in which object should be supervised, maximizing the information
gain and reducing the risk of losing a supervised object.

We apply conceptual level camera control (CLCC) as outlined in Sec-
tion 2.2. Compared to the approaches using information from picture and
scene domain only, CLCC uses behaviour information as evidence, which is
built based upon some human-like understanding and can be statistically
more robust and stable than quantitative data such as object positions and
pose. This formulation also allows us to formalize the background informa-
tion in a consistent way and import it as logic facts. This a priori knowledge
is easily integrated into CLCC utilizing the same logic formalization, and can
be taken into account as auxiliary information.

A significant step towards this goal, which is also an important distinction
between our previous work [1] and the current paper, is the addition of an
inference engine for High-Level Reasoning that combines situational a pri-

ori knowledge with visual predicates. Besides knowledge representation and
inference, the High-Level Reasoning is also responsible for CLCC. As shown
in Fig. 5, it resides on the Conceptual Level of the SVT and communicates
with the other modules at Integration Level via SQL tables.

In particular, quantitative data, generated at Visual Level and fused by
the Data Integration module, is stored in the Observation Table and then
converted into a list of (qualitative) predicates within the High-Level Rea-
soning. An inference thread is invoked on the latter whenever new visual
predicates are available. The results of the inference are written to an In-
ference Table, including possible high-level commands, which are processed
by the Command Dispatch and delivered to TACs. The Inference Table is
also used to control additional modules external to the SVT, like the Face
Recognition, the use of which will be discussed later in Section 5.4.
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Figure 5: System architecture as in Fig. 2, but here showing details of the virtual commu-
nication channels between modules, implemented via SQL tables.

4.1. Inference on Situation Graph Trees

The High-Level Reasoning provides a priori knowledge about the ex-
pected behaviour of agents in the field of view of the recording camera(s).
“Behaviour”, in this context, is to be understood as a sequence of situated
actions of an agent. This schematic a priori knowledge is structured into a
Situation Graph Tree (SGT) which is specified in a formal language, SIT++,
based on a Fuzzy Metric-Temporal Horn Logic (FMTHL) [4].

An SGT comprises a hierarchy of temporal fuzzy-rules to describe a situ-
ation in terms that are as specific as possible for any given time. Each node
represents a possible temporal decomposition of events and rules that is more
specific than the parent. Since there may be more than one specialisation,
the hierarchy of rules naturally forms a tree, where each node comprises a
set of fuzzy rules specialising the parent. Examples are shown in Fig. 7 and
Fig. 8, where the inheritance relation is denoted with bold-face arrows. The
rules have temporal ordering as indicated by thin lines/arrows. Each tempo-
ral situation has situation identifier, a set of predicates to be satisfied, and
optionally, an action to be performed when the predicates are satisfied.

In [6], a conceptual representation for the instantaneous behaviour of a
particular agent, in a recorded video, is given by the instantiation of one of the
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schematic behaviours encoded by an SGT. Such an instantiation is obtained
by unifying the rules encoded in the tree with visual predicates provided by
the Computer Vision Subsystem. In other words, the quantitative geometric
results obtained by the latter provide the “individuals” (in the sense of a
formal logic model) required to instantiate one of the schematic behaviours
encoded in an SGT. The instantiation of a conceptual representation for
an agent’s behaviour, during a particular time interval, is the result of a
process termed “SGT-traversal” (or simply traversal). This is given in the
form of a sequence of time-indexed predicates, generated using an inference
engine for FMTHL, called F-Limette [31]. Generally speaking, the more
specific the instantiation, the better the description, and so the traversal
proceeds by depth-first search. Less formally, inference proceeds by unifying
fuzzy predicates produced by the low-level vision processes, with the “rules
of engagement” encoded in the SGT.

4.2. Conceptual Level Camera Control

The previous applications of SGT-based inference have all been based on
recorded videos with constant parameters, and were used to create off-line
descriptions of observed agent in the scene [32, 33]. Our key contribution
is to extend this paradigm by employing it in an active system for PTZ
camera control. The strategic camera control, or CLCC, is embedded in the
cognitive reasoning; camera commands which suit a relevant situation are
specified in the action part of the situation scheme of the SGT. Instead of
using traditional camera-centric commands such as “pan sensor A to direction
X”, we seek to issue high-level task commands for camera action, such as
“track current target with best camera”, when the situation associating with
it is instantiated. Therefore, the control decisions are made based on the
reasoning conclusions of agent behaviours and situations. The high-level
commands must be then decomposed into a sequence of low-level demands
issued to the appropriate sensors at the correct times (e.g. 30Hz velocity-
control demands for closed-loop tracking).

Some kind of a priori knowledge should be incorporated in order to correct
incompleteness of the available geometric data from tracking. The a priori

knowledge sources are usually embedded in scene-dependent models. As a
result, it is possible to free generic motion analysis methods from the specific
scene where they are applied. Such knowledge is assumed to be available to
the system, including:
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1. camera models with internal and external calibration settings to deter-
mine the best acquisition configuration;

2. scene models to help with generation of agent estimates and prediction
of occlusions due to static components;

3. agent motion models to predict movements of agents (despite occlu-
sions).

In our system, the knowledge of camera models is kept and used locally
by the low-level control units associated with the PTZ cameras (i.e. TACs
in Fig. 2). These must “compile” requests generated from the Conceptual
Level (i.e. High-Level Reasoning) into a sequence of sensor specifications and
commands. The compilation mainly involves commanding the PTZ camera
to look at the appropriate scene locations at the right times. Sensor-specific
pan, tilt and zoom demands, associated with a particular object or ROI,
are computed by the TAC using the known calibration parameters of the
sensor and the known geometry of the object and the scene. The scene and
agent motion models are established using conceptual predicates, which will
be addressed in Section 5, and are exploited for behaviour reasoning and
tracking.

5. Application to Cognitive Visual Tracking

As explained before, our current goal is to couple high-level inference to
sensing strategies, i.e. to control a set of active cameras for surveillance in
an intelligent fashion. This is done in practice using the actions emitted
during the traversal of an SGT, which has been specifically designed for the
particular scenario. The following sections illustrate the conceptual model of
the area under surveillance and the incremental design of an SGT for human
behaviour interpretation and intelligent camera control.

5.1. Conceptual Model of the Scene

Behaviour analysis requires an explicit reference to the spatial context, i.e.
a conceptual model of the scene. The area under surveillance has been there-
fore divided into semantically distinct regions, as shown in Fig. 6. Thanks
to this model it is possible to infer the relationship of an agent with respect
to (predefined) static objects in the scene, and to associate facts to specific
locations within it.

The scene illustrated in Fig. 6 is divided into polygonally bounded seg-
ments, describing the possible positions in which an agent can be found.
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Figure 6: Atrium and floor-plan of the surveilled area with semantically distinct regions
used for inference and action selection. hermes1 and hermes2 are the two active cameras
(TACs).

Each segment has a label to determine the conceptual description associated
with it. We distinguish two different types of segments, namely:

• exit segment, which includes:

– bridge: connects the atrium to another building;

– ground floor stairs: connects the atrium, which is on the first floor,
to the the ground floor;

– second floor stairs: connects the atrium to the second floor;

– aisle: leading to other rooms;

• atrium segment, which includes:

– roi-i: the i-th ROI placed on the main activity area of the atrium.

Note that, in the current implementation, the only purpose of the three ROIs
is to simplify the atrium’s representation with the inference engine F-Limette.
We can now build predicates which relate to the spatial position of the agent
with respect to the above segments. This is described in the next section.

17



5.2. Human Behaviour Interpretation

In general, the term “human behaviour” refers to the combination of one
or more human actions with the knowledge about its environment, thus to
derive a semantic description about the observed agent. In this paper we
consider just a small subset of possible behaviours, which are mainly built
around the “walking” action of individuals within the surveilled area. We
are interested in particular on the interpretation of motion behaviours, such
as entering, crossing or leaving the area by a single agent.

Fig. 7 depicts the SGT designed for the initial scenario. The root graph,
on the specialization Layer 1, comprises only one situation scheme, in which
the predicate active(Agent) states that an agent is present in the scene. In
the language of logic programming, this unifies or binds the variable Agent

(variables always start with a capital letter) with a particular target ID from
the Observation Table.

The initial scheme is specialized by another situation graph in Layer 2,
comprising two schemes both of which can be either the start or the end of
the current situation. They indicate that the agent may be either on the
first floor of the atrium (predicate on(Agent, first floor)) or somewhere
else, and may move between the two locations (as illustrated by the thin
double arrow). However, it may not be simultaneously on the first floor and
on another location. Note that the second scheme (predicate not on(Agent,

first floor)) is instantiated when the agent is detected by the TSC outside
the first floor. Indeed, we assume the latter is the ground plane and ignore
any activity outside it.

The first scheme is particularized further to describe the behaviours of
the agent on the first floor with two situation graphs in Layer 3, depending
on where the agent is detected:

• on atrium(Agent) is satisfied as the position of the agent, projected
on the ground plane, is inside the atrium’s area. The following spe-
cialization in Layer 4 (blue extension of the SGT in Fig. 7) is used for
camera control and is discussed later in Section 5.3.

• on exit(Agent, Exit) describes the situation when the agent is lo-
cated in one of the exit segments (bridge, ground floor stairs, aisle or
second floor stairs). It is followed by two specialized situation graphs
in Layer 4, each containing a single scheme:
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from(Agent, Exit)

sts(entering_from(Agent, Exit))

via(Agent, Exit)

sts(leaving_via(Agent, Exit))

on_atrium(Agent) on_exit(Agent, Exit)

sts(crossing(Agent, atrium)) sts(crossing(Agent, Exit))

towards(Agent, Exit)

side_of(Exit, Camera)

cmd(follow(Camera, Agent))

sts(is_inside(Agent, first_floor))

on(Agent, first_floor)

Layer
1

2

3

4
sts(going_towards(Agent, Exit))

not_on(Agent, first_floor)

sts(is_outside(Agent, first_floor))

active(Agent)

sts(is_present(Agent))

Figure 7: SGT for human behaviour interpretation, including an extension (Layer 4, left-
hand side) for active camera selection.

– from(Agent, Exit), in the first situation, represents the agent
entering the atrium from an exit segment;

– via(Agent, Exit), in the second situation, describes instead the
case of an agent leaving the atrium through an exit.

As noted before, whenever a node in the SGT is satisfied during the traver-
sal, it can optionally emit an action. In previous work [32, 33], the typical
application of this ability was the use of the note(...) action, which prints
a particular state to monitor or log the inference process, or for natural lan-
guage text-generation. Within our SGT, the note(...) action is extended
to form a new one, called sts(...), that records the current status of the
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traversal in the Inference Table of the SQL database. For example, in case
of agent 12 leaving the atrium through the bridge, the SGT-traversal would
result in an action sts(leaving via(agent 12, bridge)) written on the
Inference Table.

5.3. Multi-Camera Selection

In the previous section we have described a simple SGT which is used
to make inference about where an agent is in terms of qualitative labels as-
sociated with the semantically different regions in the scene. In this part
we extend that to include the direction of motion, and we use it to invoke
a camera-select action, so that closed-loop tracking is effected in the cam-
era most likely to obtain frontal views of the agent. The SGT is the one
illustrated in Fig. 7, including the additional specialization in Layer 4 (blue
extension on the left-hand side).

Remember that the first situation in Layer 3 refers to the case when the
agent is walking in the atrium. The specialization that follows in Layer 4
seeks to determine its direction (predicate towards(Agent, Exit)) and the
camera it is facing to (predicate side of(Exit, Camera)). Here the system
tries to unify the variables Camera and Exit for a consistent interpretation
with the current binding of Agent, resulting in selection of the appropriate
camera in the node’s actions (i.e. a camera the moving agent is facing to).
The specialisation of the second situation on Layer 3, instead, is concerned
with the case that the person is either just leaving or entering the first floor
of the atrium, in which case no TAC is dispatched.

Besides writing the current status, the SGT-traversal can now generate a
special cmd(...) action that writes a command string in the Inference Table.
In this case, cmd(follow(Camera, Agent)) tells one of the TACs (hermes1

or hermes2 in Fig. 6) to follow the agent. This string is interpreted by the
Command Dispatch module of the SVT and sent to the relative camera via
the Command Table. The follow command, in particular, uses position-
based open-loop control of the active camera based on 3D estimates from
the Data Integration and continuous demands from the TSC. During its
execution, the zoom is minimum (i.e. maximum FoV).

While this may appear to be overkill for a relatively simple action rule,
we argue that the general formalism available through such knowledge con-
ceptualization and inference will in the future enable much more complex
inference and corresponding actions. Furthermore, unlike this simple exam-
ple in which the action is the end in itself, we can instead use it as a means
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to an end, namely to effect further actions to explore aspects of the scene
actively. The next example below deals with this in regard to face acquisition
and recognition.

5.4. Automatic Zoom for Human Identification

In the example above the action emitted is an end in itself. That is, the
“follow” behaviour of the TAC, resulting from the traversal of the previous
SGT, does not influence future inference outcomes. Much more interesting
is the case where the result of an action has direct consequences on the
next traversal; the aim of such an action will be to acquire new information
to enable a deeper instantiation in the SGT. Such a situation provides a
connection between high-level inference and sensing actions, in which the
high-level knowledge has contributed to the low-level sensing, and vice-versa.
This has been a key goal of our current research.

In this section we develop an SGT for the case of an agent moving through
the atrium in which the goal is to obtain a close-up view of the face and to
perform face recognition. To this end, we have integrated the real-time face
recognition system in Section 3.5 as a visual processing module. Like all the
other processes, the Face Recognition simply reads and writes data from/to
the database via the standard SQL protocol, meaning the physical location of
the process is immaterial. Its operation within the system, and in particular
the communication with the inference engine, is illustrated in Fig. 5.

The SGT for this scenario, which is shown in Fig. 8, is a further extension
of the previous solution (differences highlighted in green on the figure). This
new SGT performs both camera selection and “follow” behaviour; addition-
ally, it can instruct a camera to “track” a target’s face and “recognize” it.
While the execution of actual follow command uses position-based open-
loop control of the active camera based on continuous demands from the
TSC, the track command results in closed-loop visual tracking indepen-
dent of the TSC. In particular, it tells the TAC to locate and zoom on the
target’s face, sending a continuous stream of high-resolution images to the
Image Table. A recognize command would then activate the Face Recog-
nition module, reading images from the Image Table and sending the result
to the High-Level Reasoning through the Identity Table. Once identification
is complete, the camera is instructed, via the SGT, to zoom-out and follow
the target in open-loop mode.

More specifically, we refer now to the left-hand branch of the tree in which
a new agent has entered the scene. Upon reaching Layer 4 with the instan-
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on(Agent, first_floor)

sts(is_inside(Agent, first_floor))

from(Agent, Exit)

sts(entering_from(Agent, Exit))

via(Agent, Exit)

sts(leaving_via(Agent, Exit))

on_atrium(Agent) on_exit(Agent, Exit)

sts(crossing(Agent, atrium)) sts(crossing(Agent, Exit))

towards(Agent, Exit)

side_of(Exit, Camera)

sts(going_towards(Agent, Exit))

6

5

4

3

2

1
Layer

not_on(Agent, first_floor)

sts(is_outside(Agent, first_floor))

sts(is_present(Agent))

active(Agent)

close_to(Agent, Camera)

sts(is_close_to(Agent, Camera))

far_from(Agent, Camera)

sts(is_far_from(Agent, Camera))
cmd(track(Camera, Agent))

cmd(follow(Camera, Agent)) cmd(recognize(face_rec, Agent)

cmd(follow(Camera,Agent))

identified_as(Agent, Identity)

sts(is_unidentified(Agent))

not_identified(Agent)

sts(has_identity(Agent, Identity))

Figure 8: SGT for active camera selection and face recognition.

tiation of the Agent and Camera variables, the previous follow command is
replaced by a new specialization inserted in Layer 5. This considers whether
the target has been identified or not, with the instantiation of the following
predicates:

• not identified(Agent), means the agents has not been identified yet,
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so the traversal proceeds further to Layer 6. Here the situation is
represented by the following two schemes:

– close to(Agent, Camera), in which the target is on a region of
the atrium too close to the current camera. In this case, the cam-
era control cannot react quickly enough to zoom on the moving
target and acquire high-resolution images of the face. A simple
follow command is therefore dispatched.

– far from(Agent, Camera), where the target is at optimal dis-
tance for closed-loop face tracking and recognition. This is ac-
complished by the current camera and the face recognition via
the respective track and recognize commands. In particular,
cmd(track(Camera, Agent)) generates the first command for the
selected camera, which zooms on the face and tracks it in closed-
loop control; cmd(recognize(face rec, Agent), instead, invokes
the Face Recognition module to identify the target.

• identified as(Agent, Identity), means the identity of the target is
known, therefore a simple follow command is generated, which results
in a zoom-out and open-loop control of the TAC.

Being the traversal a depth-first search, the delay introduced adding more
layers to the SGT is negligible, at least in comparison to the typical 30fps
of a camera and to the time needed for face recognition. Different would be
the case, of course, in which the traversal was a breadth-first exploration of
the SGT. Note also that the case of multiple targets has not been specifically
addressed in the current research, although the SGT here presented yielded
good results, to some extent, when applied to scenarios with more than one
person. This is discussed further in our experiments.

6. Experimental Results

We have conducted numerous experiments with the overall system in [1],
showing that our architecture is suitable for inter-communication, control
and data storage of a distributed multi-camera system. Here we concentrate
on the presentation of results pertaining to the inference mechanism. In
particular, we consider applications of the SGTs in Section 5 to follow a
target with the most appropriate camera for frontal-view observation, and to
acquire high-resolution images for on-line identification.
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6.1. Target Following

The first example shows the application of the SGT in Fig. 7 for multi-
camera selection. When a pedestrian walks across the atrium, one of the
active cameras is selected to follow and acquire generic frontal-view images
of the person. Before the TACs initialization, the Data Integration module
of the SVT computes the 3D coordinates of the agent, which are based on
the information from the background subtraction algorithm of the static
camera (TSC). The module for High-Level Reasoning of the SVT relies on
this geometric data for inference and generation of high-level commands.

The results in Fig. 9 and 10 are from two sequences showing a person
individually followed by the most appropriate camera to get a frontal view.
On the left and right columns are the images acquired from the two cameras,
hermes1 and hermes2, the location of which was highlighted in Fig. 6. The
middle column shows the current path of the SGT-traversal as discussed in
Section 5.3 (see details of the SGT in Fig. 7).

In the sequence of Fig. 9 the agent moves from the aisle to the bridge. The
camera hermes1 is chosen to follow the agent according to its direction, so
that frontal-view images of the latter can be acquired. The camera hermes2

is in idle state during the whole process. The sequence in Fig. 10 shows
the opposite case, where the agent, walking from the bridge to the aisle, is
followed by hermes2, while hermes1 is idle.

As highlighted by the relative SGT-traversal, the active camera is selected
based on the high-level command follow sent by the SVT, in which the
parameter Camera is set to be either hermes1 or hermes2. Note also that
agents are always kept in the field of view of this camera, demonstrating that
the use of high-level commands from the inference process of the SVT are
sufficiently fast for autonomous surveillance.

This experiment shows in particular two important properties of our im-
plementation:

• through an extensive but efficient use of databases for message passing,
observations and commands generated by the system are processed in
real-time, as already reported in a previous work [1];

• multiple cameras are selected according to a high-level interpretation of
the current human motion, which is not only based on image sequences,
but also on a semantic representation of the environment.

24



Figure 9: Selection of camera hermes1 for target following.
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Figure 10: Selection of camera hermes2 for target following.
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However, one of the limitations of the current selection strategy is that,
once the camera hermes1 or hermes2 has been enabled, it continues to follow
the target until this leaves the scene, or at least until is lost. That is, the
current SGT can correctly initialize the camera the target is facing to, but at
the moment it lacks a mechanism to stop this camera when the target moves
in the opposite direction. Such a situation is illustrated by the sequence in
Fig. 11. Here the agent moves initially towards the bridge and the camera
hermes1 is successfully selected to follow, while hermes2 is idle. When the
agent, in the middle of the atrium, decides to turn back and move towards
the aisle, hermes2 is enabled too, and both the cameras keep on following
the person until he leaves the scene. New rules will have to implemented to
forcibly stop a camera when it is not needed anymore.

6.2. Target Identification

The next examples illustrate the effect of camera commands to identify
people walking in the atrium. We show how inference is used to control the
pan-tilt-zoom of active cameras and collect close-up images for further face
recognition. The SGT, in this case, is the one illustrated in Fig. 8. Running
the system over an extended period yields facial snapshots of every individual
who traversed the area under surveillance. Fig. 12 shows a series of snapshots
of people acquired by the system and stored in the database over a period of
a few hours. These data were recorded during the evening, when few people
were crossing the area; they are trivially recovered from the database, even
when weeks old. In this case the face recognition process was turned off, so
the system has no identifications.

Output from the process running with full recognition (using a small
database of 5 individuals) is shown in Fig. 13, in which the camera is con-
trolled to obtain good facial images for identification. The figure shows the
images acquired using the TAC, along with relative SGT-traversals and the
result of the inference. The sequence in the figure illustrates an agent walk-
ing from the aisle to the bridge. The agent is initially detected by the static
camera (TSC) on the top of the atrium and processed by the High-Level Rea-
soning module of the SVT. In particular, the first row of the sequence shows
an agent entering the atrium from the aisle. Its behaviour is described by the
status messages generated by the current SGT-traversal, which are shown on
the right-hand side of the figure, and written to the Inference Table.

The High-Level Reasoning then sends a track command to a specific
TAC, based on the inference over the low-level information obtained from

27



Snapshots from camera hermes1 at time t = 0, 4, 8, 12, 16, 20, 24, 28 [s]

Snapshots from camera hermes2 at time t = 0, 4, 8, 12, 16, 20, 24, 28 [s]

Figure 11: Selection of both cameras for person-following.

the TSC. Once the agent is successfully tracked, face images (shown on the
top-right corner of the second and third snapshot) are sent to the database.
A recognize command activates the face recognizer, which retrieves these
images from the database and tries to determine the agent’s identity. In this
case, the TAC tracks the agent on the second and third frame of the sequence
until it is identified, as specified by the inference results relative to the fourth
frame (i.e. status has identity). The successful recognition causes a follow
command to be sent to the same TAC, which therefore zooms-out and keeps
simply the person within its field of view. The TAC still follows the agent
when this leaves the atrium through the bridge.

In this experiments, it is important to note the path of the SGT-traversal

28



Figure 12: Face images acquired during an extended operation of the system. The images
had been manually “anonymised”.

in the middle column of the figure. While the change of the traversal’s
path between the first and the second row, or between the fourth and the
fifth row, depends only on the particular behaviour of the agent (entering or
leaving the atrium), the difference between the third and the fourth row is a
direct consequence of the high-level commands generated by the system. In
particular, the execution of track and recognize permits the change of the
agent’ state from is unidentified to has identity, and the consequent
traversal of a different branch of the SGT.

Although the current SGT has been designed to deal with a single target,
the case reported next describes a simple scenario in which multiple people
are present. The new sequence illustrated in Fig. 14 shows five different
individuals in the atrium area, one of whom is walking towards the bridge

29
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crossing(agent_0,aisle)

STATUS:

is_inside(agent_0,first_floor)

entering_from(agent_0,aisle)
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crossing(agent_0,atrium)
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COMMAND:
track(hermes1,agent_0)
recognize(face_rec,agent_0)

is_inside(agent_0,first_floor)

is_unidentified(agent_0)
going_towards(agent_0,bridge)

is_far_from(agent_0,hermes1)

is_present(agent_0)

crossing(agent_0,atrium)

STATUS:

COMMAND:
track(hermes1,agent_0)
recognize(face_rec,agent_0)

is_inside(agent_0,first_floor)

is_unidentified(agent_0)
going_towards(agent_0,bridge)

is_far_from(agent_0,hermes1)

is_present(agent_0)

crossing(agent_0,atrium)

STATUS:

is_inside(agent_0,first_floor)

has_identity(agent_0,eric)
going_towards(agent_0,bridge)

COMMAND:
follow(hermes1,agent_0)

is_present(agent_0)

crossing(agent_0,bridge)

STATUS:

is_inside(agent_0,first_floor)

leaving_via(agent_0,bridge)

Figure 13: Target tracking and identification.
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Figure 14: Target tracking with multiple people. Note that in this case the face recognition
was unsuccessful because of occlusions.

and facing the hermes1 camera. Even in this case, despite the presence
of other people, the High-Level Reasoning enables the same process “select
active camera, zoom on face and recognize” for the target of interest. This
target is simply chosen according to the order of the evidence that is available
at the current time step. In practice, the Observation Table of the SQL
database functions as a queueing mechanism, in which the oldest target is
considered first. As long as the target exists, it has precedence over all
others, and the system’s commands focus on it. Further investigation on
how to handle multiple targets is beyond the scope of this paper and is left
for future extensions of our work.

7. Conclusions

We have described a system architecture which facilitates linking of high-
level inference to sensing actions. We have demonstrated this in some simple
scenarios, but there remains much to do. Notably, we have yet to take proper
advantage of the fuzzy capabilities of the reasoning system. To do so would
require that we map probabilities (such as those returned by the visual track-
ing algorithm) to fuzzy degrees of belief. A weakness of the current inference
mechanism is that it proceeds in a depth-first fashion via thresholds set on
the fuzzy degrees of belief. An alternative which would have significant ben-
efits would be breadth-first to enable selection between multiple competing
hypotheses. In this instance we could then consider actions designed delib-
erately to reduce uncertainty.
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In parallel with our work on situational rule-based camera control, we
have also been exploring the use of information theoretic means to achieve
emergent cooperative behaviour from a set of cameras, via choosing actions
to minimise uncertainty about the scene [18]. We are currently interesting
in applying this approach to maximise information about the current belief
at the conceptual level by choosing the right camera settings. This would
require the extension to breadth-first search mentioned before.

Furthermore, we would like to explore the possibility of this form of cam-
era control as an intermediate layer between the low-level “reactive” pro-
cesses, such as closed-loop tracking, and the high-level commands. In this
way, the inference process could emit actions at a more abstract level (e.g.
“monitor scene” or “track” without reference to a specific camera), allowing
the intermediate layer to make appropriate choices for satisfying abstract
goals.
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