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Abstract

This paper describes a localization system for feolmbots moving in dynamic indoor
environments, which uses probabilistic integratioh visual appearance and odometry
information. The approach is based on a novel imagé&hing algorithm for appearance-
based place recognition that integrates digitahzdag, to extend the area of application, and
a visual compass. Ambiguous information used faogaizing places is resolved with
multiple hypothesis tracking and a selection procednspired by Markov localization. This
enables the system to deal with perceptual aliasingbosence of reliable sensor data. It has
been implemented on a robot operating in an officenario and the robustness of the
approach demonstrated experimentally.
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1. Introduction

In mobile robotics, localization plays a fundamémide for the navigation task, since it is
necessary for every kind of path-planning. In orideachieve a goal, an autonomous mobile
robot must be able to localize itself within thezeanment where it is acting and relatively to
the target destination.

The main objective of this article is to illustratee implementation of a new map-based
localization system for a mobile robot operatingam indoor environment where it is not
necessary to know the exact, absolute positionedis a topological localization is the most
appropriate solution. We developed a new visuatela@cognition algorithm that does not
need any specific landmark. In particular, the tigvMatroduced by such algorithm is the use
of digital zooming to improve the capability of cgmizing places. The same algorithm is also
used for reconstructing panoramic images from theepof interest, combining a sequence of
shapshots taken with the camera. Such imageshegeith approximate coordinates of the
topological locations, form the map used by theotoBurthermore, when the robot is located
in one of the mapped places, it can also estimstahbisolute orientation using vision, thanks
to an original visual compass system. The placegmition process is then followed by a
procedure that resolves cases of perceptual ajiasiabsence of reliable sensor information.
The system keeps track of a set of hypotheses @ndaich update step chooses the most
plausible with an approach inspired by Markov Laion. From experiments carried out in
a typical office scenario, the method shows to bbust even in case of dynamic
environments and locations poor of features.
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The remainder of the article is structured as fdloin Section 2 we report a brief
literature review; Section 3 and Section 4 descrdspectively the place recognition and the
multiple hypothesis localization; in Section 5 weegent some experimental results and
finally we conclude in Section 6 with a summary ande recommendations.

2. Related work

In recent years there have been increasing numbgrsobot applications where
localization is an essential part of the navigasgatem. Well known examples include the
tour-guide robots Rhino and Minerva [1, 2], or ttwbot-waiter Alfred [3], which used
different approaches and sensors for localizatWéith Rhino, for example, perceptions were
based upon sonar and laser range sensors, whils¢érsi made use of lasers plus an
additional camera directed towards the ceilingtrso observed scene was mostly static. In
contrast, Alfred used vision with artificial landrka to recognize places of interest.

Other localization approaches making use of visiame been presented in recent years.
Gini and Marchi [4] used a robot equipped with adirectional camera pointing ahead and
towards the floor. Their basic hypothesis was thatfloor had a uniform texture so that after
camera calibration, it was possible to reconsteultical map from images. Localization was
then the result of a comparison between the culoegat map and a pre-recorded global map.
The solution of Daeet al. [5] was based on a natural landmark model andastatracking
algorithm. The landmark model contained sets okdhor more natural lines such as
baselines, door edges and linear edges of tablekairs. The localization depended on an
algorithm that allowed the robot to determine his@ute position from a single landmark.

Several recent approaches have made use of Monite IGealization [6, 8]. It has been
demonstrated that this technique is reliable ahthesame time, keeps the processing time
low. Indeed, Monte Carlo localization has been ssstully applied in the RoboCup four-
legged league, where the Sony dog’s hardware li@sattimitations. For example, Enderle
et al.[6] implemented a Monte Carlo approach for visiased localization that made use of
sporadic features, extracted from the images of rift®ot's unidirectional camera. The
probability of being in a certain location was cddédted against an internal model of the
environment where the robot moved. Experiments guothat the method was reliable
enough, even with a restricted number of image sssn@and was improved drastically by
increasing the number of features. Tests in a &mitfice environment were also promising.

Menegatti et al. described another application of Monte Carlo lzedion in the
RoboCup context [7]. In this case, the video ingarne from an omni-directional sensor; the
images were processed in a way to simulate a tasemer, using the distances from points
with color intensity transitions. Even here thedlxation system made use of an internal
representation of the football field. Ulrich and iMbakhsh also used an omni-directional
camera for topological localization [8]. They pnetsal an appearance-based place recognition
scheme that used only panoramic vision, without adigmetry information. Color images
were classified in real-time with nearest-neighlearning, image histogram matching and a
simple voting scheme. Andreasson and Duckett sl another system in [9] that
performed topological localization using imagesnir@an omni-directional camera. Their
method searched for the best matching place amaiagfadbase of pre-recorded panoramic
images, extracting and using modified SIFT featyit€§. An interesting approach was also
the context-based visual recognition implemented tralbaet al. [11], which made use of
low resolution images from a wearable camera toaekitexture features and their spatial
layout. Training was done with hand-labeled imaggquences taken in the environment to
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map, then localization was performed using two lpgrelidden Markov Models (HMMs) for
both place recognition and categorization, theetatiseful also for the identification of
unexplored environments.

Numerous techniques have finally been devised folve the ambiguity that arises in
sensory perception, irrespective of the device eygal. No observation indeed is immune
from noise and errors, originating in both the sem@d the surrounding environment. A wide
range of localization systems have been tested camdpared in the works of [12-14],
covering methods based on Extended Kalman Filtgig~), Markov Localization (ML), a
combination of the two (ML-EKF), Monte Carlo Locadition (MCL) and Multi Hypotheses
Localization (MHL). The results of these experingeritave been used as a basis for
motivating the most suitable localization approfartour application.

3. Place recognition

In this section, we describe a new method to reeega position amongst a finite set of
possible locations. This set is basically a topmaignap of the environment provided by the
user and each place is identified by a point inGlaetesian space and a panoramic image of
the scene observed from that point. The procedureased on the comparison of a new
image, taken by the robot’s camera, with all thegpamic images of the map. A measure of
the match’s quality is assigned to each compansing a novel image-matching algorithm
(or IMA). Basically, this process constitutes the placegaition, which is an essential part of
our localization.

3.1 Image matching algorithm

Typically, for indoor environments, most of theennt changes occurring in an image
are due to objects or people moving with respec twrizontal plane. A person walking, a
chair moving, a door opening or closing: all ofgsaeexamples can be thought as “columns”
moving horizontally along an image of the origisglene. The algorithm described in this
section arises from this simple consideration. phacipal idea is to divide the new image
into several column regions, called “slots”, anérttcompare each of them with a stored
image of the original scene.

Consider the new imadegew Single channel, of width\iew This is divided intd\s slots
having widthWot = Whew / Ns. One slot is referred to adot,, with n = 1, ..., Ns. Also,
consider a reference imagg, single channel, of widthiVies = Whew The imagesnew andl et
have the same height. A regionlgf, delimited by the pixel columngew andcign:, is referred
to asl e [Ceeft , Cright]; the columnscier andcrighe belong to this region. The two image structures
are illustrated in Fig. 1.
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Fig. 1 Example of.ey (divided into four slots) anijes
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Fig. 2 Slot oflhew shifted and compared aloig by NCC
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The measure of the similarity between a slot ofritbe& image and a region of the stored
one is given by a function based on the NormalZedelation Coefficient [15] and called
NCC. Given a nevglot, and a reference imagdgr, theNCC matching function comparetot,
with all the regiond,fc, ¢ + Wyt — 1], wherec = 1, ..., W (if slot, falls over the right
bound ofl, it restarts from the beginning) After each congaar, a value between 0 and 1 is
stored inside an arrayAL of lengthWs, as explained also in Fig. 2 (note that the oabin
Normalized Correlation Coefficient varies betwednand 1, so we actually rescale it to fit
between 0 and 1). For example, if the slot’'s widtid,: = 10, the assignmeMAL[5] = 0.7
means that the similarity betweslot, and the regiof[5, 15] measures 0.7.

The actualMA can be divided into two parts: the first appl€C to find, for each pixel
column, which is the slot that matches best; tlersg determines the position that gives the
maximum match for the whole sequenceNafslots. The algorithm is described by the
pseudo-code in Table 1 (note that the highlightedlsé if” condition is for the
reconstruction of panoramic images explained iniSed.2).

Table 1 Image Matching AlgorithniMA)

[* fist part: slot matching */
VAL[ Weel= {O,...,0 }
MATCH SLOT[ Weil= {0, ...,0 }
MATCH VAL[ W)= {O,...,0 }
for n=1to Ny
NCC(slot, , I, , VAL)
for c=1to Wes
if VAL[c]> MATCH VAL[c]
MATCH SLOT[c]= n
MATCH VAL[c]= VAL[c]
end if
end for
end for
[* second part: best match extraction */
BEST _MATCH=0
ca=1
for c=1to Wes
SUM=0
for n=1to Ny
= c+( n-1) W
if MATCH SLOT[i]= n
SUM= SUM+ MATCH VAL[i]
else if MATCH VAL[i]=0.5
SUM= SUM+ SUM/( n-1)
end if
end for
if SUM> BEST_ MATCH
BEST MATCH= SUM
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COL= c
end if
end for
BEST_MATCH= BEST_MATCH/ N,
END

3.2 Panoramic image

For every place in the environment, a panoramicgenean be also reconstructed using
the IMA algorithm. Initially, the panorama is just a blaokage and the relative similarities
returned byNCC measure exactly 0.5. With a simpkd e i f ” condition in the second part
of the IMA, highlighted in Table 1, this situation can be diad and used for the correct
insertion of a new image in the panoramic view.i&all/, whenever a slot is compared with
a black zone, the assigned matching-value is tr@nroéthe previous comparisons. Of course
this is valid only if a sequence of snapshots, nadaring a clock-wise rotation, is inserted in
the exact order, from left to right. The input ireagare also filtered using a Contrast Limited
Adaptive Histogram Equalization (CLAHE) [16] in @d to increase the number of
distinguishable features for scenes not well illiateéd. The insertion of new images
continues until the whole panorama is filled. Armeple of reconstruction is shown in Fig. 3.

Fig. 3 Panoramic image reconstruction

3.3 Heading angle extraction

An important feature of thBMA is the capacity to extract the position, insiqeaaoramic
image, where a new snhapshot matches best. Thisgmos given by the valu€OL (see
Table 1), which is the left pixel column of the i@gon . where the best match occurs. If
COL =1 corresponds to the zero direction on a panoramége having widthW.es (and
considering a clock-wise versus), then the dispreere anglex of the camera is simply given
by the following expression:

a=2r OL-1 Q)

ref

Therefore, if all the panoramic images have beeonstructed with a common angle of
reference,a can be used to estimate the robot’s heading. risigion is normally good
enough to be used as a “visual compass” and cothectodometry’s heading angle, as
explained in Section 4.6 and demonstrated expetatigin Section 5.2.
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3.4 Enhancement with digital zooming

The place recognition method described so far suffem the problem of sensitivity to
the distance from the original point where the panoc image has been constructed. This
means that, moving the robot away from that pdhe, output ofMA quickly decreases. To
solve this problem, digital zoom was integrateérntarge the detection area.

Digital zoom can be implemented using bilinear iptdation and explained starting from
the well known pin-hole camera model [17]. Thisi®wn in Fig. 4a for a given object of
heightH and distanc® = X — X, from the camera, for which the next relations loarwritten:

h_H h H

f D f =D—s(,o,D)

whereh is the height projected on the image pldns,the focal length of the camegais the
zoom factor and(p, D) = X' — Xg is the “virtual” shift from the original positiorfter simple
passages, the latter can be expressed as follows:

s(0,D)=D [ﬁl—ij 3)
Jo

Given a panoramic image of a place at positfxo, Yo) and moving the robot along a
rectilinear path on an intervaty[— Ax, X + AX], IMA returns values that can be approximately
represented with a centrally peaked distributian empirically showed in Section 5.3. To
expand the interval where tlhidA’s output is higher, the input image from the caaneain be
digitally zoomed. More precisely, after a normahygarison, the image is zoomed-in and
compared again, then zoomed-out and compared once. mheoretically, including these
new comparisons means adding a couple of new peakeds to the original one. In order to
have the same absolute shsfig},, D)| = |s(oou, D)| for both the zoom-in and the zoom-out,
the following relationship can be easily derivedténthata, > 1 and 0 o,y < 1):

p.
- in 4
Ioout zpin _1 ( )
The combination of the thrd®lA’s outputs is shown in Fig. 4b, whexg, =X + S(0n, D)
andxzout = Xo + S(Gout, D). The actual output considered for place recogniis the maximum

of the three curves, as specified also by the pseode in Table 2.
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Fig. 4 Virtual shift model antMA’s output using digital zoom
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Table 2 Digital zoom enhancement for tNeA

[* image matching without zoom */

L new

M=IMA( |, 1,e)

BEST_MATCH= M

/* image matching with zoom-in */

|« zoom-in of | new

M=IMA( |, 1,e)

if M> BEST_MATCH
BEST_MATCH= M

end if

/* image matching with zoom-out */
|~ zoom-out of | hew

M= IMA( |, | ef)

if M> BEST_MATCH
BEST_MATCH= M

end if

END

Unfortunately, in a real environment things are enoomplicate — scenes (and objects
within them) always have different distances frdm point from which they are observed.
The width of the curve in Fig. 4 could be alteregngicantly changing the direction of
observation since the distance of a new scene eadlifferent from a previous one,
influencing thereforezin andxzou. Because the virtual shift in (3), for a fixed rodactor p,
changes linearly with the distanDe the region where the recognition holds can bsypred
to depend somehow on the shape of the room. Fon@ra consider an observation pokiht
within a small empty room, as illustrated in Fig.. The crosses indicate the displacements
given by the zoom-in when observing in the dirattaf the arrows; the squares are the
relative displacements for the zoom-out. In Fig it two sets of points for the zoom-in and
the zoom-out, obtained by a full rotation abButare represented by the solid and the dashed
squares respectively. If we fix a proper threshaidFig. 4, over which th&MA output is
considered valid (for example 0.5), we can drawegan forP where the recognition holds,
as illustrated in Fig. 5c¢. This region is giventhg union of two rectangular areas, one for the
zoom-in and one for the zoom-out, which are extarsbf the previous in Fig. 5b. Indicating
also the robot’s position and orientation with asee, the zoom-out rectangle contains all
versors pointing t®, while the zoom-in rectangle contains all vergmsting in the opposite
direction.

Lanv]
vi
!

(b) (c)

Fig. 5 Place recognition with digital zoom

The observations above suggest some care muskée ¥zghen choosing the places to
recognize (topological nodes of the map) and thenezdactor to use. In particular, if the
nodes are too close to each other or if the zoomdsmuch, the risk of overlaps amongst

7



them and the probability of perceptual aliasingréase. Moreover, since the zoom-based
recognition works best when observing along thasextions passing through the area’s point
of reference (poinP in Fig. 5), a small zoom factor is preferabletHis way, the limited area
extension increases the probability to be correadifyned.

4. Multiple hypothesislocalization

The main problem using image-based place recognitio localization arises when two
or more places look very similar and are therefiifgcult to distinguish. This is known as
perceptual aliasing and affects not just visioneblaapplications, but many other systems
employing sensors that provide information aboatgkrceived world (e.g. sonar, laser, etc.).
It occurs frequently in indoor environments witmgar rooms and furniture like offices.

TheIMA procedure, described in the previous Sectioni8.Aprmally able to distinguish
different places because it considers a signifi@anbunt of information coming from the
vision input. Nevertheless, cases of perceptuakimg may occur because of occlusions or
changes in the scenes originally memorized. To leatiis kind of uncertainty, we adopt an
algorithm inspired by Markov localization [18].dtarts with a series of hypotheses generated
by the place-recognition procedure and then choibeesost likely according to the previous
hypotheses and to the last robot’s movement.

4.1 Notations and assumptions

Let the state (i.e. position) of the robot at titriee represented by a tripletxs y;, ¢ >,
wherex; andy; are the Cartesian coordinates of the robot’s iocadnd ¢ ; is its heading
angle. The couplex{ y;) belongs to a finite set of two-dimensional pojintgich is the
topological map. The heading angfe has continuous values inside the interval [@). 2
Therefore, the entire s8tof possible states contains an infinite numbeglefments.

To make the problem computationally feasible, eeressumptions are imposed. It is
assumed that the probability distribution at timef the robot being in a certain position
<X, Y, ¢+ > is completely contained in a sub-&tl1 S The elements o& are all the
positions for which theMA, at timet, returns a matching-value higher than a certain
threshold, plus an additional “virtual” positionvgn by the odometry. That is, the real
position of the robot is always supposed to be ohehose recognized by the place
recognition or calculated using odometric inforroafithis is justified by the fact that, most
of the times, the correct position is in effect amfethe best recognized with th®IA. The
number of possible states so generated is limitedhle nodes of the topological map;
thereforeS is a numerable set.

In the following sections, the s& is referred to with the letteD and called the
destinationsset (elementsliID). The setS-; is referred to with the lettgd and called the
origins set (element®O). The setD of destinations at time becomes then the séx of
origins at timet + 1. Also, to distinguish the “local” probabilitystribution from the one used
in Markov localization, the wordelief is substituted witractivity, as in [19]. The believes
Bel(s) andBel(s:-1) become then the activitidsct(d) and Act(o) respectively (activity of the
destination and activity of the origin).
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4.2 Virtual destination hypothesis

The assumption of considering only the destinatgiien by the last observation, i.e. the
IMA output, would be too restrictive. To be sure thatset of estimated positions contains in
effect the right one, the threshold on the visealbgnition with thdMA should be very high.
This would limit the possibility of considering gddypotheses just because some changes in
the environment, temporary or permanent, have extidiceir distinctiveness. On the other
hand, a low threshold increases the number of plesdestinations but also the probability to
choose the wrong one. Even worse is the case whea of the current hypotheses are
correct. To handle this kind of ambiguity, sometinae“zero hypothesis” is used when all the
other hypotheses are considered wrong. In [20]ek@mple, the authors have a finite set of
hypotheses generated by new observations, updatettaneously using Kalman filters. The
zero hypothesis is used to close the probabilipcepand is kept up-to-date considering the
uncertainty of the observations. When the probghbif such a hypothesis is higher than the
others, the robot is in a state of indecision.

In our approach, it was found useful to insert mttzal destination”, that is, a topological
node of the map that is near to the position gibgrthe odometry. In practice, the virtual
destination is the closest node, in terms of Etafiddistance, to the previous winning
destination plus the last odometric displacemehe fieading angle of this new hypothesis is
also given by the odometry. The term “virtual” ised because it is assigned a matching-
value, like all the other destinations generatedabyobservation, and then treated the same
way. The assigned matching-value is equal to thestiold chosen for generating the other
hypotheses, as if an additional place was recognmethe IMA with the least acceptable
match. Finally, at the next update step, the “aiFdlestination” becomes the “virtual-origin”.

4.3 Action model

The first component of Markov localization is thetian model. Using the notation
introduced before and simply calliaghe actiora;-;, the model can be written as follows:

P(s |s4.8-) =P(d|o,a) (5)

This expresses the probability that a destinatios reached by performing the actian
from the origino. This probability is estimated taking into accouhé location and the
heading angle of the robot. The actais simply the displacement given by odometry.hiis t
work, no sophisticated models were used for hagdtim cumulative errors typical of
odometry; indeed, its information is always relatito the previous estimated state and
corresponds to a short path. Therefore, it is clmmed reliable enough for being directly used
in our action model, as described below.

Let Q, be the position of the origio (with heading angl#,) andQ, the position reached
from Q, after the execution oh. Also, Qq is the position of the destination hypothedis
Using the quantities illustrated in Fig. 6, thei@etmodel is calculated as follows:

P(d|o,a) =g, (Al)[g,(A¢) (6)

whereg(Al) andgy (A¢) are two Gaussians:
Al? Ap?

1 o2 1 “ong2
A| :—@ max A :—@ max 7
9O W)= g @

The quantitiesAlmax and A@max are respectively the maximudl and A¢ calculated
between the current origin and all the destinaligpotheses.

9



"\ #a
.ﬂ%/

Qo
Fig. 6 Parameters for the action model

4.4 Sensor model

In many localization systems, the environment imsed through low-dimensional
devices, like sonar or laser, for which accurate def® are already available
[21, 22]. Other approaches instead use vision lmutze the robot’s position with respect to
some particular features. In [7], for example, amodirectional image is processed using a
ray-tracing method, simulating a laser range setisat returns distances of chromatic-
transition features. Even in this case, an accurateel is provided, the parameters of which
are extracted by a modified EM algorithm [23] apgdlio a set of 2000 sample images. There
are also other approaches where the sensor maodelsaaned with neural networks using
data from both vision and sonar [24-26].

The data given by our image-based place recognitiat is, thdMA’s matching-value,
differs from all the above-mentioned approache® Jénsor model is implicitly “included” in
the pre-recorded panoramic image, in a way conedptsimilar to [27]. Ideally, a new image
would return 1 in case of perfect match with aiporof the panorama and would decrease to
0 as the match deteriorates. Therefore, given tmeewt state, the probability of the
observation can be considered the matching-vallealeded by thdMA. With the notation
introduced earlier and callingthe observation;, the sensor model can be written as follows:

P(v, |s) =P(v|d) = MATCH(d) (8)
where MATCH(d) is the value of the variablBEST_MATCHin Table 1 (or Table 2, if
enhanced by digital zoom) for the destinatibn
4.5 Update of the activities

Activities are updated with the same formulae ofrkéa localization, but taking into
account our previous assumptions. Thus, given afsistinationsllID and originollO, the
procedure for calculating new activities, using46y (8), is the following:

1) Prediction P’(d)=ZP(d|o,a)Act(o) (9)
2) Update P"(d) =P(v|d)P'(d) (10)
3) Normalization Act(d)=m (11)

2. P'(d)

dob

4.6 Odometry reset and visual compass
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An important role in the selection of the curremstihation is played by odometry.
Indeed, the prediction step (9) makes use of thieramodel (6), which strongly depends on
the odometry’s information. This is reset everydian update of the topological position has
been performed. In general, the fact that the tugpodél area is reasonably small, if compared
to the distance between two consecutive destimgtioaduces the effect of the error
introduced by the reset. On the other hand, tharadge is significant, since it fixes a limit to
the cumulative error of the dead reckoning.

The heading angle has a double importance: it @fidicectly the action model and, since
related to the internal frame of reference of thieot, it influences also the paramefgr In
many applications, instead of considering the hepdingle computed using encoders, an
external magnetic compass is mounted on the r@@t78]. This has the advantage of being
independent from the cumulative errors of odometiyce it gives an absolute direction for
North. Unfortunately, such a device is not immunenf errors, which are mainly due to
metallic objects in the proximity of the robot.

In our approach, another original solution was elmosSince for every new environment
an up-to-date map and fresh panoramic images a&a@edethe latter are always constructed
starting from the same direction. This permits riblgot to recover its absolute heading using
equation (1), like if provided with a “visual congsd. A similar approach, based instead on
an omni-directional camera, has been recently imptged also in [29]. To limit the error
cases of using a wrong panoramic image, the odgisdteading angle is corrected only
when the matching-value of the estimated destinatidnigher than a given threshold.

4.7 Localization algorithm

In order to reduce the computational expense, ti@enocalization algorithm is executed
only after the robot has moved a certain distanchas rotated through a minimum angle.
This also has the advantage of effectively genegatew different destinations (i.e. different
states), reducing instances of failure. The loa#ilin algorithm is summarized in the pseudo-
code of Table 3. The valug, is the threshold used for extracting the destomatiwith the
best matching-valuesy is the threshold on the matching-value for corngcthe odometry’s
heading & > &v); both the quantitiesy and&, are determined empirically. The destination
with the higher activity isl’, which corresponds to the estimated state, ¥, ¢ >: finally,

o is the most likely origin, that is, the extracted at the previous time-step.

Table 3 Localization algorithm

Calculate the location given by 0" plus odometry displacement
Find the topological position do0D closer to such a location
Use IMA to compare the new image with all the panor amic images in the map
Extract all the possible destinations dOD with matching-value MATCH(d) > &y
i f no new destinations are generated with IMA

Return the topological position do

END

end if

for each dOD
for each o0O

Calculate Al and A¢
Keep track of Al oy and A
end for

end for

11



for each dOD

Calculate P(d| o, a)with(6)

Update the activity (9, 10)

Keep track of the destination d” with the higher activity
end for

Normalize the activities (11)
Reset the odometry’s coordinates
if MATCH(d) > &

Set the odometry’s heading to the angle ¢
end if
The destinations become the next origins, O~ D
Return d’

END

5. Experimental results

In this section we present the results of expertm@onducted in the Neuro-Robots
Laboratory at the University of Sunderland. Thisigiets of a room approximately@n,
with typical office furniture, and an adjacent édar connected through a small hall. Along
two sides of the office there are large windowsuling in particularly challenging light
conditions. The robot used is an ActivMedia People@ig. 7) provided with a perspective
camera and an on-board computer Pentium Il 700Mitk 256MB of RAM. Grey-scale
iImages with resolution 58 pixels were used and the number of slots chfusdMA was 8,
with thresholdsgy = 0.5 andegy = 0.6. The whole localization system, implemente€++
without any particular optimization, worked in réashe on the robot’'s computer. The
topological position was recovered whenever theotraboved 0.5m or rotated 10°; the
maximum update frequency was 2Hz, which is normatlgquate for the tasks of a service
robot. We mapped up to 15 locations for the expenits) here presented, but the system was
still fast enough in other tests with more thard#terent locations. Our approach is therefore
feasible for real-time localization in small anddnen indoor environments, although larger
areas could also be covered if more recent andhéasivare was available.

Fig. 7 Mobile robot used for the experiments
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5.1 Place recognition performance

In this section we present results of the matclailggrithm applied to panoramic images.
Fig. 8 shows a panoramic image reconstructed froapshots taken in the center of the
laboratory, using the procedure illustrated in B&cB.2. In particular, we used 12 snapshots
taken at intervals of ~30°. Note that the robot banrotated quickly, therefore the whole
panorama’s reconstruction takes less than 1 mirthie;algorithm indeed is capable of
aligning the sequence of snapshots correctly, étbe angle step varies of several degrees.

A k. 1 e | -

Fig. 8 Panoramic image of reference

A few moments later, after the panorama was recbesel the software reset, the robot
was made to perform a complete rotation on the spomet, approximately at 10°/s. The
relative output of théMA is the solid line in Fig. 9. It can be seen tlin# match has a mean
value greater than 0.8. The worst cases, for wiih returned a value of approximately 0.7,
correspond to the cupboard (~100°, right part ef gahnorama) and the shelves (~350°, left
part of the panorama). This is probably due toraldoation of imprecision in the panoramic
image and errors caused by changes in the pergpeddn the same graph, it is also
illustrated the output of a second turn, when thesgn seating in front of the desk moved
away. The relative change can be observed on thleedaline of Fig. 9, where the output
decreases at about 270° (direction where the pevsgih It is important to note that, even if
the output decreased, the position inside the pamorimage, relative to the best match, was
still correct, and so it was the heading angléhefiisual compass.

To test the robustness of the place recognitionpevéormed a similar experiment the day
after using the same panoramic image. Also, to nthkeexperiment more challenging,
during the observation a person was walking arahedobot about one meter far. The result
is shown in Fig. 10, where the new matching oufdashed line, relative to the one-day old
panoramic image) is compared to the previous oolel(kne). Despite the small decrease due
to different light conditions and objects’ positjothe main loss of quality is due to the
absence of the person sitting on a chair (at ~30@°particular, the arrow on the graph
indicates a point where the estimated positiondeghe panorama was completely wrong.
The four points A, B, C, D are relative insteadthe instants when the person, walking
around the robot, was occluding the camera’s view.

The last result about tH®A applied to panoramic images is perhaps the mgsritant.

As its main purpose is distinguishing differentdbons, we wanted to compare the result
obtained in the last case (old panoramic imagecactiiding person) with the output obtained
from another location, in the same room but oneemftr from the original position. The
resulting output is represented by the solid Imé&ig. 11 and compared to the previous case,
which is the dashed line. Although the output i@ tiew location is not very low, in general it
is well distinguishable from that one obtained frtme original position. Failure cases, like
the overlap indicated by an arrow in Fig. 11 (al5%, are situations of perceptual aliasing.
Here it is clear the need of additional informatfonresolving the ambiguity, i.e. integrating
odometry and previous states with a Markov-likerapph, as explained in Section 4.
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Fig. 11 IMA’s output from a different location

5.2 Correction of the visual compass

This section illustrates some results regardinghéneeding angle extraction using thaA
and equation (1). In a first experiment, the ratodéited around a position where a panoramic
image was previously reconstructed. Data was deliedor the heading angle given by
odometry and by the vision during 10 consecutiiations, measuring at intervals of 45°.
Fig. 12 shows the final results. The real anglensthe abscissa and the heading angle
measured by the robot is on the ordinate; the dbkhe refers to the odometry and the solid
one is the angle extracted using IN& as visual compass. It is clear that the anglengbse
odometry becomes unreliable after a few rotatiares td the internal cumulative error. At the
seventh rotation, the odometry’s error already mede-45° with respect to the real direction.
Instead, the error of the heading angle given leyvisual compass is always betwedi®®,
without suffering of any cumulative error.
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Fig. 12 Comparison of heading angle from odomeitny visual compass

Although the precision of the visual compass issufficient to give a perfect measure of
the robot’s orientation, it is still good enoughdmrrect from time to time the odometry and
help with the localization. This is demonstrated daample with the following experiment.
The robot performed 10 rounds following the path-@f. 13a, which shows a schematic of
the laboratory and eight topological nodes on d gfilnx1m per square. The coordinates
given by the odometry during the robot’s motion ditestrated in Fig. 13b. Because of the
cumulative error affecting the odometry, the poiats spread in the room instead of being
concentrated in proximity of the path. Fig. 13ctéasl shows the same points after the
correction of the visual compass as part of thallpation process. It can be noted that the
new distribution is much closer to the real pathofeed by the robot, despite some outliers
due to odometry reset or localization errors.
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Fig. 13 Reference path and odometry correctioh wgual compass

5.3 Effect of the digital zoom

This section demonstrates that the use of digib@nz increases the place recognition
capability, enabling the robot to identify not just exact point in the environment, but the
whole of the surrounding area. The following resualte relative to a normal single image of
reference, rather than a panoramic one, in ordegdoce the noise and avoid wrong matches.
The same principles however are still valid wheingipanoramic images.

In Fig. 14, the observed scene and relevant gréghtree different zoom factors are
illustrated. The distance of the robot from the lviralthe middle of the scene was about 4m;
the robot moved from —1m to +1m with respect todhginal position. The variation of the
IMA’s output is shown on the graphs, where the dashedis the reference, without any
zoom, and the solid line is relative to the curmsyam factor.
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Fig. 14 IMA’s performances varying the digital zoom

Two important considerations arise from observabérine graphs. First, the output is
similar to the combination of three different pedkelistributions, as anticipated.
Unfortunately, the amplitude of the external pedksreases considerably when the zoom
factor augments. Despite the fact that, when tedimg), it is not easy to keep the robot
constantly on the same direction, the main reasornhis decrease is the loss of resolution
implicit in the zoom process. The second concenesgaps between the external picks and
that one in the middle. From these it can be skah the internal (local) minimum goes
quickly below 0.5 already with a zoom of 20%. Tisidecause the peaked curves are not very
wide and the distance from the observed sceneiis ung — recall from (3) that the virtual
displacement obtained with the digital zoom is digeproportional to this distance. Note also
that the formula given in (3) was an approximatioran ideal case, but in the real world the
virtual displacement is influenced by several ottaetors. For example, in case of a zoom of
20% (on = 1.2) the hypothetical displacemeXx for a distancd = 4m should be 0.67m; in
practice, the graph shows two external peaked sume¢ further than 0.5m from the origin.
Again, the higher the zoom factor, the bigger thiere

With the next result, we would like to demonstralso how the distance of the observed
scene influences the effect of the digital zoomtlom recognition area. In Section 3.4 we
stated that the shape of the recognized regionndispen the environment because of the
linear relation (3) between virtual shift and dista of the scene. According to that, we would
expect a reduction on the width of the recognisoaurve when observing a closer scene.
Therefore we repeated the same test illustratedeatiut this time placing the robot just 1m
far from the closest obstacles. The result for anzoof 10% is illustrated in Fig. 15.
Comparing this new graph with the previous oneig E4 (for zoom 10%), it is evident that
the recognition interval becomes smaller, andithdtue to the decrease of the relative virtual
displacement for the current observation. In gdnien, the region where the zoom-based
recognition holds becomes thinner (wider) in theection of a closer (farther) scene.
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Fig. 15 IMA and digital zoom on a closer scene

Apart from these limitations, if compared to thépu without any zoom, even a value of
10% is a big improvement of the place recognitieor. the next localization experiment, this
was the value used. First, we disabled the digibaim procedure on the localization system
and moved the robot along the path of Fig. 13afaldly passing through the centers of each
of the eight topological nodes. After one turn d®dupdates of the localization, we had an
error due to the estimation of a wrong place, whigks however an adjacent node of the
correct one (at less than 1.5m, about the lengthsofuare’s diagonal on the grid of Fig. 13a).
Still without digital zoom, the robot performed aw turn following the same path, but this
time avoiding the centers of the nodes. As expedieel number of localization updates
decreased to 14 because HW& output was often below the threshalgl Furthermore, 4 of
those updates were wrong, with a couple of estonatinvolving nodes more than 1.5m far
from the correct locations. Finally, we moved tbbat on the same path, avoiding again the
nodes of the centers but making use of the digitaim procedure. As reported in Table 4, in
this case the localization succeeded, generatinga2@ect estimations without any error.
These results show that the digital zoom was aengéis$ part of the localization system;
therefore it was always used in the following expents.

Table 4 Errors with and without digital zoom

Case no zoom & center | no zoom & No centerzoom & no center
Update steps 19 14 22
Errors due to adjacent nodes: 1 2 0
Errors due to distant nodes 0 2 0
Total number of errors: 1 4 0

5.4 Localization performances in a dynamic envirentn

To test the localization system in a dynamic envmment, updated panoramas were used,
all reconstructed the same day. The robot perforbecbunds following the same path with
eight nodes in Fig. 13a. During the experiments, ribbot was always avoiding the exact
centres of the topological position, so to force thse of the digital zoom for place
recognition. In the meanwhile, two people were mwadusly moving around the robot,
sometimes walking or standing in front of the caam@mnd sometimes simply sitting on chairs.
Examples of such situations are shown in the rgl®tapshots of Fig. 16.
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Fig. 16 Snapshots of error cases

The results presented in Table 5 are encouragmiged there were only 3 incorrect
localizations out of a total of 253 update stepsoTof them happened because of people
obstructing the scene, so the robot computed thatas at node 3 instead of the correct
positions of nodes 5 and 6. The reduced video mmédion obtained from the real positions
has not been sufficient to resolve the perceptigdiag, even with the odometry’s help. The
relative robot’'s snapshots are shown in Fig. 1@h1&b. In the third error case, the robot was
at node 7, but the localization estimated noddthpagh nobody was obstructing the view at
that moment. The reason is probably the poor qiyaafi features in that particular scene,
which can be seen in Fig. 16c. However, the thress in terms of distance from the correct
node, were all less than 1.5m; that is, .in thestvoase the estimation was a topological node
adjacent to the correct one.

For comparison, in Table 5 are reported also ther erases for the same localization
experiment using only place recognition, without Markov updating process. As we can
see, the performance decrease is considerable avtiital number of 37 localization errors.
Among these, 34 were assigned to adjacent nodss,tl@an 1.5m far from the correct
position, instead 3 errors involved more distande® From these results, it is obvious the
benefit given by the Markov update to the localmasystem.

Table 5 Errors with and without Markov update

Case with Markov update | without Markov update
Update steps 253 253

Errors due to adjacent nodes: 3 34
Errors due to distant nodes 0 3

Total number of errors: 3 37

5.5 Localization in a bigger environment

To show the performance of the localization systera bigger environment, we used an
adjacent corridor, connected to the laboratoryughoa small entry and both already mapped
several days before. The new locations are poéeaifires and quite narrow, just2’ for
the entry and about20nt for the corridor, both illuminated by artificiaght. Fig. 17 shows
a panoramic image taken from the corridor and Fggllustrates the new map.

Fig. 17 Panoramic image of the corridor (from n@8eof the map)
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Fig. 18 Map of laboratory and corridor with refece path. The gray line is the odometry.

The robot followed the new path drawn in Fig. 18yting from node 1 until node 15, at
the end of the corridor, and then back to node thé figure is also illustrated the path given
by the odometry when performing such a trip, shgwetearly the effects of its cumulative
error. Like for the previous case, the robot alwaysided the exact center of the topological
places; also, all the parameters of the localimaitgorithm (slots, zoom, thresholds, etc.)
were the same adopted for the laboratory. We repdhe trial 3 times, collecting data for a
total number of 202 update steps, and the restdtseported in Table 6. We can notice an
increment of the error cases, which still repredewever a small percentage of the total
steps’ number. The localization’s failures weretrdisited on the whole environment, with a
relatively high concentration (4 errors) inside #rery room, at node 10. The reason is that
the panoramic image of this room was taken with wawmrs closed, while during the
experiment the same doors were open. In such d praaé, these doors took almost half of
the panoramic image and their state influenced ntinelrecognition performance. However,
the localization in general was very reliable ahé few errors were always limited to
adjacent nodes, less than 1.5m far from the coomes.

Table 6 Errors in a bigger environment

Update steps 202
Errors due to adjacent nodes: 9
Errors due to distant nodes 0
Total number of errors: 9
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6. Conclusions

An appearance-based localization system for indootironments has been developed,
making use of a simple unidirectional camera andnuetry information. The approach is
strongly based on a novel place recognition algorifMA) enhanced by digital zoom. The
same algorithm also permits the generation of ganar images used for mapping the
environment and, from these, to estimate the atesodibot orientation with a visual compass.
The latter in particular gave promising resultspsidering also the hardware limitations that
had to be dealt with. Finally, within a probabilistramework, odometry is integrated with
the visual information to resolve cases of ambigulthe experiments presented show the
robustness of the approach, even in case of dynamictonments, making the localization
suitable for service-robot applications.

There are two main topics that should be explorethé future: (i) the automatic update
of panoramic images, and (ii) the use of incremeizital zoom. The first would boost the
place recognition and would be a natural step tdgvarcomplete system of self-localization
and map-learning (SLAM). The second is an innowattechnique that has just been
introduced, but which shows great potential to ioverthe effectiveness of the localization.
By adding incremental digital zoom to the frametosgd by the camera, “off node” map
locations could be identified. It would be worth¥ehiextending this technique to support
interpolation of location between map nodes.
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