

University of Padua

Faculty of Engineering

Image-based localization for mobile robots
in dynamic environments

Supervisor: Prof. Enrico Pagello

Co-supervisor: Prof. Stefan Wermter

Student: Nicola Bellotto

Laurea in ELECTRONIC ENGINEERING

Department of INFORMATION ENGINEERING

Academic Year 2003/2004

Alla mia famiglia

SOMMARIO

La tesi in oggetto tratta l’implementazione di un sistema di localizzazione per robot
mobili in ambienti dinamici. Per svolgere tale compito, l’unica informazione
utilizzata proviene dall’odometria e da una semplice videocamera unidirezionale. La
posizione stimata è relativa ad una mappa topologica fornita dall’utente. L’approccio
qui descritto è basato fortemente su un nuovo algoritmo di confronto immagini per
riconoscimento di luoghi, il quale è assolutamente indipendente dalla presenza di
particolari riferimenti, siano essi naturali od artificiali. Facendo uso dello stesso
algoritmo, si creano immagini panoramiche dalle posizioni prescelte. Tali immagini,
insieme ad alcune informazioni metriche relative ai loro punti origine, formano la
mappa utilizzata dal robot per localizzarsi. L’ambiguità nell’informazione utilizzata
per riconoscere luoghi differenti viene gestita da un sistema di ipotesi multiple con
una procedura di selezione basato sulla localizzazione di Markov. In questo modo si
riesce a far fronte a casi di “perceptual aliasing” o di totale assenza di informazione
affidabile dai sensori. Il sistema di localizzazione in questione è stato implementato
su un robot reale. Esperimenti condotti in un classico ufficio dimostrano la
robustezza dell’approccio anche in casi di ambienti dinamici.

To my family

ABSTRACT

This thesis is concerned with the implementation of a localization system for mobile
robots moving in dynamic environments. To accomplish this task, the only computed
information comes from odometry and from a simple unidirectional camera. The
estimated position is a topological location on a map provided by the user. The
approach here described is strongly based on a new image matching algorithm for
place recognition, which is absolutely independent from the presence of particular
landmarks, either natural or artificial. Panoramic images of the topological places are
reconstructed making use of the same algorithm. These images, together with some
metrical information relative to their origins, form the map that the robot utilizes to
localize itself. The ambiguity of the information used for recognizing different places
is resolved with a multiple-hypotheses tracking and a procedure of selection inspired
by Markov Localization. In this way, the system can deal with cases of perceptual
aliasing or total absence of reliable sensor information. The localization system has
been implemented on a real robot. Experiments carried out in a typical office
scenario demonstrate the robustness of our approach even in case of dynamic
environments.

1 INTRODUCTION..1

1.1 The localization task...1
1.2 Overview of localization systems ..3
1.3 Current application...4
1.4 Structure of the thesis...5

2 PLACE RECOGNITION...7
2.1 Image matching algorithm ...7

2.1.1 First step: slots matching..8
2.1.2 Second step: best matching ..9

2.2 Panoramic image ..11
2.2.1 Variant of IMA for panoramic image reconstruction12
2.2.2 CLAHE filtering ...13

2.3 Heading angle extraction..14
2.4 Enhancement with digital zoom...14

2.4.1 Geometric description of digital zoom...14
2.4.2 Application to place recognition ..15
2.4.3 Some considerations...17

3 MULTI-HYPOTHESES TRACKING...19
3.1 Overview of Markov Localization ...19
3.2 Assumptions and notation ..22

3.2.1 Virtual destination hypothesis..22
3.3 Action model ..23
3.4 Sensor model ..25
3.5 Update of the activities...26
3.6 An intuitive explanation of the update process ..27

3.6.1 Activity of the origin ..27
3.6.2 Distance from the destination...28
3.6.3 Heading angle difference ...28
3.6.4 Current observation ..29

3.7 Correction of the odometry information ..29
3.8 Overall algorithm ...30

4 SOFTWARE IMPLEMENTATION..33
4.1 A general purpose library for localization..33

4.1.1 The TopoMap object ..33
4.1.2 Panoramic image reconstruction ..34
4.1.3 Insertion of the topological map...34
4.1.4 Input data functions..35
4.1.5 Update function ..35
4.1.6 Video processing with OpenCV...36

4.2 Integration with the robot middleware ...37
4.2.1 The Miro framework ..37
4.2.2 Localization as behaviour...38
4.2.3 A behaviour for creating panoramic images38

5 EXPERIMENTS AND RESULTS ..40
5.1 Place recognition performances ...40

5.1.1 Moving obstacles..40
5.1.2 Examples of panoramic image reconstruction42

5.1.3 IMA applied to panoramic images ... 45
5.1.4 Precision of the heading angle extraction .. 48
5.1.5 Effects of the zoom .. 49

5.2 Global localization ... 52
5.2.1 Odometry error... 53
5.2.2 Initial position and “kidnapped robot”... 54
5.2.3 Localization with old panoramic images ... 55
5.2.4 Localization performances for dynamic environment 58
5.2.5 Perceptual aliasing ...61
5.2.6 Virtual destination.. 61
5.2.7 Heading angle correction ... 62
5.2.8 Localization in a bigger environment .. 63
5.2.9 Some considerations on the experiments ... 65

6 CONCLUSIONS.. 67
6.1 Evaluation .. 67
6.2 Recommendation for further work... 67

ACKNOWLEDGEMENTS... 69
APPENDICES ... 71

A Normalized Correlation Coefficient... 71
B The PeopleBot robot .. 72
C Omni-directional vision sensor for obstacle avoidance 74

BIBLIOGRAPHY.. 77

1

1 INTRODUCTION

In robot navigation a fundamental role is played by the localization system, since it is
necessary for every kind of path planning. This consists in providing the robot with
the capability to identify its current position in the environment with respect to a
certain point of reference. Before introducing the localization system described in the
following chapters, we would like to present a taxonomy normally adopted by the
research community to classify the numerous existing approaches and introduce
some of the recent works in this field.

1.1 The localization task

In [Fox98] three main parameters are taken into account for evaluating the
localization performances:

1) how the robot’s position is represented inside the environment with respect to a
particular fixed reference;

2) the kind of environment that the robot has to deal with;

3) the way the robot interacts with the environment to improve the capability of
localizing itself.

The first point above refers to the distinction between local and global localization.
In the local approach, the robot is normally supposed to localize itself with respect to
an initial, known position. This kind of problem, also called “position tracking”, is
often solved using techniques based on Kalman filtering, which gives remarkable
results in case of sufficient information from the sensors [GBFK98]. On the other
hand, a global localization is able to recover the robot’s location without knowledge
of the initial position. This feature is not important only at the beginning but also
during the localization process, because it means also recovering the correct position
when the estimation of the previous one came out to be completely wrong, therefore
dealing with the so-called “kidnapped robot” problem.
The second point takes into account an important property of the explored
environment: it may be static or dynamic. In a static environment most of the
features, or at least those directly observable by the robot, do not change over time.
This facilitates the task of the localization system because it implies the perceived
changes to be only dependent on the robot’s position. Naturally this assumption is
often false, since typical situations the robot has to deal with are presence of people,

2

different disposition of the furniture, doors open or closed, etc.; shortly, the
localization must be reliable also in dynamic environments.
The third point mentioned above is related to the extension of a passive localization
system, which does not influence the robot’s motion, to an active localization, where
this means having also a direct control on the navigation. The reason is to improve
the localization process moving towards places where the robot can perceive
additional data and eventually resolve situations of ambiguity.
The way explained so far to classify the different approaches highlights in particular
the performances of the localization system. A further extension, which takes into
account also the several methodology adopted to resolve this task, is very well
described in [FM03]. Here the localization strategies are divided in three main
groups and for each group there is a further distinction in other three categories, for
an overall classification of nine localization types. The strategies are identified as
follows:

1) direct position inference – this is the capability of the robot to estimate its current
position relying only on the current observations and without taking into account
the past history. Being totally independent from any previous position, this
method permits a global localization but fails completely in case of perceptual
aliasing (i.e. when two or more observed location look the same).

2) single-hypothesis tracking – this strategy keeps always track of the previous
estimated position using also the relative displacement given by the internal
readings (i.e. odometry information). Even if this in general helps to resolve
situations of perceptual aliasing, the localization could fails in case the previous
position is completely wrong. The methods based on Kalman filter can be
inserted in this category.

3) multiple-hypothesis tracking – such solution directly derives from the previous
strategy. Here, instead of keeping track only of one position, the robot considers
the possibility to have moved from several locations and then takes into account
all of them to get an estimation of the current one. In practice the localization
system always keeps track and updates in parallel a set of hypothetical positions,
identifying time by time the most probable.

As we said, for each of the strategies above there is an addition sub-division. This is
strictly related to the kind of map used for the localization and how the robot’s
position is represented within the map. We can then distinguish three different
combinations “map type” / “position type”:

a) metrical map / metrical position – the map represents the environment using
Cartesian coordinates to describe the shapes of the involved objects and the
spatial relations among them. The map is normally a plan of the environment in
form of CAD drawing. The robot’s position is also represented with two
coordinates (eventually plus its heading direction) in the same Cartesian frame.

b) topological map / metrical position – in this case the map contains only a finite
number of locations, eventually connected by links that represent the possible
transition paths between two different places. The topological map can be

3

thought as a graph, where each location is a node (vertex) connected by links
(edges). All the nodes contain information about the surrounding environment, so
as it can be perceived standing on that point, plus their relative coordinates with
respect to a common frame of reference. These coordinates are used by the
localization system for inferring a more precise metrical position.

c) topological map / topological position – this last representation makes use again
of a topological map but, differently from the cases above, consider also the
robot’s position laying on its nodes. This combination is useful when the
application does not require an exact position in terms of centimeters. The
attention instead is directed just on recognizing the “area” where the robot is
currently moving. Although this topological map does not necessarily contain the
coordinates of its nodes, in some case this metrical information might come
useful for computations involving odometry.

A fourth combination, metrical map / topological position, is normally not
considered, since the loss of precision in localization resulting from the conversion to
a topological representation is not compensated for.

1.2 Overview of localization systems

In the last years there has been a growing number of real robot applications where
the localization was an essential part of the navigation system. Some of the most
famous examples are the tour-guide robots RHINO [TBB99] and MINERVA
[BCF99], or the robot-waiter ALFRED [MMA99]. They used different approaches
and different sensors for localizing themselves. In [TBB99] perceptions were based
just on proximity sensors (sonar and laser), while in [BCF99] they mad use of laser
plus an additional camera directed towards the ceiling (so the observed scene was
mostly static). The robot of [MMA99], instead, used artificial landmarks to recognize
places of interest.
Other several localization approaches making use of vision have been presented in
recent years. In [GM00] the robot was equipped with an unidirectional camera
pointing ahead to the floor; the localization was performed thanks to the basic
hypothesis that the floor had an uniform texture so, after camera calibration, it was
possible reconstructing from the images a local map. The localization was the result
of the comparison between the current local map and a pre-recorded global map.
The solution of [XYOH03] was based instead on a natural landmark model and a
robust tracking algorithm. The landmark model contained sets of three or more
natural lines such as baselines, door edges and linear edges in tables or chairs. The
localization depended on an algorithm that allowed the robot to determine its
absolute position with a view of a single landmark in one image.
Other recent approaches made use of Monte Carlo Localization. It has been
demonstrated that this technique is reliable and, at the same time, keeps the
processing time low. Indeed, Monte Carlo localization has been successfully applied
in the RoboCup four-legged league, where the Sony dog’s hardware has critical
limitations. For example in [EFR01] they implemented a Monte Carlo approach for

4

vision-based localization that made use of sporadic features, extracted from the
images of the robot’s unidirectional camera. The probability of being in a certain
location was calculated against an internal model of the environment within the robot
moves. The experiments proved that the method was reliable enough, even with a
restricted number of image samples, and improved drastically increasing the number
of features. Some tests in a typical office environment seemed also promising.
Another application of Monte Carlo Localization in the RoboCup context is
described in [Pre03; MPP04]. In this case the video input came from an omni-
directional sensor and the images were processed in a way to simulate a laser
scanner, using the distances from points with colour intensity transitions. Even here
the localization system made use of an internal representation of the football field.
An omni-directional camera was also the sensor used for the topological localization
in [UN00]. Here they present an appearance-based place recognition that used only
panoramic vision, without any odometry information. Colour images were classified
in real-time based on nearest-neighbour learning, image histogram matching and a
simple voting scheme.

Independently from the sensors used to perceive the world, innumerable systems
have been also presented to resolve the ambiguity that arises from such perceptions.
No sensor reading indeed is immune from noise and errors, both coming from the
sensor itself and from the surrounding environment. A wide range of localization
systems have been tested and compared in the works of [GBFK98; GF02; KJ03],
covering methods based on Extended Kalmn Filter (EKF), Markov Localization
(ML) alone or combined with the first one (ML-EKF), Monte Carlo Localization
(MCL) and Multi Hypotheses Localization (MHL). The results of such experiments
are a good starting point for choosing the most suitable localization approach,
depending on our own application. They are also useful for getting precious
suggestions and ideas on how developing new methods.

1.3 Current application

Now that we have a general view of the localization problem, we can go further
introducing the particular application for which our system has been developed. The
main objective was implementing a map-based localization system for indoor
environments. It had to be eventually integrated in a more complex navigation
architecture where the robot is able to perform tasks typical of a waiter or tour-guide
scenario. This idea arose from some similar successful experiences [MMA99;
BCF99; TBB99]. The localization module had to deal therefore with the presence of
people and general changes of the environment. The task was particularly
challenging because our robot, an ActivMedia PeopleBot, is provided just with a
normal color camera and sonar sensors. Unfortunately, since the beginning these
latter came out to be very unreliable in our environment because of many kinds of
surface that could not be correctly detected. Furthermore, an accurate map of the
environment was not available and occasionally some furniture, which would have
influenced the sonar readings, had to be moved. The choice then was developing an
image-based localization system with the only additional information provided by
the robot’s odometry.

5

In our application, it was not necessary to know exactly the metrical position.
Instead, a topological localization was the most appropriate solution for a robot-
waiter or tour-guide scenario. We implemented then a system that, given a
topological representation of the environment, can estimate the area where the robot
is currently moving. Our method is strongly based on a new place recognition
algorithm that does not need any specific landmark. The same algorithm is also used
for reconstructing panoramic images from the place of interest, combining a
sequence of snapshots taken with the normal camera. Such images, together with
approximate coordinates of the topological locations, form the map used by the
robot. The place recognition process is followed by a procedure that resolves cases of
perceptual aliasing or absence of reliable sensor information. The system keeps track
of a hypotheses’ set and for each update step chooses the most probable, with an
approach inspired by Markov Localization. From the experiments, carried out in a
typical office scenario, this method seems to be quite robust even in case of dynamic
environments.

1.4 Structure of the thesis

The following chapters are organized as follows.

2 PLACE RECOGNITION
The algorithm for image-based place recognition is explained in detail. Then we
describe how the same procedure is applied to reconstruct panoramic images.
Successively we derive a method to recover the heading direction of the robot from
such images. The chapter terminates with the use of digital zoom for enhancing the
place recognition performances.

3 MULTI-HYPOTHESES TRAKING
This part starts with a brief introduction to Markov Localization theory. Then it is
followed by the assumptions imposed in our implementation and the description of
the update rules for the tracked hypotheses. We also try to give an intuitive
explanation to the method adopted. At the end there are some consideration about the
odometry correction and finally the overall localization algorithm is illustrated.

4 SOFTWARE IMPLEMENTATION
This chapter describes the practical implementation of the localization system. First
of all we describe the software library that contains the algorithms previously
illustrated. Then we explain how the system has been integrated in the robot’s
behavioural framework.

5 EXPERIMENTS AND RESULTS
Here we present several experiments conducted in a typical office environment and
relative results. The first group of tests are concerned with the performances of the
place recognition algorithm. The second is related to the overall system, with
experiments including several types of environment and with analyses of the cases
where the localization fails.

6

6 CONCLUSIONS
In this last part there is a critical evaluation of the implemented localization and
recommendations for future works.

7

2 PLACE RECOGNITION

In this chapter we describe a new method to recognize a place among a finite set of
possible places. This set is basically a topological map of the environment, provided
by the user. Each place is identified by a point in the Cartesian space and by a
panoramic image of the scene observed from such point. The procedure is mainly
based on the comparison between a new image, taken from the camera, and all the
panoramic images of the map. For each comparison, a value is assigned, which is a
measure of the match’s quality. The comparison is done using a new image-matching
algorithm, that for simplicity we will call IMA. The entire procedure of comparison
on the whole set of panoramic images constitutes the place recognition.

2.1 Image matching algorithm

In an indoor environment, the most relevant changes are due to objects or people
moving with respect to a horizontal plane. A person walking, a chair moving, a door
opening or closing: all these examples can be thought as “columns” moving
horizontally along an image of the original scene. The algorithm described in this
section arises from this simple consideration.
The main idea is to divide the new image into several column regions that we will
call “slots” and then compare each of them with a stored image of the original scene.
The measure of the similarity between a slot of the new image and a region of the
stored image is given by the Normalized Correlation Coefficient, simply called NCC
(see appendix A)
The image-matching algorithm, or IMA, can be divided into two steps. In the first
one, every slot of the new image is shifted and matched inside the stored image. The
matching values calculated are then used, during the second step, to determine the
position where the match is maximum. The procedure is better described1 in the
following paragraphs.

1 For simplicity, error cases, like image over-bound or array overflow, are not considered here. They
will be discussed and treated on chapter 4.

8

2.1.1 First step: slots matching

Let us consider the new image Inew, single channel, of width Wnew. This is divided
into Ns slots; each of them has width Wslot = Wnew / Ns. We refer to one of them as
slotn, with n = 1, …, Ns. Then consider a reference image Iref, also single channel, of
width Wref ≥ Wnew. The images Inew and Iref have the same height. We also refer to a
region of Iref, delimitated by the pixel columns cleft and cright, as Iref [cleft , cright]. The
columns cleft and cright belong to this region. In Figure 2.1an example is shown.

W new

W slot

W ref

I ref [c left , c right]

slot1 slot2 slot3 slot4

Figure 2.1 Examples of Inew (divided into four slots) and Iref

First of all, we need to clarify how the NCC matching function works (see appendix
A for a mathematical description). Given a source image Iref and a template image
slotn, it compares slotn with a region Iref[c, c + Wslot – 1]. The comparison is repeated
for each column c = 1, …, Wref After each comparison, a value2 between 0 and 1.0 is
stored inside an array VAL of length Wref (see Figure 2.2). So, if the width of the slots
is Wslot = 10 and VAL[5] = 0.7, it means the similarity between the current template
slotn and Iref[5, 15] measures 0.7.

VAL[1], VAL[2], VAL[3], …

sl
o

t n

Figure 2.2 Slot of Inew shifted along Iref and compared with NCC

2 The original NCC, actually, calculates a value between −1 and +1, but in our implementation it is
modified so that its output varies between 0 and 1, as described in appendix A.

9

The first part of IMA works as follow. At the beginning, two arrays, MATCH_SLOT
and MATCH_VAL are created and initialized. The length of both the arrays is Wref.
The NCC function is used to calculate the matching values. At the end,
MATCH_SLOT will contain the indices n of the slots that match best, while
MATCH_VAL will contain the relative matching values. That is, if slot3 is that one
which matches best on the region Iref[5, 15], then MATCH_SLOT[5] = 3 and
MATCH_VAL[5] contains the relative matching value. The procedure is described in
Code 2.1.

Code 2.1 First part of IMA (slots matching)

MATCH_SLOT[Wref] = {0, …, 0}

MATCH_VAL[Wref] = {0, …, 0}

for n = 1 to Ns

 VAL = NCC(Iref , slotn)

 for c = 1 to Wref

 if VAL[c] > MATCH_VAL[c] then

 MATCH_SLOT[c] = n

 MATCH_VAL[c] = VAL[c]

 end if

 end for

end for

END

2.1.2 Second step: best matching

As previously said, in the second step of IMA, the position and the value of the best
match are extracted. Basically, this consists in finding the best sequence of slots with
the highest matching value. The procedure compares a mask {1, 2, …, Ns} along the
whole array MATCH_SLOT. The mask is a sequence of slot indices, at distance Wslot
each other, as shown on Figure 2.3. The comparison is done “positioning” the
beginning of the mask on each element of MATCH_SLOT. Every comparison starts
resetting a variable SUM. If an element n of the mask and the relative i th element of
MATCH_SLOT are equal, then the i th value of MATCH_VAL is added to SUM. At the
end of each comparison, SUM contains the total matching value, given by the slots in
the right order and position.

10

1 2 3 4

+

+ +
+

MATCH_SLOT

MATCH_VAL

SUM

Wslot

Figure 2.3 Comparison scheme of the best matching extraction

Below, Code 2.2 describes the procedure. The variables MAX and COL are used,
respectively, to keep track of the maximum matching and relative position. At the
end of the procedure, MAX is also normalized.

Code 2.2 Second part of IMA (best matching)

MAX = 0

COL = 1

for c = 1 to Wref

 SUM = 0

 for n = 1 to Ns

 i = c + (n – 1) Wslot

 if MATCH_SLOT[i] = n then

 SUM = SUM + MATCH_VAL[i]

 end if

 end for

 if SUM > MAX

 MAX = SUM

 COL = c

11

 end if

end for

MAX = MAX / Ns

END

2.2 Panoramic image

For every place in the environment, a panoramic image can be reconstructed using
the IMA algorithm. If θ is the view-angle of the camera and λ, with λ < θ, is the step
angle between two consecutive images, then a full panoramic view can be
reconstructed combining the 2π / λ images. Between two consecutive images there is
an overlap θ − λ wide, as shown in Figure 2.4. In the whole section, for simplicity,
the positive orientation for all the angles is clockwise.

θ

λ

Figure 2.4 Sequence of images for panoramic view reconstruction

Using the same notation, we call Iref the panoramic image, which is the reference for
the future new images. The width Wref, of course, depends on the view-angle of the
camera, so that:

θ
π2⋅= newref WW (2.1)

The panoramic image Iref could be obtained inserting, at the exact position, the
sequence of images Inew, taken at angular intervals 0, λ, 2λ, 3λ, …. However, in a
real application, it is difficult to take images with such precision. If the chosen
interval, for example, is 30° (λ = π / 6), the images should be taken exactly at 0, 30°,
60°, 90°, …, 330°. This would be a tedious and time-expensive work. Instead, the
angular interval is just an approximation of λ, with a succession like 0, 27°, 65°, 99°,
…, 323°. In order to correctly align this “imprecise” sequence of images, a modified
version of IMA is used.

12

NOTE - For simplicity, the procedure here explained assumes that the right part of
an image always matches perfectly with the left part of the next. This is obviously
not true. In section 5.1.2 there are experiments showing robustness and limitations of
the panoramic image reconstruction.

2.2.1 Variant of IMA for panoramic image reconstruction

The panoramic image is initially just a black image. The value returned by NCC for a
black image is exactly 0.53. With a simple modification to the second part of IMA, as
highlighted in Code 2.3, this situation can be handled and used for the correct
insertion of a new image in the panoramic view. Basically, whenever a slot is
compared with a black zone, the matching value assigned is the mean of the previous
comparisons4. This permits the positioning of two sequential images like in Figure
2.4.

Code 2.3 Second part of IMA modified for panoramic image reconstruction

MAX = 0

COL = 1

for c = 1 to Wref

 SUM = 0

 for n = 1 to Ns

 i = c + (n – 1) Wslot

 if MATCH_SLOT[i] = n then

 SUM = SUM + MATCH_VAL[i]

 else if MATCH_VAL[i] = 0.5

 SUM = SUM + SUM / (n – 1)

 end if

 end for

 if SUM > MAX

 MAX = SUM

 COL = c

 end if

end for

MAX = MAX / Ns

3 Actually, NCC returns 0.5 every time one (or both) of the compared images has just one colour. This
happens because the mean intensity is the same for all the pixels. See Appendix A for details.
4 Of course, this is valid only if the images are inserted in the exact order, from left to right.

13

END

The reconstruction process is done as follows. All the images are compared with
IMA and inserted, one by one, with respect to the position COL returned by the
algorithm. This is the position where the matching is maximum. At the beginning,
since the panoramic image is completely black, the first normal image is inserted on
the very left. The following images are then inserted moving gradually to the right,
until filling the whole panoramic image. Every image inserted overlaps the previous
one approximately by an angle θ − λ, as in Figure 2.4.

A consideration about this variant of IMA described in Code 2.3. Though the new
added condition can be easily inserted just for the procedure of panoramic image
reconstruction, it has been noticed that it does not influence the result of IMA even if
kept during the place recognition stage. When used in a normal environment, indeed,
the probability to have exactly a matching-value of 0.5 is practically insignificant.

2.2.2 CLAHE filtering

During the panoramic image reconstruction, an important factor for the final result is
the quality of the taken images. Sometimes, there are not enough distinguishable
features in the image. This is often due to the particular observed scene, like a wall or
a big cupboard, or to the light conditions (see for example Figure 2.5) In these
situations, the procedure of panoramic image reconstruction may fail because not
able to correctly align two sequential images. In order to resolve or at least reduce
such problem, the images are filtered using the Contrast Limited Adaptive Histogram
Equalization (CLAHE).

Figure 2.5 Original image

Figure 2.6 Image filtered with
CLAHE

A normal histogram equalization does generally improve the information visibility,
but it applies the same equalization function to the whole image. CLAHE breaks the
image into “tiles” and determines the best function to use for each tile. The result is
an image that shows artificial boundaries between tiles and so an interpolation
scheme is used to smooth the pixel intensities between tiles. The effect of CLAHE
filtering can be observed in Figure 2.6.

14

2.3 Heading angle extraction

An important feature of IMA applied to panoramic images is the capacity to extract
the position where the new image matches better. This position is given by the value
COL, which is the left pixel column of the region on Iref where the best match is. If
the angle 0 is set on COL = 1, then the angle α of the camera’s direction is simply
given by the following expression (like in section 2.2, the positive orientation is
clockwise):

refW

COL 1
2

−⋅= πα (2.2)

Therefore, if all the panoramic images have been reconstructed with a common angle
of reference, α can be used to estimate the robot’s heading. Of course, this
measurement of the heading angle depends on the correctness of the image matching.
It could be also completely senseless in case the new image was associated with the
wrong panoramic image. Therefore, particular care must be taken in using it. The
angle α can be considered reliable when the matching, on the correct panoramic
image, is high. In this case, its precision is normally good enough for correcting the
odometry’s heading angle, as experimentally demonstrated in section 5.2.7.

2.4 Enhancement with digital zoom

The place recognition method, explained so far, suffers of the problem of being
really sensitive to the distance from the original point, where the panoramic image
has been constructed. This means that, moving the robot some tens of centimeter far
from that point, the output of IMA decreases quickly.
To resolve this problem and enhance the place recognition, a digital zoom processing
is added in a way to enlarge the area detection.

2.4.1 Geometric description of digital zoom

The principle of digital zooming can be explained using the well known “pin-hole
camera” model. Differently from the mechanical zoom provided on some devices
(where the focus length f is varied to increase or reduce the scene’s dimension on the
image plane), with digital zoom the focus length is fixed. The scene’s dimension,
conceptually, is modified directly on the image plane. Therefore, given some
definitions, it is easy to find out some geometric relations.
Let us consider an object of height H, placed on the position xA. Its relative height on
the image plane is h0, with a fixed focus length f = f0. Said ρ the zoom factor, the
robot can be “virtually” moved from a position x0 to x(ρ) modifying such factor, as
shown in Figure 2.7.

15

x 0 x (ρ) h 0
ρ ⋅ h 0

H

x A

f 0 f 0

Figure 2.7 Pin-hole camera model of digital zoom

Observing the figure above, the following relations can be extracted:

00

0

xx

H

f

h

A −
= (2.3)

)(0

0

ρ
ρ

xx

H

f

h

A −
=⋅

 (2.4)

From the expression above, we can easily calculate the “virtual” shift ∆x(ρ) from the
original position x0:

ρρ
ρρ 1

1
1

1)()(00 −⋅=−⋅−=−=∆ Dxxxxx A (2.5)

where D is the absolute distance of the object from the camera.

2.4.2 Application to place recognition

The equation (2.5) is based on a very simplistic model. In the real world, of course,
an observed scene is a combination of several three-dimensional objects at different
distances from the camera. Nevertheless, it can be still used to intuitively understand
what explained below.
Given a panoramic image of a place at position P0(x0, y0) and moving the robot along
a rectilinear line y = y0, on an interval [x0 − ∆x, x0 + ∆x], IMA returns values that can
be approximated by a gaussian function, like in Figure 2.8 (see section 5.1.5 for
experimental results).

16

x0 x0−∆x x0+∆x

Position

IM
A

 o
ut

pu
t

Figure 2.8 IMA output

To expand the width where IMA output is higher, the input image from the camera
can be digitally zoomed and compared again with the stored panoramic image. More
precisely, after a normal comparison, the image is zoomed in and compared again,
then zoomed out and compared once more. The addition of these two comparisons
results, theoretically, in the addition of two new gaussian waves to the graph of
Figure 2.8. Let us consider a place x0, equidistant from all the surrounding objects. If
we choose a zoom factor ρin > 1, the centre of the relative gaussian xZin can be
calculated using equation (2.5):

−⋅+=∆+=

in
inZin Dxxxx

ρ
ρ 1

1)(00 (2.6)

To have then another gaussian, symmetrical with respect to x0, a new zoom factor
ρout < 1 must be used5. To calculate it, we can start from the following expression:

−⋅+=∆−=

out
inZout Dxxxx

ρ
ρ 1

1)(00 (2.7)

After simple steps, the formula for the new zoom factor is like follows:

12 −
=

in

in
out ρ

ρρ (2.8)

5 This is presented here just for completion to the geometric description. In reality, a digital zoom out
cannot be used, because the data outside the image boundaries is missing. The problem is then solved
comparing the image with a zoomed in panoramic image, as described in chapter 4.

17

The combination of the three IMA output is then like shown in Figure 2.9. More
precisely, the output considered for place recognition is the maximum of the three
gaussians, as highlighted by the thickest line.
Considering the robot moves on the Cartesian plane, the place recognition with
digital zoom could be then represented by a three-dimensional “Mexican hat, still
considering only the directions passing by P0. Again, this is the case for a supposed
place where all the surrounding objects are equidistant. Some considerations on the
effect of the zoom for more realistic environments are given in the next section.

x0 xZout xZin x0−∆x x0+∆x

IM
A

 o
ut

pu
t

Position

Figure 2.9 IMA output with digital zoom

2.4.3 Some considerations

As previously said, the explanation of digital zoom, applied to place recognition, is
based on the assumption that all the objects, around the considered place, are
equidistant from its centre. This results in a symmetrical “Mexican hat” output of
IMA. However, in real environment this is not true: scenes (and objects within them)
always have different distances from the point they are observed. Therefore, the real
shape of place recognition output is considerably different from Figure 2.9. We can
take, for example, an indoor environment like an empty room. Since the virtual shift
∆x, given by equation (2.5) for a fixed zoom factor ρ, changes linearly with the
distance D, we can intuitively presume the place recognition output follows the shape
of the room. This is shown for two different places in Figure 2.10. The crosses are
the place centres (where the panoramic images are taken) and the dashed lines
identify the maximum mach for the zoomed image.

18

Figure 2.10 Place recognition with digital zoom

The observations above suggest some care must be taken in choosing the places to
recognize and the zoom factor, depending on the dimension of the environment. In
particular, if they are to close each other or the zoom is too high, the risk of overlaps
among them augments and thus the probability of perceptual aliasing (two different
places look the same). Moreover, since the zoom based recognition works properly
only on those directions including the area reference point, it is preferable to use a
low zoom factor. In this way, the area is smaller but the probability to be correctly
aligned is higher.
A final consideration on another aspect of digital zoom might be also noteworthy to
explore in future works. So far, the zoom has been assumed fixed and used uniquely
to increase the recognized areas. Instead, once an area has been identified, the zoom
factor could be varied in a way to maximize the place recognition output. With such
a factor, it would be then possible to calculate the distance from the area reference
point. Finally, in combination with the heading angle (section 2.3), it would give a
more precise position inside the current area.

19

3 MULTI-HYPOTHESES TRACKING

The main problem in using image-based place recognition for localization arises
when two or more places are very similar and difficult to distinguish. This case,
referred as perceptual aliasing, is not typical of vision systems only, of course, but of
every kind of sensor providing information about the perceived world (sonar, laser,
etc.). This happens frequently in indoor environments like offices, where rooms and
furniture are often similar and may cause the recognition of different places difficult,
even for a human exploring for the first time such environment.
The procedure described on the previous chapter, based on IMA, is normally able to
distinguish different places because it considers a significant amount of information
coming from the vision input. Nevertheless, cases of perceptual aliasing often occur
because of occlusions or relevant changes of the scenes with respect to those ones
originally stored. For example, if a person in front of the camera is covering part of a
scene, important to distinguish it from another one, then uncertainty comes out and it
might not be possible to correctly identify the relative place.
To handle this kind of uncertainty, we adopt an algorithm inspired by the Markov
Localization [Fox98]. It starts from a series of hypotheses generated by the place-
recognition procedure and chooses the most likely according to the previous
hypotheses and the robot’s movement.

3.1 Overview of Markov Localization

The Markov Localization is a direct application of state estimation within the
framework of “Partially Observable Decision Markov Processes” (POMDP). Two
assumptions must be valid for the considered environment where the robot moves:

1) independence of the actions

2) independence of the observations.

For the first one, the knowledge of the state and of the action at time t−1 is sufficient
for the prediction of the state at time t. If sk is the state of the robot at time k, with
relative observation vk, and ak is an action performed starting at time k from sk, the
same concept can be written as follows:

),|(),...,,,...,,,...,|(11111111 −−−−− = ttttttt assPaavvsssP (3.1)

20

Basically, st and st-1 are respectively the current and previous positions of the robot
and at-1 is the movement between them as recorded by the odometry.
For the second one, instead, an observation vk at time k depends only on the relative
state sk, so that we can write the next expression:

)|(),...,,,...,,,...,|(11111 tttttt svPaavvssvP =−− (3.2)

Here, the observation vt is simply the data extracted from the world by a robot’s
sensor at state st.
Below we adopt some notation commonly used for such method6. In particular, we
call belief of st, or Bel(st), the probability P(st | v1,…,vt, a1,…,at−1) of the state st that
we have to estimate. Applying Bayes’ rule, it is possible to write the following
equation:

),...,,,...,|(

),...,,,...,|(),...,,,...,,|(
)(

1111

11111111

−−

−−−−=
ttt

ttttttt
t aavvvP

aavvsPaavvsvP
sBel (3.3)

We can now take the terms in the right part of (3.3) and examine each of them
separately. From the assumption (3.2) of independence of the observations, the first
term of the numerator can be rewritten as follows:

)|(),...,,,...,,|(1111 tttttt svPaavvsvP =−− (3.4)

Supposing S is the entire space of possible states and applying the “Total Probability
Theorem” to the second term of the nominator in (3.3), we have the next equation:

),...,,,...,|(),...,,,...,,|(),...,,,...,|(11111111111111

1

−−−
∈

−−−−− ∑
−

= ttt
Ss

ttttttt aavvsPaavvssPaavvsP
t

 (3.5)

At the first term of the sum in (3.5) we can apply the independence of the actions,
expressed by equation (3.1). Moreover, the second term of the same sum can be
substituted remembering the definition of belief 7. Equation (3.5) can be then
rewritten in a simpler form:

∑
∈

−−−−−
−

=
Ss

ttttttt

t

sBelassPaavvsP
1

)(),|(),...,,,...,|(1111111 (3.6)

Finally, the denominator of (3.3) can be seen just like a normalization factor of the
belief. Indeed, applying the “Total Probability Theorem”, it can be substituted with
the following expression:

∑
∈

−−−−−− =
Ss

tttttttttt

t

aavvsPaavvsvPaavvvP),...,,,...,|(),...,,,...,,|(),...,,,...,|(111111111111 (3.7)

6 To make the reading easier, the notation is not always formally correct.
7 Indeed the state s t−1 is independent from the action at−1, because the latter is executed just after such

state. Then)(),...,,,...,|(),,...,,,...,|(121111121111 −−−−−−−− == tttttttt sBelaavvsPaaavvsP .

21

∑ ∑
∈ ∈

−−−

=

−Ss Ss
tttttt

t t

sBelassPsvP
1

)(),|()|(111 (3.8)

A new version for calculating Bel(st) can now be written substituting (3.4), (3.6) and
(3.8) in (3.3):

∑ ∑

∑

∈ ∈
−−−

∈
−−−

=

−

−

Ss Ss
tttttt

Ss
tttttt

t

t t

t

sBelassPsvP

sBelassPsvP

sBel

1

1

)(),|()|(

)(),|()|(

)(

111

111

 (3.9)

In particular, we can note that the denominator in equation (3.9) is just a
normalization factor. From the new expression of Bel(st) it is now easy to implement
an algorithm to update the states’ belief. This is called “Markov localization
algorithm” and can be divided in three steps.

1) Prediction when a new action is executed:

∑
∈

−−−
−

=′
Ss

ttttt

t

sBelassPsP
1

)(),|()(111 (3.10)

2) Update when a new observation is available:

)()|()(tttt sPsvPsP ′=′′ (3.11)

3) Normalization when all the P″(st) have been calculated:

∑
∈

′′
′′

=

Ss
t

t
t

t

sP

sP
sBel

)(

)(
)((3.12)

To apply the “Markov localization algorithm”, therefore, only two main elements
must be known. The first one is the term P(st.| st−1, at−1) of the prediction step, in
equation (3.10). It is normally called action model and provides the probability of
being in the position (state) st, given that the robot executed the action at−1 starting
from st−1. The second element is necessary for the update step and is the term
P(vt | st) of (3.11). It is the probability that an observation vt is done when the robot is
in st. From here the name sensor model. It must be also noted that at the beginning
(t = 0), the belief is equally distributed on all the possible states, as the robot does not
know its initial position.

22

3.2 Assumptions and notation

Let us indicate the state8 of the robot, at time t, by a triplet < xt, yt, ϕ t >, where xt and
yt are the Cartesian coordinates of the robot’s position and ϕ t is its heading angle.
The couple (xt, yt) belongs to a finite set of two-dimensional points, which is the
topological map where the robot is supposed to be localized. The heading angle ϕ t,
instead, has continuous values inside the interval [0, 2π). The entire set S of possible
states, therefore, contains an infinite number of elements. To make the problem
computationally treatable, we impose here some assumptions. We assume that the
probability distribution, at time t, of being in a certain position < xt, yt, ϕ t > is
completely contained in a sub-set St ⊂ S. The elements of St are all the positions for
which IMA (chapter 2), at time t, returns a matching-value higher than a certain
threshold, plus an additional “virtual” position given by the odometry (this is
explained in 3.2.1). That is, the real position of the robot is always supposed to be
one of those recognized by the place recognition9 or calculated using the odometry
information. Of course, the number of possible states so generated is limited by the
nodes of the topological map; therefore, St is a numerable set.
In the next sections, we will refer to the set St with the letter D and we will call
destination an element d∈D. We will also refer to the set St−1 with the letter O and
call origin an element o∈O. It is clear that a set D of destinations at time t will
become the set O of origins at time t + 1. Moreover, to distinguish our “local”
probability distribution from that one used in the Markov Localization, we substitute
the word belief with activity, as in [FM02]. Thus, Bel(st) and Bel(st−1) become Act(d)
and Act(o) respectively (activity of the destination and activity of the origin).

3.2.1 Virtual destination hypothesis

The assumption of considering only the destinations given by the last observation,
that is the IMA output, would be too restrictive. To be sure that the right position is in
effect one of those recognized, the threshold applied to the IMA output should be
very high. This would limit excessively the possibility to consider good hypotheses
just because some changes in the environment, temporary or permanent, have
reduced their distinctiveness. On the other hand, with a lower threshold, the number
of possible destinations increases, together with the probability to choose the wrong
one. Even worse if none of the current hypotheses are correct.
To handle this kind of ambiguity, sometimes they make use of a “Zero Hypothesis”,
that is a way to handle the case when all the other hypotheses are wrong. In [JK01],
for example, the authors have a finite set of hypothesis generated by new
observations and updated simultaneously using Kalman filtering. The zero
hypothesis is used to close the probability space and is kept updated considering the
uncertainty of the observations. When the probability of such hypothesis is higher
than the others, the robot is in a state of indecision.

8 Sometimes, we will use indifferently the words “state” and “position”.
9 This is justified by the fact that, most of the times, the correct position is in effect one of the best
recognized with IMA.

23

In our approach we found useful inserting a “virtual” destination, that is the position
on the topological map closest to that one given by the odometry. More precisely, the
latter is calculated from the last winning destination adding the relative displacement
given by the odometry and corrected as explained in 3.7. The heading angle of this
new hypothesis is also given by the odometry. The term “virtual” is because we
assign to it a matching-value, like all the other destinations generated by an
observation, and then we treat it at the same way. The assigned matching-value, in
particular, is equal to the threshold used to generate the other hypotheses. In practice,
it would be like IMA has recognized an additional place, with the minimum
matching-value. On the next update process, such “virtual-destination” becomes the
“virtual-origin”.

3.3 Action model

We saw in section 3.1 that a first fundamental component of the “Markov
localization algorithm” is the action model. Using the notation introduced in 3.2 and
simply calling a the action a t−1, we can rewrite such model as follows:

),|(),|(11 aodPassP ttt ≡−− (3.13)

This model expresses the probability that a destination d is reaching performing the
action a from the origin o. This probability is estimated taking into account the
location and the heading angle of the robot. The action a is simply the displacement
given by the odometry. For our scope, no sophisticated models are used for handling
the cumulative errors typical of the odometry. Its information, indeed, is always
relative to the previous estimated state and corresponds to a short path. Therefore, it
is considered reliable enough for being directly used in the action model, as
explained below.
Let us say Qo the two-dimensional position of the origin o, with a heading angle ϕo.
Then Qa is the position reached from Qo after the execution of a and Qd is the
position of the destination d. The first parameter used for the estimation is the
distance ∆l between Qd and Qa:

ad QQl −=∆ (3.14)

Now let us consider the heading angle ϕa after the action and that one of the
destination, ϕd. The second parameter we use is the difference ∆ϕ between ϕd and
ϕa

10:

ad ϕϕϕ −=∆ (3.15)

10 Note that for the case “virtual-origin”→”virtual-destination”, introduced in 3.2.1, the angle ϕd and
ϕa are the same, so ∆ϕ = 0.

24

A graphical representation of all the quantities, introduced so far, is shown in Figure
3.1. The dark-grey circle, on the left, represents the robot’s origin o. The white one is
the position given by the odometry after the execution of the action a. Finally, the
light-grey circle is the current destination d. Please note that Qo and Qd are two pre-
defined positions within the topological map, while Qa could be any point in the
environment.

∆l

Qo

ϕa

ϕd
Qd

Qa

∆ϕ

ϕo

Figure 3.1 Parameters for the action model

The quantity ∆l is then use to estimate the probability of the destination’s position
with the following formula:

2
max

2

2

max2

1
)(l

l

l e
l

lg ∆
∆−

⋅
∆⋅

=∆
π

 (3.16)

∆lmax is the maximum ∆l among all the current combinations origin-destination. The
function gl(∆l) is a gaussian, centred in zero and with standard deviation ∆lmax.
Therefore, its width varies at every update, depending on the current ∆lmax. In the
same way, the quantity ∆ϕ is use to estimate the probability of the destination’s
heading. The formula applied is again a gaussian centred in zero and with standard
deviation ∆ϕmax, which is the maximum ∆ϕ among all the current ones:

2
max

2

2

max2

1
)(ϕ

ϕ

ϕ ϕπ
ϕ ∆

∆−

⋅
∆⋅

=∆ eg (3.17)

Finally, the action model is then calculated combining (3.16) and (3.17) into the
following expression:

)()(),|(ϕϕ ∆⋅∆= glgaodP l (3.18)

25

2
max

2

2
max

2

22

maxmax2

1 ϕ
ϕ

ϕπ
∆
∆−

∆
∆−

⋅⋅
∆∆⋅

= ee
l

l

l

 (3.19)

3.4 Sensor model

In many localization systems, the environment is sensed through low-dimensional
devices, like sonar or laser range finders, for which accurate models are already
available [BFHS96; MO88]. Other approaches instead use vision to calculate the
robot’s position with respect to some particular features. In [MPP04], for example,
an omni-directional image is processed using a ray-tracing method, simulating a laser
range sensor that returns distances of chromatic-transition features. Even in this case,
an accurate model is provided, with parameters extracted by a modified EM
algorithm [DPLR77] applied to a set of 2000 sample images. There are also
approaches where the sensor models are learnt using neural networks, both in case of
data from vision or sonar [Th98; Th99; OHD97].

The data given by the image-based procedure for place recognition, i.e. the IMA’s
matching-value, differs from all the above-mentioned implementations. There are no
measures of distances or extraction of particular features. What we have, instead, is
the result of a comparison between a pre-recorded panoramic image and a new image
from the camera. A similar situation is described in [FM02], where they compare
images from an omni-directional camera with images previously stored. In that case,
the difference between the two images, new and pre-recorded, was passed to a
gaussian function, obtaining a value between 0 and 1 proportional to this difference.
In [DN01] the sensor model is directly derived by their image-based place
recognition, where the match of image histograms provides also the probability of
obtaining a certain sensor reading from a place hypothesis. The IMA works in a more
sophisticated way, but the concept is almost the same. The sensor model, in some
way, is implicitly “included” in the pre-recorded panoramic image. An ideal image
would return 1 when it matches perfectly on the panoramic image and would
decrease to 0 as more as the match is bad. Of course, the perfect match, for which
IMA would return 1, cannot happen. First of all because of the panoramic image,
which is far away to be a “real” 360° scene11. Second, because the environment
cannot be completely static. So, for example, in an office many particulars change
day by day and the recorded images become less representative. However, these kind
of problems are generally common to all the panoramic images and the decrease of
their quality can be considered the same for all of them. Therefore, this does not
influence very much the performances of the localization system. Back to the IMA’s
match, we should also note that a little noise always exist (with the exception
reported in 3), since in practice two images are never completely different. This
problem is tackled by the fact that the observations we are dealing with are higher
than an appropriate threshold.

11 This could be improved using an omni-directional vision sensor, as discussed in 6.2.

26

From what we said above, the probability of the observation given the current state
can be considered directly the matching-value by IMA. Using the notation introduced
before and referring to the observation vt simply as v, we can write the sensor model
as follows:

)|()|(dvPsvP tt ≡ (3.20)

Therefore, remembering from Code 2.2 that the matching-value is contained by the
variable MATCH, we can refer to it with MATCH(d), relatively to a particular
destination d. For the update of the activities then, we use the next probability:

)()|(dMATCHdvP = (3.21)

3.5 Update of the activities

As previously said, we call activity the correspondent of the Markov Localization’s
belief. The update of the activities is done with the same formulas, but taking into
account the assumptions in 3.2. In particular, since the possible destinations are
generated as far as a new observation is available, the three phases, prediction →
update → normalization, are always executed at the same time step12. Then, given a
set of destinations d∈D and origins o∈O, the procedure for the calculus of the new
activities is reported below:

1) Prediction:

∑
∈

=′
Oo

oActaodPdP)(),|()((3.22)

2) Update:

)()|()(dPdvPdP ′=′′ (3.23)

3) Normalization:

∑
∈

′′
′′

=

Dd

dP

dP
dAct

)(

)(
)((3.24)

In the formulas above we apply the expressions discussed in the previous sections. In
particular, the probability P(d | o, a) of (3.18, 3.19) is used in the prediction (3.22)
and the IMA matching-value of d , also called MATCH(d), substitutes P(v | d) in
(3.23).

12 In the original “Markov localization algorithm”, we remember that the prediction could be done
whenever an action was executed, while the update and normalization whenever a new observation
was available.

27

3.6 An intuitive explanation of the update process

So far, the way the activities are updated has been presented in a context similar to
that one used for the Markov Localization. As already said in the introduction of this
chapter, the method explained is just inspired by the Markov model, but it is clear
that some of the assumptions adopted does not “fit”, in strict mathematical terms.
Nevertheless, in most of the real applications, where the Markov Localization has
been used, there are violations and/or adaptations of the formal model (for example,
the independence of the observations). The same Markov model and its assumptions
are just approximations of the real world.

We try here to give an intuitive explanation of the update process, out of the
mathematical context and just helped by some graphical examples. We examine
separately the four main terms involved in the prediction → update process of
equations (3.22) and (3.23). These are the activity of the origin Act(o), the two
parameters ∆l and ∆ϕ for calculating the action model P(d | o, a) and finally the
sensor model P(v | d). In the next figures, we have the origins on the left and the
destinations on the right. The short line inside the circles indicate the heading of the
robot. The arrows represents the last action executed by the robot and the dashed
circle is the position after such action, as given by the odometry. For simplicity, we
suppose the odometry without errors.

3.6.1 Activity of the origin

Suppose two new destinations are generated, d1 and d2, both with the same matching-
value13. The possible origins are also two, o1 and o2. The activities of these, Act(o1)
and Act(o2), are different. In particular, the activity of o1 is higher than o2, as
represented by the lighter gray in Figure 3.2. There are just four possible transitions:
o1 → d1, o1 → d2, o2 → d1 and o2 → d2.

o1

o2

d1

d2

Figure 3.2 Selection based on the origins’ activity

Because of the symmetry of the problem, the final activities of the destinations
depend only on the activities of the origins. Since Act(o1) > Act(o2), it is clear that the
most likely destination is d1.

13 This would be a case of perceptual aliasing.

28

3.6.2 Distance from the destination

In this case, we have one origin o1 and two destinations d1 and d2, again with
identical matching-values. In Figure 3.3 we can see the graphical representation.
What make us choose d1 as the most likely destination is the fact that the distance,
with respect to the odometry’s position, is shorter. Such distance, in effect, is ∆l.

o1

d1

d2

Figure 3.3 Selection based on the distance ∆∆∆∆l

In the action model (3.18), this distance is “weighted” and normalized from the
gaussian gl(∆l) (3.16), so that a short distance has an influence much bigger than a
long one. In case of multiple origins, for each destination all the possible distances
are taken into account.

3.6.3 Heading angle difference

A consideration similar to the previous case can be done for the heading angle
difference, which we called ∆ϕ. It is calculated comparing the heading of the
considered destination and the supposed one given by the odometry after the
execution of an action.

o1

d1

d2

Figure 3.4 Selection based on the heading angle difference ∆∆∆∆ϕϕϕϕ

The origin is still one, distances and matching-values are the same for both the
destinations. However, in Figure 3.4 we can see the destination d2 having an heading
angle different from that one in the odometry position. The destination d1, instead, is
oriented in accordance with it. Therefore, d1 is the most likely choice. As in the
previous case, we should note again that ∆ϕ is passed through a gaussian, the gϕ(∆ϕ)

29

in (3.17), and that, for multiple origins, all the heading angle differences are
considered for each destination.

3.6.4 Current observation

The last situation we examine is when the only thing that makes the difference in the
destination choice is the current observation.

o1

d1

d2

Figure 3.5 Selection based on the current observation

In the figure above, we see again two destinations, but this time with two different
matching-value. In particular, MATCH(d1) > MATCH(d2). Being the same all the
other parameters, the most probable destination is d1.

3.7 Correction of the odometry information

An important role in the selection of the current destination is played by the
odometry. Indeed, the prediction step of (3.22) makes use of the action model (3.18,
3.19) and this one strongly depends on the odometry information.
We can examine first of all the distance ∆l (3.14) used in (3.16), supposing the
heading angle is correct with respect to the absolute zero direction of the
environment. Such measure is simply the Euclidean distance calculated from the
coordinates of the considered destination considered, stored into the map, and the
coordinates of the robot, as given by the odometry. It is well known that the
odometry is not reliable on long paths, due to wheels slippage, irregularities of the
floor, collisions and so on. Nevertheless, when used on short ranges, it is information
is quite precise. We then use such information just to measure relative displacements,
resetting the odometry14 every time an update of the topological position has been
done. Of course, despite the fact that the destination is not always correct, this reset
can introduce an error, since a topological position is not a geometric point in a two-
dimensional plane, but a sort of “area” or “region”. However, the fact that the area’s
radius is reasonably smaller than the distance between two consecutive destinations
reduces the effect of this error. On the other side, the vantage is significant, since it
fixes a limit to the cumulative error of the dead reckoning.

14 Actually it is not really reset, but the software program uses the difference between the current
odometry and that one recorded during the last update.

30

Let us now consider the heading angle. It has a double importance: first of all, it is
explicitly used in the calculus of the parameter ∆ϕ (3.15), which is the main variable
of the gaussian (3.17). The latter is part of the action model. Furthermore, the
heading angle is also the rotation of the internal frame of reference of the robot, with
respect to an absolute 0 direction of the environment. Hence, an error on such angle
means a rotation of the topological map used from the robot, and from this map
depends also the calculus of the parameter ∆l above. In many applications, instead of
using the heading angle calculated by the wheels encoders, an external magnetic
compass is mounted on the robot, like in [DN01; DMS02]. This has the advantage of
being independent from the cumulative errors of the odometry, since it gives an
absolute direction of the North. Using such direction as reference, the robot is then
able to correct its internal heading. On the other hand, this device is not immune
from errors, mainly because of metallic objects in proximity of the robot. In [FM02],
for example, they observe as a magnetic compass turned out to be inefficient in their
office environment. For our approach, we chose instead another solution. Since for
every new environment we want to move on a new map and a new set of panoramic
images are needed, we reconstruct these latter always starting from the same
direction. As already described in 2.3, this permits the robot to recover its absolute
heading using the formula (2.2). To limit the cases for which the wrong panoramic
image is used, that is when the localization fails, we correct the odometry’s heading
angle only when the matching-value of the estimated destination is higher than a
given threshold. It has been noted, indeed, that good matches usually mean correct
estimations. This is due to the fact that IMA can distinguish different places with a
certain accuracy and without incurring in errors of perceptual aliasing, at least in a
typical office environment like ours. In 5.2.7 the reliability of this heading correction
is demonstrated even in extreme conditions.

3.8 Overall algorithm

At this point, it is possible to write the whole algorithm for generating the destination
hypotheses, calculating the relative activities and selecting the most likely one.

The case when no destination hypotheses are generated is treated in the first part of
the localization algorithm. After the comparison of a new image with all the
panoramic images in the topological map, it may happen indeed that no new
destinations are considered because all the matching-values calculated are below the
decided threshold. The only way to update the robot’s position is then relying on the
odometry and calculating the displacement relative to the last recognized place.
Since the required output is just a topological position, we find out the place in the
map supposed to be closest. Note that this kind of behaviour is like trying to guess
the current location being “blind” and, in such circumstance in fact, the only
information is provided by the internal odometry. Once the closest topological
location has been calculated, the localization algorithm ends and waits for a new
observation, which is hopefully good enough to generate one or more hypotheses.

When some of the comparisons among the panoramic images are greater then the
threshold, the set of destinations is not empty and the algorithm can proceed with the

31

procedure for selecting the most likely one. First of all, for each combination origin-
destination, the distances ∆l and the angles ∆ϕ explained in section 3.3 are
calculated, keeping track of the maximum values ∆lmax and ∆ϕ max. All these
quantities are then used in the following step, which is the calculus of the activities
for all the new destination. The prediction and the update formulas in 3.5 are applied
to each destination, always keeping track of that one with the highest activity15.
When the prediction → update loop is completed, the activities are normalized
among all the considered destinations. After that, the odometry’s coordinates are
reset to the most active destination. For the correction of the heading angle, there is a
further check on the matching-value of such destination: if this is higher than a
certain threshold, it means the observation was good and the orientation of the robot
can be adjusted according to the angle given by IMA. Finally, the current set of
destinations becomes the set of origins for the next execution of the localization
algorithm.

In order to reduce the computational expense, the whole algorithm is executed only
after the robot has moved of a certain distance or has rotated of a minimum angle. As
in every program that makes use of video processing, indeed, we have to deal with
time constraints and with the fact that other processes require to be executed.
However, this also has the advantage of effectively generating new different
destinations (i.e. different states) and reduce the cases of failures.

A scheme for the localization algorithm is reported in Code 3.1. Some new symbols
are introduced:

• εM is the threshold used for extracting the destinations with the best
matching-values

• εϕ is the matching-value threshold for correcting the odometry’s heading and
is εϕ ≥ εM

• d* is the destination with the higher activity and corresponds to the relative
state < x*, y*, ϕ* >

• o* is the most likely origin, i.e. the last d* extracted

The quantities εM and εϕ are determined experimentally and the values adopted are
illustrated in 5.2.

Code 3.1 Localization algorithm

Calculate the location given by o* plus the odometry displacement and find the
topological position d0∈D closer to such location

Compare with IMA the new image with all the panoramic images in the map and
extract the possible destinations d∈D with a matching-value MATCH(d) > εM

15 We say activity even if, at this stage, it is not normalized yet. However, the normalization part has
not influence on the choice of the best destination.

32

if no new destinations are generated with IMA

 Return the topological position d0

 END

end if

for each d∈D

 for each o∈O

 Calculate ∆l and ∆ϕ (3.14, 3.15)

 Keep track of ∆lmax and ∆ϕmax

 end for

end for

for each d∈D

 Calculate P(d | o, a) with (3.19)

 Update the activity (3.22, 3.23)

 Keep track of the destination d* with the higher activity

end for

Normalize the activities (3.24)

Reset the odometry’s coordinates

if MATCH(d*) > εϕ

 Set the odometry’s heading to the angle ϕ*

end if

The destinations become the next origins, O ← D

Return d*

END

33

4 SOFTWARE IMPLEMENTATION

The practical implementation of the localization module is a tedious work and, in
terms of time expense, certainly comparable to the study of the theoretical approach.
There are three main criteria followed for the software development:

• performances in terms of speed and memory space

• reusability and platform independence

• easy update and extension.

These led to the choice of creating a C++ library for Linux operating systems, that
includes all the procedures described in chapter 2 and 3. The implementation as
library permits its use in different contexts, being practically independent from the
software architecture of the robot. In theory, it should be possible using such library
on every robot provided with Linux OS, odometry information and a normal camera.
In the following sections it will be explained the structure of the library and the main
functionalities it provides, together with an introduction to an additional library for
video processing. Its integration in the robot’s middleware is then illustrated.

4.1 A general purpose library for localization

The library is a complete software framework for all the localization procedures
described in the previous chapters. The code is written using Object-Oriented
philosophy. In particular, one main object includes the map representation, with all
its panoramic images and relative coordinates, and provides the necessary functions
to insert the data and retrieve an estimate position. Note that such implementation is,
in itself, a passive localization approach, in the sense that it does not interfere
absolutely with the robot movement. On the other hand, it can still be integrated in a
more sophisticated system of active localization.

4.1.1 The TopoMap object

The main object of the library is implemented with the class TopoMap. The name
derives from the fact that it keeps an internal representation of the topological map.
This means that all the panoramic images and the coordinates of the positions we

34

chose to map inside the environment are internally stored. Other information held by
the TopoMap object is the current odometry and the video input, continuously
updated by the robot during the localization. Finally, there are several methods to
interact with the map, update the estimated position and retrieve all the necessary
information.
When the TopoMap object is created, some important parameters must be specified.
The most significant are the following:

• scale: the scaling factor applied to reduce the resolution of all the processed
images;

• slots: the number of slots for the matching algorithm (IMA);

• zoom: the factor ρin for the digital zoom;

• match_threshold: the minimum matching-value εM for the generation of new
destination hypotheses;

• head_threshold: the minimum matching-value εϕ for the correction of the heading
angle.

4.1.2 Panoramic image reconstruction

One of the first methods provided by the class TopoMap is a static function that
reconstructs a panoramic image from a sequence of snapshots, as explained in 2.2.
This method, called getPanorama, accepts as input parameters the path of the
directory where the sequence of images has been recorded, the number of slots to use
for the reconstruction, the activation of CLAHE filtering and other less significant
settings. The returned value is a pointer to the reconstructed panoramic image. It is
worth specifying that, during the creation of the panorama, the procedure of insertion
of the snapshots can be visually debugged, so that the user can understand the
reasons of eventual failures and then modifying the input parameters to resolve the
problem. We will see in 4.2.3 how the function getPanorama has been used for a
semi-automatic procedure that permits to get a panoramic image quickly.

4.1.3 Insertion of the topological map

Once all the panoramic images of the topological locations are available, it is
necessary to provide the TopoMap object with the map. The task is accomplished by
the method setMap. This needs, as only parameter, a reference to a text file providing
the path of the directory where the panoramic images are stored, the names assigned
to each topological position and their relative coordinates. Such file has a very
simple syntax and we can see in Figure 4.1 an example of map file, in this case for
our laboratory. Observing its text, it is simply to understand the three main
information: the first line is the directory of the image files, the left column contains
the names assigned to the topological nodes and the remaining columns are the
relative coordinates x and y.

35

/home/belush/images/panoramic

CHARGER 0 0
DESK_1 1000 0
DESK_2 1000 1000
DESK_3 0 1000
SHELVES 0 -1000
CENTRE 1000 -1000
CUPBOARD 2000 -1000
DOOR 2000 0

Figure 4.1 Example of map file

4.1.4 Input data functions

Before every update step, we must provide the current information given by the
internal odometry sensors and by the camera. For the first one, the dedicated method
is setCurrentOdometry, which requires as input parameters the coordinates x and y
plus the heading angle given by the odometry. The image retrieved by the camera, as
buffer of bytes, is the input for the setCurrentImage method.

4.1.5 Update function

The core function of the whole software is updateActivities, for which it is worth
spending some more words. Such method implements in practice the localization
algorithm illustrated in Code 3.1.
First of all, using the new information introduced with the previous
setCurrentOdometry, the updateActivities function estimates approximately the
current metrical position. This is done as follows: using the odometry’s position
previously recorded (when a destination was chosen among all the generated ones)
and the current metrical position, it calculates the vector connecting these couple of
two-dimensional points. The direction of the vector is eventually corrected according
to the last supposed heading angle error. The estimate of the current metrical position
is then calculated “adding” such vector to the last winning destination or, as we use
to call, the most probable origin o*. Comparing the coordinates of this new position
with those ones provided by the map, it finds out the closest topological node. Such
node has a double importance: in case no destinations are generated in the following
part, it is the “supposed” place; if some destination is generated, it is the additional
“virtual” one, which we call d0.
The following part of the updateActivities function is dedicated to the processing of
the video input, previously provided by setCurrentImage. If the digital zoom is not
used (ρin = 1), this simply means to apply IMA between the current image given by
the camera and all the panoramas of the topological nodes. All those having a
matching-value higher than the threshold εM are possible destinations to consider in
the next part. If the zoom is active (ρin > 1), things are a little more complicated. In
practice, for every topological node IMA is applied three times, one for each of the
following combinations: “current image”→“panorama”, “current image zoom
in”→“panorama” and “current image”→“ panorama zoom in”. The first two cases
are quite obvious (see 2.4.2). The third one instead is the practical implementation of

36

the zoom out for the current image. It is impossible, indeed, performing a (digital)
zoom out of the image given by the camera without loosing all the contour pixels.
Therefore, the solution adopted is reversing the procedure and comparing the original
current image with a zoom in version of the panorama. Finally, for each node only
the best of the three matching-values is considered.
Once all the comparisons with IMA are completed, the nodes for which the
matching-value is higher than the threshold εM are considered as new possible
destinations, together with the virtual d0. The choice of the most probable depends on
their activities, updated as explained in 3.5: the destination with the highest activity,
which we called d*, is the winning one. Instead, if no match is high enough, the
function simply returns d0, which is only a supposed position in this case.
At the end of updateActivities, after generation and choice of the new destination, the
current odometry is recorded and will be used for future updates. This has in practice
the same effect of resetting the odometry, as we often said, but without truly
interfering with the real measurement. A similar method is applied to the heading
direction, corrected by the vision with the angle explained in 2.3. Every time there is
a winning destination d*, if the relative matching-value is higher than εϕ the program
calculates the difference between the odometry’s heading angle and that one of such
destination, extracted with the formula (2.2). This difference is then used as offset in
the successive calls of updateActivities to correct the odometry’s heading angle. The
function finally terminates returning the estimated destination d*.

4.1.6 Video processing with OpenCV

It is clear that a fundamental role in the localization software is played by the video
processing. For this application we chose to utilize an open-source library that was a
former project of Intel, freely downloadable from Internet. Basically, this consists
of a collection of C functions that implement some popular algorithms for Image
Processing and Computer Vision. It does not rely on external numerical libraries and
is platform-independent, that is Linux and Windows compatible.
Most of the functions we made use from this library are for image transformation, in
particular conversion from RGB to grey scale and resize of the dimensions. The
camera indeed provides a colour RGB image with a resolution 384×288 pixel, while
we need to work on grey images scaled three or more times, in a way to keep the
processing time acceptably low. Furthermore, OpenCV provides a set of useful
functions to load and save image files in several formats, plus the opportunity to
create simple graphic user interfaces (GUI) to show the images and interact with
them. This revealed to be particularly useful for debugging, for example during the
panoramic image reconstruction.
The most important function we made use in our software is probably
cvMatchTemplate, fundamental part of IMA. In practice this returns the Normalized
Correlation Coefficient NCC for an input image and a template. In our algorithm the
input image is the panorama and the template is a slot of the camera’s snapshot (both
converted to grey scale).

37

4.2 Integration with the robot middleware

The access to the different devices available on a mobile robot is normally provided
by an intermediary software placed between the low level part, i.e. the Operating
System’s drivers, and the high level programs, which are the modules forming the
“intelligent” behaviour of the robot. This middle-level software is called, indeed,
middleware. Though our platform, an ActivMedia PeopleBot (see appendix B), was
already provided with a basic middleware, we chose to make use of a more powerful
framework called Miro. This is richer of useful features and makes easy the
integration of the localization with other modules. In this section we introduce the
main characteristics of Miro and how the localization system is implemented inside
it. We also describe the initial realization of an automatic module for panoramic
image reconstruction.

4.2.1 The Miro framework

Miro is a distributed object oriented framework for mobile robot control, based on
CORBA (Common Object Request Broker Architecture) technology and developed
at the ULM University, Germany. The Miro core components have been developed
in C++ for Linux, but due to the programming language independency of CORBA
further components can be written in any language and on any platform that provides
CORBA implementations. Moreover, thanks to this technology, it is possible
developing distributed applications. This means the opportunity to execute programs
on different computers for controlling the robot, useful for example when its
computing power is not adequate to perform many tasks in real time.
One of the most interesting features of Miro is the integration of the behavioural
control paradigm by its own behaviour engine. In practice this permits to implement
any kind of software that requires access to the robot’s peripherals and that is
structured as behavioural architecture, where each behaviour can interact with the
other ones. This organization facilitates the subdivision of a complex program in
small tasks and consents the reuse of each behaviour in different architectures.
Moreover, Miro provides a script-based method to create any sort of behavioural
architecture; the scripts can be easily created and modified with a nice graphic user
interface.
The structure of a behaviour module is also very simple. It is derived from a standard
class provided by the Miro’ source code. The only methods that need to be
reimplemented are init, called by the behaviour engine the first time the module is
activated, and action, which is executed periodically by the same engine. In practice,
the first function contains all the initial settings necessary to the behaviour, like
assigning particular values to some variables or resetting the odometry. The second
function instead implements the real behaviour and contains the code to be executed.
Several behaviours can be then grouped to form an action pattern, which is a special
structure accomplishing a more complex task. Inside the action pattern, each
behaviour has a given priority (i.e. the priority of an “avoid-obstacle” behaviour
would be higher than a hypothetical “wander” behaviour). Sometimes, an arbiter
module must be also assigned to an action pattern, for example to handle the cases of

38

concurrent access from different behaviours to particular devices (i.e. wheels’
motors). Finally, an action pattern can interact with other action patterns through the
use of transition, which can be thought as a sort of signals. A set of action patterns
with relative transitions forms the so-called policy, which is in practice the final
architecture performing the intelligent task of the robot. The reader may also
consider a policy like a state machine, where the action patterns are states with
transitions among them.

4.2.2 Localization as behaviour

The localization system has been implemented as behaviour within the context of the
Miro framework. The objective was to make it available as module for complex
navigation tasks in future applications. Having the localization system already
integrated in Miro, indeed, permits an easy interaction with other behaviours and the
execution of high-level plans that require the current position of the robot. Practical
applications for which such implementation would be useful are, for example,
scenarios where the robot acts as waiter or tour-guide16. The idea would be inserting
the localization behaviour as independent thread, so that it keeps to be updated
during the motion. At the same time it could provide the estimation of the current
topological position on any other behaviour’s request.
The localization module, which we called Localize behaviour, makes use of the
TopoMap object previously described in 4.1.1. This object is created within the init
function of the behaviour class and initiated with the necessary parameters. During
this first stage we also load the topological map (see 4.1.3). The input data, coming
from odometry and camera, are then continuously provided to the TopoMap object
from the other behaviour’s method, action; after this data insertion, the activities of
the nodes inside TopoMap are updated and the most probable position estimated. The
latter can be eventually used by other behaviours to accomplish tasks dependent on
the current robot’s location.

4.2.3 A behaviour for creating panoramic images

The procedure of panoramic image reconstruction has also been implemented as
behaviour for Miro and called VideoScan. The first advantage of such module is the
opportunity to take automatically a sequence of snapshots rotating on a fixed
position; this sequence is then used to reconstruct the relative panorama. The whole
procedure is quite fast and normally completed in less than two minutes. The second
advantage is that the VideoScan behaviour can be integrated in more sophisticated
systems of “active localization”, in a sense of self-update of the recorded video
information, or “map-learning”, where the robot discovers and maps unexplored
locations.
The behaviour is very simple: the robot performs a full rotation taking snapshots of
the surrounding environment and then, calling the getPanorama function introduced

16 Some initial tests on this direction have been carried out but they are still in a very early stage.

39

in 4.1.2, creates the relative panoramic image. This image then can be used by the
Localize behaviour.

40

5 EXPERIMENTS AND RESULTS

In this chapter are illustrated the results of several experiments conducted in the
Centre for Hybrid Intelligent Systems of the University of Sunderland. In particular,
most of the data has been collected in the Neuro-Robot Laboratory. This consists in a
room of approximately 6×6m2, with furniture typical of an office (see Figure 5.22).
Along two sides of the room there are ample windows, often cause of light
conditions particularly challenging. Sometimes we made use also of an adjacent
corridor, about 2×10m2 wide, connected to the laboratory through a small entry. A
rough map of the environment can be seen in 0.
The first experiments presented here are relative to the performances of our image-
based place recognition. We cover most of the topics treated in chapter 2. The second
part of experiments are relative to the whole localization system, therefore including
the method described in chapter 3.

5.1 Place recognition performances

The performances of the place recognition are particularly important, since the whole
localization strongly depends on it. Even in the method we chose to generate new
hypotheses and tracking them, as explained in 3.2, we made the assumption that the
place system works fine, at least in most of the cases. Since such system depends on
IMA and on the panoramic images, we start with some application of the algorithm to
a static image (that maybe also helps to better understand how it works). Once some
examples of panoramic images have been presented, we test IMA on these and we
compare the output among different places, thus to see how distinctive it is. We
conclude this first part of experiments with the heading-angle extraction, very
important for the success of the localization, and with some interesting data about the
digital-zoom implementation.

For most the following experiments, we use grey-scale image with a resolution of
72×58 pixel. The number of chosen slots for IMA is 8.

5.1.1 Moving obstacles

It has already been explained in 2.1 how the matching procedure works, dividing the
new image in columns, that we called slots, and then comparing each of them with a

41

pre-recorded image. In this experiment we want to show the output of IMA in typical
situations of dynamic environments. In order to avoid the noise introduced by the
irregularities of a panoramic image, these tests make use of a single pre-recorded
image. Further experiments taking into account the panoramic image’s noise are
shown later in this chapter.
As first try, we want to plot the output of IMA in the most classical situation, i.e.
when a person is moving in front of the camera. In Figure 5.1 there are some
snapshots taken with a person walking from one side to the other of the observed
scene. The resulting output of IMA is plotted in Figure 5.2. As expected, such output
is close to 1 when no people are in front of the camera and decrease of about 25%
when a person is crossing the scene. This decrease, in particular, is proportional to
the size of the region occluded by the person. In terms of “columns”, he could be
considered as a column that shifts left and right, occupying a quarter of the scene.

Figure 5.1 Sequence of a person walking (time-steps 10, 15, 20, 25, 30)

0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

time-steps

IM
A

Figure 5.2 IMA output for a person walking

In the next example, there is a different situation, but with similar results. The case
examined is the opening and crossing of a door, as illustrated on the sequence of
Figure 5.3. Again, the decrease of the IMA output is close to 25%, as reported in
Figure 5.4, and the same considerations of the previous example are applicable.

42

Figure 5.3 Sequence of door opening (time-steps 5, 15, 25, 35, 45)

0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

time-steps

IM
A

Figure 5.4 IMA output for door opening

5.1.2 Examples of panoramic image reconstruction

The reconstruction of panoramic images has a fundamental role in our
implementation. Unfortunately, without having an omni-directional vision sensor, is
not easy to obtain such images from a normal camera. The first thing we have to deal
with is the limit angle of view of this device. In most of the cases, this angle is
approximately 40°, which means the minimum number of images to reconstruct a
full panoramic view is 9. Of course, even supposed the angle of view is known
exactly, many other factors make the reconstruction very difficult. In particular, it
would be practically impossible to take snapshots with such a precision that two
sequential images fit perfectly. In most of the cases indeed the camera is fixed to the
frame of the robot; even if it was provided with a controllable pan system (and this is
our case), normally this does not allow a full rotation. The only way to take images
of the surrounding environment is thus making the robot rotate with its own wheels.
This means imprecision of the angle step between to sequential snapshots.
Imprecision that arises as much as we increase the speed at which we want to take
the images.
It is clear then that the best solution is having a number of snapshots a little higher
than the minimum, in a way that between two of them there is a small over-lap.
Taking advantage from the latter one, it is eventually possible to align correctly a
sequence of images, two by two, until fill up the panorama. This is the method we
used for the examples shown here.

43

The procedure of image-taking has been made completely automatic implementing
an appropriate behaviour in the Miro framework (see 4.2.3). The program
implemented permits us to take a sequence of images in one or two minutes,
depending on the interval chosen between two consecutive snapshots. As said above,
the robot simply turns around, slowing down each time the predefined angle step has
been reached and then getting the image from the camera. Since the only way to
measure the current rotation is reading the odometry, the accuracy of the angle step is
very bad. Furthermore, the fact that our platform is a two-wheeled robot and that it
has to rotate on a carpet floor increases the error. In most of the cases, indeed, the
robot was not able to complete an entire turn, since the final error at the end was
about 10-20°. Nevertheless, the panoramic image reconstruction does not suffer of
such lack. This was something we already realized before implementing the
automatic procedure, when we had to turn the robot manually and take snapshots
relying only on the “human precision”, without any sort of instruments for measuring
angles.
Once a complete sequence of images is available, the software starts the
reconstruction of the panorama using an IMA’s based function, as described in 2.2.
Despite the amplitude of the angle step, two main factors have been noted to
influence the success or the failure of the procedure: the number of chosen slots for
IMA and the application or not of the CLAHE filter. For the first one, it is obvious
that higher is the number of slots, better is the “resolution” in the match of IMA,
resulting in a more precise alignment of the images. The improvement of the contrast
with the CLAHE filter permits then to highlight features of the scene, useful for the
improvement of the match. Of course, richer is the observed environment of features,
higher is the probability that the match succeeds. In the following sequence of
images we show some results with different number of slots and the contribute given
by the CLAHE filter. In Figure 5.5, where only 4 slots has been used for IMA and
without contrast filtering, the procedure obviously failed, resulting in an
incomprehensible overlap of images. The next try of Figure 5.6, where the number of
slots has been increased to 8, is definitely better, but there are still errors, in
particular due to the failure in the alignment of the big cupboard (right part of the
image). A further increase of the slots number is not sufficient to resolve the
problem, as shown in Figure 5.7. Instead, introducing the CLAHE filtering, the
panoramic image in Figure 5.8 is correct. It can be seen also that improving the
contrast with such filtering method augments a lot the number of visible features. In
particular for the images towards the windows, this means enhancing their
distinctiveness.

Figure 5.5 Panorama reconstruction with 4 slots

44

Figure 5.6 Panorama reconstruction with 8 slots

Figure 5.7 Panorama reconstruction with 15 slots

Figure 5.8 Panorama reconstruction with 8 slots and CLAHE filter

The last important consideration is about the angle step. On a first thought, it might
seem that with a small angle the final result looks better, since and high number of
images “follows” with more accuracy the perspective changes of the scene. In
practice, this is not true. Despite the fact that more images means also more time for
reconstructing the panorama, increasing the their number (i.e. decreasing the angle
step) introduces a significant noise on the final image, consisting of vertical lines in
correspondence of insertion. This is particularly evident observing Figure 5.9, where
the angle step used was 15°, and Figure 5.10, with a step of 30°. Since this noise
decreases the performances of the place recognition, it is always better trying to
maximize the angle step, reducing it just when absolutely necessary (for example
when the environment is so poor of features that the reconstruction fails). For all the
panoramic images of our office environment, including the corridor, a good choice
has been an angle step of 30°. With the view angle of our camera, about 40°, this
means an overlap of 10° between to consecutive images.

Figure 5.9 Panoramic image with angle step of 15°

Figure 5.10 Panoramic image with angle step of 30°

45

5.1.3 IMA applied to panoramic images

In this section we show some results of the matching algorithm applied to a
panoramic image. All the data has been collected during the day, whit people and
objects moving, even because a completely static environment was not available. In
Figure 5.11 there is the panoramic image reconstructed from the centre of our
laboratory. A few minutes later, after the panorama has been recorded and the
software reset, we made the robot perform a complete rotation on the same point the
images were taken, approximately at 10°/s.

Figure 5.11 Panoramic image of reference

The relative output of IMA (with images scaled to 72×58 pixel, 8 slots and CLAHE
filter) is illustrated by the black line on the graph of Figure 5.12. It can be noticed
that the match has a mean value higher than 0.8. The worst cases, for which IMA
returned about 0.7, are in correspondence of the cupboard (around 100°, right part of
the panorama) and the shelves (about 350°, left part of the panorama). This is
probably due to a combination of imprecision in the panoramic image and errors
derived by the change of the perspective.

0 90 180 270 360
0

0.2

0.4

0.6

0.8

1

rotation [deg]

IM
A

Figure 5.12 IMA outputs for panoramic image

On the same graph is illustrated also the output on a further turn, when the person
seated in front of the desk moved away. The relative change can be observed on the
grey line of Figure 5.12, where the output decreases around 270°, which is in effect
the direction where the person was. It is important to notice that, even if the output
decreased, the position inside the panoramic image where we had the maximum
match (which is also the supposed heading angle) was always correct. Something

46

different we had instead the day after, when we read again the IMA output rotating
on the same position and using the panoramic image of the day before. The result is
shown in Figure 5.13, where the black line is the old output and the grey one is the
most recent. Despite the fact of a small decrease due to light condition and small
objects in different positions, the main loss of quality is around 90° and 270°, due to
chairs moved (in the second case, also the absence of the person). In particular, the
arrow on the graph indicates one point where the supposed position inside the
panorama was completely wrong.

0 90 180 270 360
0

0.2

0.4

0.6

0.8

1

rotation [deg]

IM
A

Figure 5.13 IMA output the day after

A last reading has been done trying to “simulate” the presence of people moving
around the robot. In practice, a person was walking around it during the measure, at a
distance of about one meter. The panoramic image of reference was again that one of
the day before. The output result is shown in Figure 5.14 with the new grey line. The
points A, B, C, D are relative to the instants when the person was in front of the
camera and the arrow indicates the only point where the position in the panoramic
image was wrong.

0 90 180 270 360
0

0.2

0.4

0.6

0.8

1

rotation [deg]

IM
A

A

B C

D

Figure 5.14 IMA output the day after with obstacles

47

The last result about IMA applied to panoramic images is perhaps the most
important. As its main purpose is distinguishing different locations, we wanted to
compare the result obtained in the last case (old panoramic image and moving
obstacles) with the output of a comparison between the same snapshots and the
panoramic image relative to another position. For the latter, we chose a location in
the same room, just one meter far from the original. The resulting output is
represented by the black line in Figure 5.15 and compared with the previous one, in
grey.

0 90 180 270 360
0

0.2

0.4

0.6

0.8

1

rotation [deg]

IM
A

Figure 5.15 IMA output from a different position

Even if the output of the second comparison is not very low, in general it is well
distinguishable from that one obtained on the right panoramic image. The cases
where it clearly fails, like the overlap around 315° indicated by the arrow, would be
situations of perceptual aliasing. Here it is evident the necessity of using additional
information for resolving the ambiguity, like that one provided by odometry and
previous states.

We want to make also some consideration about the number of slots used by IMA
during the place recognition. When we talked about the panoramic image in 5.1.2,
we already saw that in general an increase of the slots number permits a more precise
overlap during the procedure of panorama reconstruction. In the case explained there,
a number of 8 slots (combined with CLAHE filtering) has been sufficient for the
success of the procedure, but for most of the our panoramic images we preferred to
use a safer number, that is 15. While the increase of such number does not have any
“collateral” effect for the panorama reconstruction, the same is not valid during the
place recognition process. As we said, the number of slots is a sort of resolution for
the matching algorithm. When this is too low, the output of IMA is not reliable
because is not able to distinguish clearly different scenes. On the other hand, a high
number means also an increase of the selectivity that sometimes may be excessive.
This can be seen from the values reported in Table 5.1 and extracted from the
comparison between Figure 5.16 and Figure 5.17 with the panoramic image in Figure
5.18. The first one is a snapshot taken in a different moment but from the same
position where the panorama has been reconstructed. The second one instead is from

48

another position, but pointing to the same scene. We would like to have a good
match for Figure 5.16, even if disturbed by the presence of the chair. At the same
tame, we wish the output for Figure 5.17 is as low as possible.

 Figure 5.16 Figure 5.17

Slots Match Angle [deg] Match Angle [deg]

8 0.698817 269° 0.428382 325°

15 0.454976 270° 0.270276 326°

Table 5.1 IMA output for different slots

From the data above, we can see that the increase of the slots number effectively
reduces the output relative to Figure 5.17, but at the same time there is a significant
decrement even on Figure 5.16. In particular, the gap between the two different
images decreases from about 0.27 (for 8 slots) to 0.18 (for 15 slots). This means a
worse distinction between the two cases that may augment the probability of
perceptual aliasing.

Figure 5.16 Same position with chair

Figure 5.17 Different position

Figure 5.18 Panoramic image of reference

5.1.4 Precision of the heading angle extraction

In this section we want to show some important results regarding the heading angle
extraction using IMA. As we already said in 2.3, this is possible applying the simple
formula (2.2), supposed we have a direction of reference. In our experiment, we
made the robot spinning around a position where a panoramic image was previously
reconstructed. We collected data of the heading angle given by the odometry and by
the vision during 10 rotations, measuring every 45° real angle. In Figure 5.19 we can
observe the final results: on the abscissa there is the real angle, on the ordinate the

49

heading angle measured by the robot. The grey line refers to the odometry, the black
one instead is the angle extracted using IMA17.

0 1 2 3 4 5 6 7 8 9 10

-180°

0

180°

rotation / 360°

h
e

a
d

in
g

 a
n

g
le

 [d
e

g
]

Figure 5.19 Heading angle extraction

It is very clear that the angle given by the odometry, after a few rotations, becomes
completely unreliable due to the internal cumulative error. At the seventh rotation its
error already reached −45° with respect to the real direction. Instead, the heading
angle given from the vision is always between −10° and +10°, without suffering of
any cumulative error. The precision of course is not useful for having a perfect
measure of the direction; nevertheless it is good enough to correct from time to time
the orientation and help the localization.

5.1.5 Effects of the zoom

An important feature of our system is the use of digital zoom for enhancing the place
recognition, as explained in 2.4. With the following graphs we want to show in
practice what we previously said. In particular we need to demonstrate that the use of
the zoom in effect increases the capability to recognize a place, making the robot
able to identify not just an exact point in the environment but the whole surrounding
area. We show then the variation of this area’s dimension depends on the distance of
the observed scenes, as mentioned in 2.4.3. The next results are relative to a normal
single image of reference, instead of a panoramic one, in order to avoid the noise
caused by the latter and cases where the match is relative to a wrong position inside
this. Nevertheless, the same principles are valid also when we use panoramic image.
Adopting digital zoom, indeed, has been proved to be very useful for our place
recognition, as illustrated in 2.4.
In the following illustrations we have the observed scene on the top-left corner and
then the relative graphs for five different zoom factors. The first example is reported
below, on Figure 5.20, where the distance from the robot and the wall, on the middle
of the scene, is about 4 m. The robot has been moved ±1m with respect to the
original position. The variation of the IMA output is reported on the graphs, where
the grey line is the reference, without any zoom, and the black line is relative to the

17 Please note that the output given by (3.2) has been converted from the interval [0, 2π) to [−π, +π).

50

current zoom factor18. Here, every time we refer to such factor, we mean that one for
the zoom-in, called ρin, and relative to the gaussian on the left. The gaussian on the
right is (in theory) symmetrical and depends on the zoom-out factor ρout given by
(3.8).

-1000 -500 0 500 1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

distance [mm]

IM
A

zoom 10%
factor 1.1

-1000 -500 0 500 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

distance [mm]

IM
A

zoom 20%
factor 1.2

-1000 -500 0 500 1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

distance [mm]

IM
A

zoom 30%
factor 1.3

-1000 -500 0 500 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

distance [mm]

IM
A

zoom 40%
factor 1.4

-1000 -500 0 500 1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

distance [mm]

IM
A

zoom 50%
factor 1.5

Figure 5.20 Digital zoom performances for a distant scene

18 We remind from 4.1.5 that, when we use digital zoom, IMA is applied three times (no-zoom, zoom-
in and zoom-out) and the considered result is the highest one.

51

Two important considerations arise from the observation of the graphs. First of all,
the output is something similar to the combination of three different gaussians, as we
already supposed in 2.4.2. Unfortunately, the amplitude of the external peaks
decreases considerably augmenting the zoom. Despite the fact it is not easy to keep
the robot on the same direction during the translation, the main reason of this
decrease is probably the loss of resolution implicitly derived from the zooming
process. The second consideration regards the gaps between the external gaussians
and that one in the middle. From these we can see that the internal (local) minimum
goes quickly below 0.5, already with a zoom of 20%. This is because the width of the
gaussians is not very large and the distance from the observed scene is quite long.
We remember indeed, from (2.5), that the “virtual” displacement obtained with the
digital zoom is directly proportional to such distance. We can finally note that the
formula (2.5) was just an approximation for an ideal case, but in practice the
“virtual” displacement cannot be calculated in a simple manner. In the case of zoom
20% (ρin = 1.2), for example, the hypothetical displacement ∆x should be 0.67m, but
in practice the relative graph shows two external gaussians not farther than 0.5m
from the origin. Again, higher is the zoom factor, bigger is the error. Anyway, except
for these lacks, we can also consider the first case, with a zoom of %10, a good
improvement of the place recognition compared to the output without any zoom. For
most of our localization experiments, indeed, this is the value we used (see 5.2).
Now, with the next results we would like to demonstrate, in a simple way, the final
considerations we did in 2.4.3 about the use of digital zoom. There, we said that the
shape of the recognized area follows that one of the environment. This because it
strictly depends on the distance from the observable scene. According to this, we
repeated the same test illustrated before, but this time placing the robot just 1 m far
from the closest obstacles. It can be seen on the next picture, in Figure 5.21. The
robot has been then translated again between ±1m with respect to the original
position and the data collected again for five different zoom factors. In the next
graphs, the IMA output without any zoom is still grey and the black line corresponds
to the current zoom.

-1000 -500 0 500 1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

distance [mm]

IM
A

zoom 10%
factor 1.1

52

-1000 -500 0 500 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

distance [mm]

IM
A

zoom 20%
factor 1.2

-1000 -500 0 500 1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

distance [mm]

IM
A

zoom 30%
factor 1.3

-1000 -500 0 500 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

distance [mm]

IM
A

zoom 40%
factor 1.4

-1000 -500 0 500 1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

distance [mm]

IM
A

zoom 50%
factor 1.5

Figure 5.21 Digital zoom performances for a close scene

Comparing these graphs with the previous, it is evident that observing a closer scene
the “virtual” displacement becomes shorter. Hence, the recognized area on that
direction is thinner. Indeed, on these last graphs the gaussians are in general
contained in the interval ±0.5m, while in the previous case this limit was already
passed for a zoom of 30%. Finally, even with a such a close scene, a zoom factor
ρin = 1.1 seems to be a good choice.

5.2 Global localization

So far, we examined the performances of the place recognition based only on the
video information. The next step is evaluating the behaviour of the whole
localization system, in particular how it handles situations of ambiguity, i.e.
perceptual aliasing, and cases where the observations provided by the vision is not
good enough to estimate a position. In order to do that, we have to take into account
the odometry information and integrate it with the video input. This task is
accomplished by the algorithm illustrated in Code 3.1.

53

The reader should keep in mind Figure 5.22, contained in the next section, because in
the descriptions of the tests we will often refer to the nodes and sometime to the path
there illustrated. Please note also that, when not differently specified, the next
experiments have been conducted using the following parameters for the localization
systems:

• grey images scaled to 72×58 pixel

• IMA slots: 8

• CLAHE filtering

• digital zoom: 10% (ρin = 1.1)

• matching-threshold for destination hypotheses generation: εM = 0.5

• matching-threshold for heading angle correction: εϕ = 0.6

• minimum displacement before updating: 10° of rotation or 0.3m of translation.

5.2.1 Odometry error

First of all, we need to make some considerations about the use of the odometry. It is
well known that the information provided by such internal reading is subjected to
cumulative errors. These depend on the mechanical imprecision of the sensors for the
motion control, normally encoders, but also on external factors like slippage of the
wheels or collisions with possible obstacles. In our environment, these last factors
have a particular relevance. The whole floor of the environment available for the
tests, indeed, is covered with carpet that increases the slippage. Moreover, at
intervals of about two meters from each other, there are small griddles for the heating
system and every time the robot moves on them, it is shaken because of their small
gaps. To have an idea of the unreliability of the odometry for medium-long path, we
can simply have a look to Figure 5.22 and Figure 5.23. On the first one it is
illustrated a rough map of the laboratory where the tests have been carried out and
the path followed by the robot, composed of eight topological nodes on a grid of
squares 1m×1m19. In the second one, it is shown the position given by the odometry
repeating three times the previous path, from 1 to 8. In practice, at the end of the
third round, when the robot was back to the initial node 1, the odometry reported a
position between 3 and 4. Nevertheless, it can be seen also that for short paths its
precision is quite reliable (for example between 1 and 4 in the first round) and can be
successfully used for improving the localization system.

19 Please note that some area of the laboratory, that might be look free on the map, was not available
for the presence of other object not represented, like chairs, cables or power suppliers.

54

1111

7777 6666

5555 4444

3333

2222 8888

Figure 5.22 Real path of the robot

Figure 5.23 Path given by odometry

5.2.2 Initial position and “kidnapped robot”

Before proceeding with the description of the experiments, we want to make clear
the independence of the localization procedure from the initial position, important
factor that distinguishes global localization from position tracking. When the
localization algorithm in Code 3.1 is executed for the first time, the activities are
equally distributed among all the possible topological positions, which means also
the origins set contains all the given nodes and each of them has an initial activity so
that the sum is 1. For the path in Figure 5.22, for example, the real initial position
was node 1, but at the first iteration of the localization algorithm it was supposed
node 5. Nevertheless, since at the beginning all the nodes were considered possible
origins, each one with activity 0.125, the correct position was estimated quickly. In
particular, as we will see in the following section, the value 0.125 is very low
compared to the mean activity of the next estimated destinations, therefore the initial
position was normally recognized in a few update steps, as soon as good observation
was available.
A similar consideration can be done for the so-called “kidnapped robot” case, that is
when the previous estimated location comes out to be completely wrong. Even in this
situation, since the localization system is strongly based on its place recognition part,
the correct position is recovered in a few update steps, provided that the robot is in
proximity of a recognizable place. In practice the kidnapping is resolved only by
destination hypotheses generated after a good observation, when one or more image
matches returns a value higher than the chosen threshold. For all the tests we did,
depriving the robot of the video input and repositioning it without influencing the
odometry, the correct destination was recovered in no more than two or three update
steps, starting from the moment the video was available and the current position was
close to a map’s node.

55

5.2.3 Localization with old panoramic images

As we already said at the beginning of the chapter, the laboratory where most of the
tests have been carried out is a square room20 of about 6×6m2. Looking at the map in
Figure 5.22, on the top and right edges there are ample wide windows, so the light
conditions changed significantly during the day, even with closed curtains. Most of
the furniture consists of similar desks and office chairs, identical computers, shelves
and a big cupboard. The desks in particular were the main cause of perceptual
aliasing. The bottom part of the room was also occupied by power-supplier, plugs
and cables, not illustrated on the map. In practice, the nodes 1-8 covered quite
uniformly most of the space available for the robot’s move. We will see later some
experiments conducted in a bigger environment, where we used a corridor and a
small entry adjacent to the laboratory.

In this first localization test, we provided the robot with a map of the possible
locations, containing the coordinates and the panoramic images relative to the eight
nodes of Figure 5.22. All the panoramic images used for the laboratory were two
days old; this means that several small changes in the environment, like different
positions of chairs, people and objects, introduced a significant noise on the place
recognition process. It is also important to note that, during this test, we kept the
robot always at a certain distance from the centre of the nodes, generally moving it
on an external perimeter about 30cm far from them. The reason was obviously
because we wanted to avoid the exact points where we got the panoramic images and
verify also the efficiency of the digital zoom. Therefore, we were not recognizing the
precise metrical position but the more general area currently explored. The only case
when the robot was exactly on node 1 is at the beginning of the first round, just to
speed up the initial localization as explained in 5.2.2. On the following Table 5.2 we
can observe a sequence of locations identified by the system at the tenth round. Each
line corresponds to a time-step for the execution of the localization algorithm, with
the node of the most probable position and relative activity. When no activity is
specified, it means there were not new destination hypotheses in that case and the
position was calculated only using the previous estimation and the odometry
displacement, as explained in 3.8. In this trial the topological positions were always
correct. Looking at Table 5.2, it is worthwhile to note that for the node 3 there are
not activities because the observations at that moment did not return a matching-
value higher than the threshold. In practice, during the path between node 2 and 4 the
robot could rely only on the past history and the current odometry. One could also
have expected a higher number of updates, since the distance covered in one round
was longer than 8m (perimeter of the path 1-8) and the minimum displacement in
translation was 0.3m, as we already said. Considering also that several updates were
done just turning around the corners, for a minimum angle step of 10°, the theoretical
number of localizations should be even higher. In reality there were many other
factors that introduced a delay between two consecutive update steps; some of them
were the video-processing time, the wireless network communication, the data

20 Actually, on the bottom edge of Figure 5.22 there is another small area part of the laboratory, about
2×4m2, but it was interdicted to the robot by a step and isolated with a grey panel 1.5m high. Eventual
changes inside this area did not influence the vision system.

56

logging and, last but not least, the fact that the robot was continuously moving,
without stopping at any particular location.

node activity node activity

1 0.380993 5 0.569589
1 0.549102 5 0.277236
1 - 6 0.33679
2 0.386157 6 -
2 - 7 -
3 - 7 0.430568
3 - 7 0.332822
4 - 8 0.55233
4 0.536337 8 -
4 0.572498 8 0.309363
4 - 8 0.326927
5 0.520742 1 0.199804

Table 5.2 Localization steps after ten rounds

Unfortunately the localization did not always succeed completely. On a total amount
of 255 update steps, we registered 12 cases of errors. Among them, 11 were within
1m, that is the robot thought to be on a topological place adjacent the real one. In one
occasion the estimated position was completely wrong. A detailed description of
these cases is reported in the following Table 5.3 and Table 5.4.

Number of update steps 255

Destinations 193 (mean activity: 0.4633)

Normal 153 (mean match: 0.6448)

Virtual 40

Supposed places 62

Table 5.3 Description of the update steps

Error cases 12

Adjacent position 11

Node 6 6

Node 7 3

Node 5 1

Node 2 1

Completely wrong 1

Node 4 (real was 1) 1 (match: 0.644425 - activity: 0.289293)

Table 5.4 Description of the error cases

57

On Table 5.3 we can observe that during the localization process in 193 cases the
returned position was a destination generated by the algorithm, therefore involving
the update of the activities. Of these, 153 where normal destinations, for which the
observation gave a matching-value (in mean 0.6448) higher than the threshold. The
other 40 were instead virtual destinations, as described in 3.2.1. Before analysing the
errors for which the real position was an adjacent one, let us consider the last case of
Table 5.4, which is the completely wrong position. The main reason of such fail is a
situation of perceptual aliasing with a high (wrong) matching-value of 0.644425,
comparable to the mean of the correct observations, together with a bad combination
of odometry and origins. As can be see from the usual map in Figure 5.22, the robot
moved from node 8 to 1, but the scene pointed by the camera (a desk in front of a
window) could look very similar in case the robot moved from node 3 to 4.
The other cases, besides being smaller and perhaps more “acceptable” for a dense
topological disposition like ours, are also easier to understand. We saw from Table
5.4 that the most frequent error was on node 6, in a sense that it has been omitted
several times on the short path 5→6→7, as indicated by the grey arrow between
node 5 and 7 in Figure 5.24. The main reason was the fact we were moving
following an external perimeter, similar to the grey dashed line in figure, in order to
avoid the exact centres where the panoramic images had been reconstructed. It was
possible therefore that sometimes, for its position on the concave part of the path,
node 5 was omitted. More significantly are instead the other five error cases, which
basically suffered of a common lack. These errors are the omission of the nodes 7, 5
and 2, as indicated by the remaining three grey arrows in Figure 5.24, respectively
6→8, 4→6 and 1→3. For them, it has been noted that the problem is mainly due to
the way we reset the odometry each time a destination has been estimated. Let us
consider the last error, for example. When the robot is moving from node 1 to node
2, in the middle of the tract it might happen that a new observation (and relative
update process) returns again node 1 as current position. Consequently the odometry
is reset (with the meaning we gave in 14) to the coordinates of node 1. At that point, if
no good observations are available passing through node 2, the robot can estimate its
position only using the odometry21, which could still return node 1 as more
proximate. This position would be eventually kept until a new observation
recognizes node 3 or the displacement given by the odometry is long enough.

21 Note that a position given exclusively by the odometry means there are not destinations generated
by IMA, hence there is not any reset to the coordinates of such position. See the localization algorithm
in Code 3.1.

58

1111

7777 6666

5555 4444

3333

2222 8888

Figure 5.24 Real path of the robot and error cases

As can be seen on the figure, the same consideration could be applied to the other
error cases. This suggests a more accurate use of relative displacements should be
thought, maybe including a distinction between observations with or without zoom,
so to reduce excessive resetting of the odometry.

A last note about the results obtained for this experiment. We would like to
remember that the panoramic images used for the place recognition had been
reconstructed two days before, as we already said. The same tests performed with
fresh images, taken just one or two hours before, gave much better results and no
cases of error. This because with updated information the cases of perceptual aliasing
were significantly reduced and the few situations with such ambiguity were resolved
correctly by an enhanced matching-value. For example, the mean match for a series
of correct destinations, generated during a trial with new panoramic images, was
0.73275. Compared with the previous mean, 0.6448, this denotes an increase of
about 14% in the matching process. This improvement make us think that a future
implementation of active localization, where the robot keeps constantly up to date the
internal panoramic images, could successfully handle big changes in the
environment.

5.2.4 Localization performances for dynamic environment

The same procedure has been used to test the localization system in a dynamic
environment. This time we made use of updated panoramas, reconstructed the same
day. The robot performed again 10 rounds following the path of Figure 5.22, still
moving on an external perimeter so to avoid the exact centres of the topological
position. During these trials, two people were continuously moving around the robot,
sometimes walking or standing in front of the camera and sometimes simply sitting

59

on the chairs. Examples of such situations are illustrated in the robot’s snapshots of
Figure 5.25.

Figure 5.25 Snapshots of dynamic environment

With the same method adopted for the previous experiment, we can describe this
new one with the next Table 5.5. Observing it, we can notice that the results are very
similar to the previous case, where the panoramic images were older but the
environment was also less influenced by the people.

Number of update steps 253 (90 involving people presence)

Destinations 184 (mean activity: 0.4986)

Normal 150 (mean match: 0.6654)

Virtual 34

Supposed places 69

Table 5.5 Description of the update steps

From the table above, we can see we had almost the same number of total updates, as
expected since the length of the path was similar. In particular, checking all the
snapshots taken during those updates, we found in 90 of them the scene was partially
or completely obstructed by the people. In practice, for about 35% of the path the
robot had to handle the loss of information due to human presence. In most of the
cases, when the view was just partially obstructed, the localization system was able
to correctly distinct the place using the remaining part of image. When instead a
person occupied the whole camera’s view, the robot relied only on the odometry
from the last recognized place, so just “supposing” to be on a certain position. An
example of such situation is explained by the sequence in Figure 5.26, where the
robot identified the correct place by the first snapshot and then, still moving with the
person in front of the camera, estimated the correct positions just with the odometry
until two nodes ahead, when finally the person moved out of the view.

Figure 5.26 Complete obstruction of the camera’s view

60

In this experiment the total number of failures was considerably lower than in the
previous one: 3 incorrect positions against 12. This is mainly due to the improvement
given to the place recognition process with the updated panoramic images. However,
the errors occurred during this localization test are in some way more critical, as for
all of them the correct positions were not on adjacent nodes (at least with respect to
the sequence of the path in Figure 5.22). It seems anyway that the errors, in terms of
metrical distance, were limited by a radius of 1.5m, about the length of a square’s
diagonal (remind the nodes laid on a grid of squares 1m×1m). Since the objective of
this experiment was verifying the performances of the localization system when
considerably disturbed by people presence, in Table 5.6 we separated the errors
occurred while someone was obstructing the camera’s view from that one happened
without human interference.

Error cases 3

People 2

Node 3 (real was 6) 1 (match: 0.678683 - activity: 0.330785)

Node 3 (real was 5) 1 (match: 0.570505 - activity: 0.512187)

No people 1

Node 1 (real was 7) 1 (match: 0.600372 - activity: 0.517251)

Table 5.6 Description of the error cases

The first two errors are relative to the first two images in Figure 5.27, where the
presence of a person obstructed part of the scene. The reduced video information
obtained from the real positions node 6 and 5 has not been sufficient to resolve the
perceptual aliasing with node 3, even with the help of odometry. The third error case,
relative to the last snapshot in Figure 5.27, did not depend on people presence but
just on the poor quantity of features of that particular scene.

Figure 5.27 Snapshots of error cases

Analysing the detailed log of the update processes, we noted that the correct
positions were always present among the current generated destinations.
Unfortunately, in all the three cases the odometry information has not been strong
enough to reduce the influence of the wrong hypothesis. This is probably due to the
same lack revealed in 5.2.3, that is the rough reset of the odometry, combined also
with the particular dense distribution of topological nodes.

61

5.2.5 Perceptual aliasing

We know that perceptual aliasing is one of the biggest problems in place recognition,
independently of the sensor used for the observation of the environment: camera,
sonar, laser and so on. With this example we want to show a case where the
localization algorithm resolved a situation of perceptual aliasing. The robot was in
the position characterized by node 1 on Figure 5.22 and performing a rotation. At a
certain time-step, two different destination hypotheses have been generated. These
were the real position of the robot, node 1, and another possible destination, node 2.
For the latter IMA gave a matching-value higher than for the correct place. However,
after the update process, the destination with the highest activity was in effect node
1, the right position. In Table 5.7 are shown some values recorded during such
update process. On the left there are the possible origins, as result of the previous
update, with their relative activities. The node with the symbol v is the virtual-origin
(previous virtual-destination), which is equivalent to the normal origin in this
particular case. On the right of the table there are the possible destinations, with a
matching-value higher then 0.5. Again, the destination with the symbol v is the
virtual one.

Origin Destination

node activity node match (IMA) activity

1 0.470396 1 0.611119 0.418523

1v 0.529604 2 0.65027 0.249694

 1v 0.5 0.331782

Table 5.7 Activities update for solving perceptual aliasing

The destination highlighted is most active and also the correct one in reality. We see
that believing only on the video information would have made the localization fail,
since node 2 had the highest matching values. Situations like this happened quite
often, in particular when the camera was pointing to a scene considerably changed
from the original one, or when some temporary obstacle, like a person, was
obstructing the view.

5.2.6 Virtual destination

In the following case, we illustrate an example where the virtual-destination,
introduced in 3.2.1, helps to localize the robot correctly, despite the absence of a
correct observation. Referring again to the path illustrated in Figure 5.22, the robot
moved from node 8 to 1. In this case it was not able to recognize the correct position
with the vision. Instead, it got an observation saying that it was in node 2 with a
matching-value 0.541098. Nevertheless, at the end the virtual-destination 1v had the
higher activity and the localization succeeded. The exact values involved in this step
are reported below on Table 5.8.

62

Origin Destination

node activity node match (IMA) activity

1 0.235045 2 0.541098 0.441696

8 0.341719 1v 0.5 0.558304

4 0.129596

8v 0.29364

Table 5.8 Activities update for virtual-destination choice

5.2.7 Heading angle correction

We saw in 3.7 the importance of the heading angle, directly connected to the
orientation of the internal frame of reference. We also showed in 5.1.4 that it is
possible to retrieve the absolute orientation of the robot using the panoramic images,
whenever these have been reconstructed starting from the same absolute direction.
This orientation was not influenced by cumulative errors, like the odometry, and its
precision was good enough for correcting the internal heading angle. With the
following experiment we want to demonstrate that in effect this method has been
applied successfully in our localization system. In some way, it can substitute a
compass whenever this is not available or the magnetic disturbances in the
environment do not permit its use. Referring to the next Figure 5.28, we started from
a situation where the robot was corrected localized on node 1 and the odometry reset.
Then we covered the camera view, so that the robot was not able to use the video
input and could only localize itself with the odometry, as if it was “blind”. Still from
node 1, we turned the robot of about −90° (quarter of clockwise revolution) without
influencing the odometry and then we made it performing the same complete path we
used for the previous experiments.

1111

7777 6666

5555 4444

3333

2222 8888

Figure 5.28 Wrong heading angle

1111

7777 6666

5555 4444

3333

2222 8888

Figure 5.29 Heading angle corrected

63

In Figure 5.28 we can see the real path indicated by the arrows and the path given by
the odometry with the grey line. As expected, the shape is almost similar, but the
odometry’s is clearly rotated of 90°. Of course, while the robot moved without using
vision, the nodes estimated with the only odometry were completely wrong, in order
1→6→7→8→1→2→1 (we omitted here repetitions of the same node). After having
completed the first round, we uncovered the camera and let the robot relocalize itself
on node 1 with a couple of update steps. Finally we obstructed the camera again and
moved the robot following the previous path. This time the odometry’s track was
well oriented, as shown from the grey line in Figure 5.29, and the reported sequence
of nodes was 1→2→3→4→5→6→7→8→1. This means also the internal frame of
reference was correctly aligned with that one of the map, thanks to the last extraction
of the heading angle from the panoramic image of node 1.

5.2.8 Localization in a bigger environment

So far we presented results for experiments conducted in the laboratory. Though such
room was very challenging, in particular for the presence of repetitive furniture and
difficult light conditions, we wanted to show the performance of the localization
system in a bigger environment. We then mapped an adjacent corridor connected to
the laboratory through a small entry, as shown in Figure 5.30. The new added places
are quite narrow, just 2×2m2 for the entry and about 2×10m2 for the corridor, and
both illuminated only by artificial light. We already saw, in the previous Figure 5.10,
an example of panorama taken from the corridor.

1111

7777 6666

5555 4444

3333

2222 8888

9999

10101010 11111111 12121212 13131313 14141414 15151515

Figure 5.30 Map of laboratory and corridor with reference path

For this enlarged environment we fixed a new path of reference, extended that one
used until now in a way to cover all the length of the corridor. This path is indicated
by the arrows in Figure 5.30. In practice, starting again from node 1, the robot
followed again the sequence of nodes from 1 to 8. There it changed to 9 and moved
towards the end of the corridor, which is node 15. Finally it came back to reach again

64

node 1. It is interesting to have a look to the path measured by the odometry after just
one trial. We can see from Figure 5.31 that, instead of terminating on the starting
point node 1, the final measure reported a position several meters far and with an
error of almost 90° for the direction (compare the orientation of the final track with
the direction of the real sub-path 9→8→1).

Figure 5.31 Odometry error for path including corridor

Below we report some data related just to one trial, since successive repeats of the
same path returned similar results and are therefore not very significant. Like for the
former cases, the robot moved always avoiding the exact centre of the topological
places. All the parameters of the localization algorithm (slots, zoom, thresholds, etc.)
were the same previously adopted for the laboratory. The only difference was the use
of additional panoramic images for the added nodes (together with an updated
topological map, of course). Here some specification must be done. Between two
different rooms there are doors, not represented on the map, so one door between the
laboratory and the entry and another one for going into the corridor. The panoramas
of the nodes between 1 and 8 had been reconstructed in the same day of the
experiment but with closed doors. For node 9, instead, we provided the robot with a
new panoramic image taken with the doors open. All the remaining nodes, from 10
to 15, had images taken with closed doors. This condition, besides the fact that made
us save some time for the panoramas’ reconstruction, was useful to introduce some
additional noise on the place recognition. Furthermore, the latter images had been

65

taken a few weeks before but this did not influence the place recognition since
practically there has not been any change in the entry or the corridor. Details of this
experiment, after following the new path once, are reported in Table 5.9

Number of update steps 51 (30 in the laboratory, 21 in the entry / corridor)

Destinations 33 (mean activity: 0.5026)

Normal 23 (mean match: 0.6642)

Virtual 10

Supposed places 18

Table 5.9 Description of the update steps for path including corridor

From the table above, we can see that the averages of activity and matching-value are
in practice the same as the previous experiment conducted only in the laboratory.
What is considerably changed is the number of normal destinations compared with
the virtual ones and the supposed places. The decrease of normal destinations means
that in general the place recognition was less reliable and more credibility has been
done to the odometry information. Most of the cases of virtual destination or
supposed place happened inside the corridor and the entry, showing the difficulty of
recognizing places in narrow places like those. Nevertheless, the reduced number of
good observations was enough for the localization to succeed. The only error indeed
was missing node 10 (the small entry) when the robot was coming back from the
corridor. This was probably due to the doors, closed instead that open like in the
recorded panorama, and to the inaccurate odometry reset, as we already mentioned in
5.2.3 and 5.2.4.

5.2.9 Some considerations on the experiments

We would like to conclude the experimental evaluation of the localization system
with some clarifications. First of all, the reader should have noted that for the whole
set of experiments here presented we always made use of the digital zoom. Indeed,
such feature was an essential component for the success of the localization, since
without it the system would not have been able to identify most of the topological
nodes, at least those for which the robot did not pass through exactly.
We want also to specify that in these experiments we made use of fixed, circular
paths just for having simple and clear references. In reality, the number of tested
routes was much higher, including more or less nodes, fixed or random paths and so
on. A particular case that is worthy to mention is the random autonomous navigation
inside the laboratory using an additional omni-directional vision sensor. This device
has been designed by the author and utilized by a colleague for obstacle-avoidance
[MDA04]. Details on the design are reported in Appendix 0. During the navigation
inside the laboratory, with the presence of fixed or moving obstacles, the localization
software was also active and kept track of the current robot’s position. Even if still in
an early stage, the successful combination of the localization and the obstacle-

66

avoidance modules let us hope in promising results for a more sophisticated
navigation system in the future.

67

6 CONCLUSIONS

6.1 Evaluation

We presented an image-based localization system for indoor environments that
makes use of a simple unidirectional camera and odometry information. Our
approach is strongly based on place recognition, for which we developed a new
algorithm that makes use of classical image processing. The same algorithm permits
also the generation of panoramic images used for mapping the environment. Within a
probabilistic framework, the odometry is then integrated with the video information
to resolve cases of ambiguity. Finally, the software implementation of the
localization system has been thought in a way to be as more general as possible, so to
be easily portable on any robot platform provided with a camera.
The image-matching algorithm here adopted does not rely on particular features of
the environment. Compared to other methods based on landmarks, either natural or
artificial, our system takes into account much more information for the place
recognition task. This is true also if we consider solutions based on histogram
matching. Furthermore, we do not make use of any complicated sensor model for our
vision system, which is often one of the critical points in the performances of many
localization approaches.
The procedure for generating panoramic images and the relative heading angle
extraction gave remarkable results, considering of course the hardware limitations we
had to deal with. The numerous experiments presented show also the robustness of
our approach, even in case of dynamic environments, making the localization
suitable for service-robot applications.
However, from our results arose also the necessity of improving the image-matching
algorithm to make it less sensible to occlusions and light conditions. A more
appropriate way of resetting the odometry would also help to reduce considerably
cases of failure.

6.2 Recommendation for further work

Besides resolving the lacks mentioned above, there are two main topics that would
be worth exploring in the future: the automatic update of panoramic images and the
use of incremental digital zoom. The first one could certainly boost up the place

68

recognition, becoming also a natural step towards a complete system of self-
localization and map-learning (SLAM). The second one is an innovative technique
that we have just introduced but which shows great promise to improve the
effectiveness of the localisation. By adding incremental digital zoom to the frame
captured by the camera indeed, we can identify “off node” map locations. It would
be interesting extending this technique to support interpolation of location between
map nodes.

69

ACKNOWLEDGEMENTS

There are several people I would like to thank. First of all my supervisor Prof. Enrico
Pagello, for the education and the continuous support I received from him in these
years, and all the components of the Intelligent Autonomous Systems laboratory. The
next is Prof. Stefan Wermter and his staff at the Centre for Hybrid Intelligent
Systems, where I had the pleasure to work during the last year. A special thank to Dr.
Cornelius Weber for his help and precious suggestions.

70

71

APPENDICES

A Normalized Correlation Coefficient

Normalized Correlation Coefficient, or simply NCC, is a measure of the similarity
between two images. The equation of NCC is as follows:

[] []

[] []∑ ∑

∑

−++⋅−

−++⋅−
=

ba ba
mm

ba
mm

yxIbyaxITbaT

yxIbyaxITbaT

yxc

, ,

22

,

),(),(),(

),(),(),(

),((A.1)

∑⋅
=

ba
m baT

hw
T

,

),(
1

 (A.2)

∑ ++
⋅

=
ba

m byaxI
hw

yxI
,

),(
1

),((A.3)

T is the template image, of dimension w·h pixel, and Tm is the relative mean
brightness. I is the reference image, equal or greater than T, and Im(x, y) is the relative
mean brightness calculated for an area w·h starting from the pixel (x, y).
NCC is normalized since the output range is in the interval [−1, +1]. However, for
our purpose, such range is modified to lay on [0, +1]. This is done with the following
simple conversion:

2

1),(
),(* += yxc

yxc (A.4)

72

B The PeopleBot robot

The robot used for the experiments is a Performance PeopleBot™ produced by
ActivMedia Robotics and available at the Centre for Hybrid Intelligent Systems,
University of Sunderland. This robot, which is based on a standard two-wheels
Pioneer-2 platform, is particularly indicated for studies and applications involving
human-robot interaction. The PeopleBot indeed is quite tall (the height of the top
deck is 1115mm) and rich of devices that make it feasible for applications including
navigation, vision, speech and simple objects handling. Below we illustrate the main
features of the robot; they can also be observed on the draft in Figure B.1.

BASIC FEATURES

- Computing hardware: integrated PC with CPU Pentium III, 700MHz and 256MB
of RAM. Support for PC104 expansion cards.

- Operating Systems: RedHat Linux and MS Windows

- Networking: integrated PCMCIA Wireless Card (with additional antenna on the
top deck) and RJ-15 connector for Ethernet communication

- Autonomy: three batteries 12V, 7Ah (total 252Wh)

SENSORS / INPUT

- Odometry: quadrature shaft encoders, 500 ticks per revolution

- Vision: colour PTZ camera, video resolution 380.000 NTSC pixels

- Audio: two microphones

- Proximity: sonar arrays (bottom and front-top of the robot), protective IRs and
bumpers

- Object-detectors: IR table-sensors and gripper breakbeams

ACTUATORS / OUTPUT

- two DC motors (wheels)

- gripper (2 d.o.f.) with grasping pressure control

- two speakers

A real image of our robot, called MIRA, can be observed in Figure B.2, where it is
also equipped on the top with an omni-directional vision sensor for obstacle
avoidance (see Appendix C).

73

Figure B.1 PeopleBot features

Figure B.2 MIRA robot

74

C Omni-directional vision sensor for obstacle
avoidance

In Mobile Robotics, an essential part of the navigation task is the Obstacle
Avoidance module. Nowadays, many techniques still adopt simple sonar sensors.
Unfortunately these are proved to be very unreliable in the mid-long range and, even
in the short range, the quality of the measures strongly depend on the physic
characteristics of the obstacles (i.e. material and shape). In this sense, an omni-
directional vision sensor is a valid alternative. Therefore we designed and
implemented an inexpensive omni-directional camera based on a simple conical
reflector.

C.1 An overview of the omni-directional vision sensor

The whole system consists basically of three main components: a camera, a reflector
and a frame to sustain and mount them on the robot. The way it works is quite simple
and is illustrated in Figure C.1. On the top there is the reflector, the shape of which
could be conical, hemi-spherical, parabolic or any user defined axial symmetric
profile. The surface of the reflector is polished to make it into a mirror. Below the
mirror, a camera is mounted with the optical axes aligned with the axes of the
reflector. The camera captures the image mirrored by the reflector, which provides a
360° view of the environment around the robot. The conical view volume and image
transfer function depends upon the shape of the reflector. The system can be realized
with relative inexpensive components, whilst enabling a high quality of images to be
retrieved. In our design, the use of an aluminium reflector and a simple webcam give
remarkable results. The reflector is aluminium made, built and polished on Numeric
Control machines. The camera, a compact commercial USB webcam with a
resolution of 640x480 pixel and a frame-rate of 30 fps, is suitable for visual
processing in real-time tasks. Both these components are sustained by a robust frame,
built using light materials like aluminium and plexiglas type. Several adjusters are
provided to align the optic axes of the reflector and camera.

C.2 Design of the conical mirror

The easiest shape of the reflector, both for the realization and for the image
interpretation, is a cone. The dimensions of the conical reflector must be calculated
considering its height from the floor and the range of the panoramic view we want to
obtain. Of course, we must take care of some constraints given by the available
technology. Using a general procedure that consists of three simple steps, the
dimensions of a conical reflector can be easily calculated. All the symbols in the
following formulas are explained by Figure C.1, Figure C.2 and Figure C.3.

75

1) Given d and H, calculate the angle γ :

=
H

d
arctan

2

1γ (C.1)

2) Given D, calculate the angle β (we considered r << H and h << H):

γβ 2arctan −

≅
H

D
 (C.2)

3) Finally, the next relation can be used to dimension the reflector:

1
tantan

1 −=
γβh

l
 (C.3)

From the last step, fixing one dimension, l or h, it is possible calculate the other one
(note also that γtan⋅= rh).

h

r

γ

Figure C.1 Dimensions of the conical reflector

β l

Figure C.2 Dimensions of the system camera-reflector

76

Robot

d

D

H

Figure C.3 Height and range of view of the omni-directional vision sensor

C.3 Camera and supporting frame

The system can be realized with relative inexpensive components, whilst enabling a
high quality of images to be retrieved. In our design, the use of an aluminium
reflector and a simple webcam give remarkable results. The reflector is aluminium
made, built and polished on Numeric Control machines. The camera, a compact
commercial USB webcam with a resolution of 640x480 pixel and a frame-rate of
30fps, is suitable for visual processing in real-time tasks. Both these components are
sustained by a robust frame, built using light materials like aluminium and plexiglas
type. Several adjusters are provided to align the optic axes of the reflector and
camera. The whole omni-directional vision sensor is shown in Figure C.4 and also in
the previous Figure B.2, where is mounted on the robot. Finally, Figure C.5 reports
an example of omni-directional image taken with our sensor.

Figure C.4 Omni-directional
vision sensor

Figure C.5 Example of omni-directional
image

77

BIBLIOGRAPHY

[BCF99] Burgard W., Cremers A.B., Fox D., Hähnel D., Lakemeyer G., Schulz
D., Steiner W., Thrun S. (1999). Experiences with an interactive
museum tour-guide robot. Artificial Intelligence 00 (1999), pp. 1-53.

[BFHS96] Burgard, W.; Fox, D.; Hennig, D.; and Schmidt, T. 1996. Estimating
the absolute position of a mobile robot using position probability grids.
In Proceedings of the Thirteenth National Conference on Artificial
Intelligence. Menlo Park: AAAI.

[DMS02] Duckett T., Marsland S., Shapiro J. (2002). Fast, On-Line Learning of
Globally Consistent Maps. Autonomous Robots 12, pp. 287-300.

[DN01] Duckett T., Nehmzow U. (2001). Mobile robot self-localisation
using occupancy histograms and a mixture of Gaussian location
hypotheses. Robotics and Autonomous Systems 34 (2001), pp. 117–
129.

[DN01] Duckett T., Nehmzow U. (2001). Mobile robot self-localisation using
occupancy histograms and a mixture of Gaussian location hypotheses.
Robotics and Autonomous Systems 34 (2001), pp. 117-129.

[DPLR77] Dempster A.P., Laird N.M., Rubin D.B. (1977). Maximum likelihood
from incomplete data via the em algorithm. In Journal of the Royal
Statistical Society, volume 39 of B, pp. 1-38.

[EFR01] Enderle S., Folkerts H., Ritter M., Sablatnög S., Kraetzshmar G., Palm
G. (2001). Vision-based Robot Localization using Sporadic Features.
Workshops Robot Vision 2001, Auckland, New Zealand.

[FM00] Filliat D., Meyer J.A. (2000). Active perception and map-learning for
robot navigation. In “From Animals to Animats 6”, Proceedings of the
6th Conference in Simulation of Adaptive Behavior. The MIT Press.

[FM02] Filliat, D., & Meyer, J. A. (2002). Global localization and topological
map learning for robot navigation. In From animals to animats 7. The
seventh international conference on simulation of adaptive behavior
(SAB02).

78

[FM03] Filliat D., Meyer J.A. (2003). Map-based navigation in mobile robots –
I. A review of localization strategies. Cognitive Systems Research 4
(2003) 243-282.

[Fox98] Fox D. (1998). Markov Localization: A Probabilistic Framework for
Mobile Robot Localization and Navigation. Doctoral Thesis. Institute of
Computer Science III, University of Bonn, Germany.

[GBFK98] Gutmann J.S., Burgard W., Fox D., Konolige K. (1998). An
Experimental Comparison of Localization Methods. Intl. Conference on
Intelligent Robots and Systems (IROS-98).

[GF02] Gutmann J.S., Fox D. (2002). An experimental Comparison of
Localization Methods Continued. Proceedings of the 2002 IEEE/RSJ
Intl. Conference on Intelligent Robots and Systems (IROS-02).

[GM00] Gini G., Marchi A. (2000). Indoor Robot Navigation with Single
Camera Vision. Proceedings of Pattern Recognition in Information
Systems (PRIS 2002).

[JK01] P. Jensfelt and S. Kristensen (2001). Active global localisation for a
mobile robot using multiple hypothesis tracking. IEEE Trans. on
Robotics and Automation, 17(5), pp. 748-760.

[KJ03] Kristensen S., Jensfelt P (2003). An Experimental Comparison of
Localisation Methods, the MHL Sessions. Proceedings of the 2003
IEEE/RSJ Intl.Conference on Intelligent Robot and Systems.

[KMS02] Kidono K., Miura J., Shirai Y. (2002). Autonomous visual navigation
of a mobile robot using a human-guided experience. Robotics and
Autonomous Systems 40, pp. 121–130.

[MDA04] Muse D.A. (2004). Navigation and Obstacle Avoidance Using an
Omni-Directional Camera. MSc Project Dissertation, University of
Sunderland.

[MIR03] Enderle S., Kraetzschmar G., Mayer G., Pages G., Sablatnög S., Simon
S., Utz H. (2003). Miro Manual - version 0.9.4. University of ULM,
Germany.

[MMA99] Maxwell B.A., Meeden L.A., Addo N., Brown L., Dickson P., Ng J.,
Olshfski S., Silk E., Wales J. (1999). Alfred: The Robot Waiter Who
Remembers You. AAAI Conference 1999.

[MO88] Moravec, H. P. 1988. Sensor fusion in certainty grids for mobile robots.
AI Magazine 61–74.

[MPP04] Menegatti E., Pretto A., Pagello E. (2004). A New Omnidirectional
Vision Sensor for Monte-Carlo Localization. In Proceedings of
RoboCup Symposium 2004 (to appear)

79

[OHD97] Oore S., Hinton G.E., Dudek G. (1997). A mobile robot that learns its
place. Neural Computation 9(3), pp 683-699.

[PP02] ActivMedia Robotics (2002). Performance PeopleBot™ Operations
Manual. Version 1.0, Sept. 2002

[Pre04] Pretto A. (2003). Localizzazione di Monte Carlo in ambiente RoboCup.
Laurea Thesis, Università di Padova, Italy.

[TBB99] Thrun S., Bennewitz M., Burgard W., Cremers A.B., Dellaert F., Fox
D., Hähnel D., Rosenberg C., Roy1 N., Schulte J., Schulz D. (1999).
MINERVA: A Second-Generation Museum Tour-Guide Robot.
Proceedings of the IEEE international conference on robotics and
automation (ICRA-1999). IEEE Press.

[Thr98] Thrun S. (1998). Finding landmarks for mobile robot navigation. In
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA 98).

[Thr99] Thrun S. (1999). A bayesian approach to landmark discovery in mobile
robot navigation. Machine Learning.

[UN00] Ulrich I., Nourbakhsh I. (2000). Appearance-Based Place Recognition
for Topological Localization. IEEE International Conference on
Robotics and Automation (ICRA 2000), pp. 1023-1029.

[XYOH03] Xuan Dao N., You B.J., Oh S.R., Hwangbo M. (2003). Visual Self-
Localization for Indoor Mobile Robots Using Natural Lines.
Proceedings of the 2003 IEEE/RSJ International Conference on
Intelligent Robots and Systems.

