

A peek into a crab's optic lobes that support motion detection, visuallyguided behaviors and memory.

Julieta Sztarker

Universidad de Buenos Aires-CONICET Argentina

The crab Neohelice granulata

1 cm

Semiterrestrial (estuarine) crab. Very adapted to changes in salinity, humidity and temperature.

In the lab: Visual danger stimulus (VDS)

Videos: Fernando Locatelli

Central nervous system

Mechanic stability

Easy access to the brain in the intact animal

Lobula giant neurons (LG)

LG Properties

Preferential response to moving objects. Most of them process mechanical information as well

LG response anticipates escape response in 120 msec

LG Properties

Binocular visual integration: ipsilateral and contralateral responses are very similar

LG Properties

Reflect the seasonal changes observed at the level of escape response

LG Properties - Learning

They reflect the learning-induced changes in crab's behavior induced by a high frequency (massed) training that generates a short memory (minutes) and by a spaced training that produces a long-term memory (days).

Short-term memory (test: 15 min post-training)

Tomsic et al, 2003. J Neuroscience

Long-term memory (test: 24 hs post-training)

Tomsic et al, 2003. J Neuroscience

LG Properties - Learning

Support crab's ability for generalisation and stimulus specificity produced by spaced training

Sztarker & Tomsic, 2011 J Neurosci

Looming detection

MLG2

Oliva and Tomsic, 2014; 2016

16 MLG1 elements

Medan et al. 2015 J. Neurosci

Medan et al. 2015 J. Neurosci

They are easily spotted even in unstained preparations

Locust- synapse organisation in looming detector neurons

Both LGMD 1 and 2 show synapses that occur in pairs, with the presynaptic densities of neighbouring afferent processes lying adjacent to one other. In each case, one postsynaptic profile belongs to the LGMD and the 2nd to the neighbouring afferent process, which also makes synapses upon both the LGMD and the 1st afferent.

This organisation is thought to provide both the lateral inhibition and the excitation needed to explain the collision sensitive nature of LGMD neurons.

Rind and Simmons, 1998 Rind and Leitinger, 2000

3rd instar locust:

We think that we can use unstained crab preparations where as in the locust, the big profiles of MLG1 neurons will be evident. Yair Barnatan secondment plan:

Find out if the synaptic organization of the transmedullary neurons synapsing with MLG1 neurons reflects the diadyc configuration found for locust LGMDs.

Rind and Simmons, 1998

In flies the brain area involved in optic flow analysis and in commanding optomotor responses and course control is the lobula plate.

Bengochea, Berón de Astrada, Tomsic & Sztarker. J Comp Neurol 2017

Retinotopic inputs from the medulla

Retinotopic inputs from the lobula

Bengochea, Berón de Astrada, Tomsic & Sztarker. J Comp Neurol 2017

From a functional perspective:

 In flies there are 4 functional layers, each responding to one of the four cardinal directions Calcium imaging experiments

•In flies, the lobula plate tangential cells (LPTC) involve an horizontal and vertical system each represented by different cells.

Electrophysiology: intracellular recordings and staining

•LP has been related to the performance of optomotor responses and to course control

Ablation experiments (evaluate optomotor responses in ablated and sham animals)

Behavioral experiments evaluating optomotor responses in crabs

If eyestalks are glued in a fixed position crabs perform optomotor responses by rotating with the whole body (easily recordable).

We then occluded the vision of one eye or the other by using a removable cap.

Virtual stimulation with an optic flow pattern

Virtual stimulation with an optic flow pattern

High responses in monocular crabs are to front to back movement (FTB) in the ipsilateral field of view \sim 0.71

Neohelice

Uca

Clear eye dominance corresponding to the large claw

Eye dominance in *Neohelice*: in all the experiments right eye driven OR were stronger

dominance and claw size?

To explain these results we propose that the centre integrating and commanding optomotor responses should receive information from direction selective neurons responding to FTB motion as preferred stimulus .

vision

→ Null +preferred → Moderate OR

Direction selective neurons (ipsilateral receptive field)

Single bar (right monitor)

But these neurons don't respond steadily to wide field motion

Plastic vs sustained response

We are planning to record neurons from our candidate region to be involved in optic flow analysis (the lobula plate) to see if we can find directional neurons with strong responses to wide field motion and sustained responses. Yair Barnatan Florencia Scarano Mercedes Bengochea María Grazia Lepore

Martín Berón de Astrada Daniel Tomsic

Laboratory of Neurobiology of Memory

Grants: Universidad de Bs As FONCyT CONICET