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The SAE problem

Aim: Estimate finite population linear & non-linear parameters e.g.
averages, medians, percentiles.

User requirements for more disaggregated estimates have been
increasing in the past 10 years or so. Now we need estimates for
many small areas:

I Geographic areas: municipalities, districts, neighbourhoods,...

I Domains: combinations of factors e.g. Age, Ethnicity, Labour
Force status,...by area.

For inference to work well, s needs to be big enough.

I Areas with 2, 3 observations?

I Areas with no observations at all?

SAE addresses the problem of small domain/area sample sizes.

2 / 27



Three stages

Stage I. Specification

1. Specify user needs.

2. Specify a set of target indicators to be estimated and a target
geography/set of domains.

Stage II. Analysis/Adaptation

3. Initial estimates.

4. Use of explicit models.

Stage III. Evaluation

5. MSE estimation.

6. Model and Design based evaluation.

7. Further evaluation tasks.
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Stage I. Specification

Target geography

A chosen level of geography should provide meaningful
(background of the problem) and useful (data availability)
estimates.

Follow in decreasing level of aggregation and avoid the temptation
of getting unrealistically low.

I SAE is a prediction problem. Access to good auxiliary data is, in
most cases, crucial.

I Survey, Census, Administrative data can be used for modelling and
evaluation purposes.

I Consider the coverage of the sources in relation to the target
geography.
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Example 1: Estimating non-linear indicators in the State of
Mexico (EDOMEX)

Stage I. Specification
I Estimate income related

indicators for municipalities.

I Geography is fixed, defined by
the user.

I 125 municipalities in State of
Mexico. Only 58 are included in
the survey. For the
municipalities in the sample,
the average sample size is 47
households.

I Definition of geography
determines use of SAE
methods.
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Stage II. Analysis/Adaptation

3. Initial estimates.

4. Use of explicit models.
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Stage II. Analysis/Adaptation
3. Initial estimates

Produce a triplet of estimates (direct, synthetic, composite) for each area
at the given level of geography:

I Direct: uses only-domain specific data, e.g., ˆ̄Y D
k = X̄k β̂k .

I Synthetic: borrows information from other areas/domains, e.g.,
ˆ̄Y S
k = X̄k β̂.

I Composite: it is a convex combination of a Direct and a Synthetic

estimators, e.g., ˆ̄Y C
k = φ ˆ̄Y D

k + (1− φ) ˆ̄Y S
k .

Unlikely these estimators to produce estimates with acceptable
coefficients of variation (CVs).
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Stage II. Analysis/Adaptation
4. Use of explicit models

General considerations

I Access to microdata? Unit-level or Area-level models.

I Continuous responses: start with Linear Models.

I Discrete responses: start with Generalized Linear Models.

I Unexplained area heterogeneity: Mixed Models.

I Out of sample areas? Synthetic estimators.
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Stage II. Analysis/Adaptation
4. Use of explicit models. EDOMEX

Some non-linear Income-based indicators
I FGT measures (Foster et al.,1984))

FGT (α, t) =
N∑
i=1

(
t−yi
t

)α
1(yi ≤ t),

α = 0 - Head Count Ratio; α = 1 - Poverty Gap.

I Gini coefficient

Gini = N+1
N −

2
N∑
i=1

(N+1−i)y(i)

N
N∑
i=1

y(i)

.

I Quintile Share Ratio

QSR80/20 =

N∑
i=1

[yi1(yi>q0.8)]

N∑
i=1

[yi1(yi≤q0.2)]

.
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Stage II. Analysis/Adaptation
4. Use of explicit models. EDOMEX

SAE methodologies for complex Income-based indicators

I The World Bank Approach (Elbers et al., 2003).

I The EBP Approach (Molina & Rao, 2010, CJS).

I The M-Quantile Approach (Marchetti et al., 2012 ; Chambers
& Tzavidis, 2006, Biometrika).

I EBP based on normal mixtures (Elbers & Van der Weidel,
2014; Lahiri and Gershunskaya, 2011).

I MvQ methods based on Asymmetric Laplace distribution
(Tzavidis et al., 2015).
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Stage II. Analysis/Adaptation
4. Use of explicit models. EDOMEX

The EBP Method (under normality)
Point of departure: Unit-level Mixed effects model.

yik = x
T
ikβ + uk + εik , uk ∼ N(0, σ2u); εik ∼ N(0, σ2e ).

Summary of the Method

I Use sample data to estimate β, σ2
u, σ2

ε , γk .

I Generate u∗k ∼ N(0, σ̂2
u(1− γk)) and ε∗ik ∼ N(0, σ̂2

ε ),

y∗
ik = xTik β̂ + ûk + u∗k + ε∗ik

I Calculate the indicator of interest using the y∗
ik .

Micro-simulation of a synthetic population. Repeat the process L times.
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Stage II. Analysis/Adaptation
4. Use of explicit models - Adaptation

If residual diagnostics indicate violation of model assumptions,
Adapt the model.

I Explore the use of transformations. Deciding on appropriate
transformations is not straightforward, but offers a possible avenue
for improving the model.

I Use robust methods as an alternative to transformations (Chambers
& Tzavidis, 2006; Ghosh et al., 2008; Sinha & Rao, 2009;
Chambers et al., 2014; Dongmo Jiongo et al., 2013).

I Use non-parametric models (Opsomer et al., 2006; Ugarte et al.,
2009)

I Elaborate the random effects structure e.g. include spatial
structures (Pratesi & Salvati, 2008; Schmid & Münnich, 2014).

I Consider extensions to two-fold models (Morales et al., 2015).
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Stage II. Analysis/Adaptation
4. Use of explicit models and Adaptation. SAE in EDOMEX

Log Log−Shift Box−Cox 

0.425
0.450
0.475
0.500
0.525

Gini

Log Log−Shift Box−Cox

0.2

0.3

PG

Choice of transformation possibly important for parameters
involving the whole distribution. Gini more sensitive than PG

14 / 27



Example 2: Estimating population densities in the presence
of measurement error in geo-coordinates Groß, Rendtel, Schmid,

Schmon, Tzavidis (2016) Journal of the Royal Statistical Society A

I Estimate area-specific ethnic
and age densities in Berlin

I Berlin register data publicly
available but geo-coordinates
aggregated at 447 urban
planning areas - Density
structure is not preserved
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Example 2: Estimating population densities in the presence
of measurement error in geo-coordinates Groß, Rendtel, Schmid,

Schmon, Tzavidis (2016) Journal of the Royal Statistical Society A

I Solution: Treat aggregation of
geo-coordinates as a
measurement error process

I Reverse measurement error,
derive precise density estimates
at flexible levels of geography.
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Rounding and kernel density estimation

Measurement error model & estimation

I True, unknown, values Xi = (Xi1,Xi2) given the rounded values
Wi = (Wi1,Wi2) are distributed in a rectangle with Wi in its center,

[Wi1 −
1

2
r,Wi1 +

1

2
r]× [Wi2 −

1

2
r,Wi2 +

1

2
r],

r denotes the rounding parameter.

I Can be seen as a measurement error model with uniformly
distributed measurement error Ui = (Ui1,Ui2),
Ui1,Ui2 ∼ Unif (− 1

2 r ,
1
2 r) and Ui1,Ui2 independent of Wi1 and Wi2

such that,
Xi1 = Wi1 + Ui1, i = 1, 2, .., n

Xi2 = Wi2 + Ui2, i = 1, 2, .., n.
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Measurement error model & Estimation
From Bayes theorem follows that

π(X |W ) ∝ π(W |X )π(X )

I π(W |X ) (measurement error model) is defined by a product of
Dirac distributions

π(Wi |Xi ) =

{
1 for Xi ∈ [Wi1 − 1

2 r ,Wi1 + 1
2 r ]× [Wi2 − 1

2 r ,Wi2 + 1
2 r ]

0 else.

I π(X ) =
∏n

i=1 f (Xi ) is initially unknown, we propose an iterative
procedure.

I Estimation via a stochastic Expectation?Maximization

I E-step: Draw samples from π(Xi |Wi ) creating a pseudosample
of X in each iteration as a replacement of the E-step

I M-step: Apply kernel density estimationto the pseudo-sample
I Iterate E and M steps until convergence
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Application: Data Sources

I The data contains all 308,754 Berlin household addresses on the
31st of December 2012 with the exact geo-coded coordinates
subject to different degrees of rounding errors.

I Registration at the local residents’ office is compulsory in Germany
and is carried out by the federal state authorities.

I One of the scenarios we explore is rounding by using grids of size
2000 meters by 2000 meters that approximately correspond to
the LOR geography.

I The original data includes the total number of residents at their
principal residence and the number of persons according to some
key demographic characteristics:

- Ethnic background (Ethnic)
- Age (Age over 60).
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Density of population: Ethnic minority background

Naive (top panel) and SEM estimators (bottom panel) with
rounding step sizes of 0 (left), 500, 1250 and 2000 m (right).
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Advisory services for ethnic minorities

Ethnic background for rounding step size of 2000 m. Blue points indicate
migrant advisory centres in Berlin.
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Density of population: Aged 60 and above

Naive (top panel) and SEM estimators (bottom panel) with
rounding step sizes of 0 (left), 500, 1250 and 2000 m (right).
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Care for the elderly

Age above 60 for rounding step size of 2000 m. Blue points indicate retirement
houses in Berlin.
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Innovations in SAE Methodologies
NCRM Innovation project funded by ESRC

WP 1: Innovations in statistical methodologies

1 Model specification and data transformations

1.1 Scaled power transformations
1.2 Optimal values and ML/REML estimation
1.3 Sensitivity analysis

2 Semi/non-parametric methods for continuous and discrete
outcomes

2.1 Semi-parametric estimation of distribution functions
2.2 Robust prediction of random effects via discrete mixtures
2.3 Robust SAE methods for discrete outcomes
2.4 Semi-parametric estimation for discrete outcomes

3 Developing novel measures of uncertainty
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Innovations in SAE Methodologies

WP 2: SAE using Indirect Survey Calibration (ISC) / Spatial
Microsimulation

1 Model specification

1.1 Model (Benchmark) selection
1.2 Donor pool selection

2 ISC algorithms

2.1 Impact of weight range restrictions on estimate quality
2.2 Benchmark relaxation strategies
2.3 Integerisation

3 Estimating uncertainty

WPs 3 - Bridging the gaps between WPs 1 and 2

1 Spatial variability of Census covariates

2 Statistical theorisation and translation

3 Full empirical performance evaluation of the methods across
WPs 1 & 2

25 / 27



The Team

University of Southampton

I Nikos Tzavidis

I Li-Chun Zhang

I Yves Berger

I Graham Moon

University of Liverpool

I Paul Williamson

University of Sheffield

I Adam Whitworth

University of Exeter

I Karyn Morrissey

University of Portsmouth

I Liz Twigg

26 / 27



International Experts & Stakeholders
Free University Berlin

I Timo Schmid

University Technology Sydney

I James Brown

University of Wollongong

I Ray Chambers

Australian National University

I Steve Haslett

National & International Organisations

I UK Office for National Statistics

I Welsh Assembly Government

I Mexican National Council for the Evaluation of Social
Development Policy (CONEVAL)

I National Statistics Office of Brazil
27 / 27


