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The problem 
o Declining survey response rates 

o Research into causes and correlates of nonresponse 
o Improve fieldwork efficiency (e.g. responsive design) 

o Post-hoc analysis and adjustments

o Requires data that is 
o available for respondents and nonrespondents

o predictive of response behaviour and substantive survey responses 



The solution?
Use multi-level multi-source auxiliary data (Smith and Kim, 2011) 

o Sample frame 

o Survey paradata
oCall records 

o Interviewer characteristics 

o Interviewer observations 

o External data sources 
oSmall area admin data e.g. census 

oCommercial data bases 
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Which is most useful for predicting 
survey nonresponse? 

Where should surveys invest 
resources? 



Comparing data sources 
Paradata Small-area data Commercial data 
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Unit of analysis 
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ADDResponse
o Auxiliary Data Driven nonResponse bias analysis (ADDResponse) 

o European Social Survey Round 6 (2012/13) 
o 54% response rate (34% refusal, 7% non contact) 

o Clustered PAF sample of 4,520 addresses in 220 PSUs  

o Append geocoded auxiliary data
o Small area data (census, DCLG, HO, DfE, DWP etc.) 

o Commercial data  

o OS Points of Interest data 

o Interviewer observations 



ADDResponse: Interviewer observations 
o Five interviewer observations collected for all sampled addresses 
o Type of dwelling unit (1= multi-person occupancy 0=single occupancy) 

o Barriers to entry present (1= yes 0= no)  

o Physical condition of property ( 1 = very good 5 = very bad) 

o Litter (1=present 0 = not present) 

o Graffiti (1=present 0 = not present) 

o Observations complete for 97 % addresses 

o Interviewer observations correlate with census data  - > none recorded in OAs where there are 
no flats 



ADDResponse: Commercial data
o Data purchased from two “value added resellers”
o Consumer segmentation variables: ACORN, MOSAIC etc.

o Specific variables e.g. length of residency, tenure, house price, age, employment status, children present, 
marital status 

o Consumer preferences data (very patchy)

o Data from 2015 but ESS fieldwork completed 2013 

o Missing data 
o Company 1:  10% Company 2:  20 -50% 

o Differences between two commercial databases 
o N of adults = 54% match   Tenure =75% 

o Discrepancies compared with ESS data 
o N of adults = 71% match   Married = 77% match   Retired = 87% match



Modelling and methods
o Logistic regression: response vs. not 

o Controlling for clustering at PSU level

o Nested models
o Coefficients

o Model fit



Modelling and methods
o Logistic regression: response vs. not 

o Controlling for clustering at PSU level

o Nested models
o Coefficients

o Model fit 

o Models 
o Model 1: interviewer observations

o Model 2: Model 1 + small area  data

o Model 3: Model 2 +  commercial data (MOSAIC)

o Model 3 a : Model 2 + commercial data (separate variables)



Results: Interviewer observations 
Response vs.
not

Variable Log odd

(Intercept)
0.608***
(0.024)

Access
-0.133***
(0.03)

Living in a flat
-0.032
(0.029)

Vandalism
0.052
(0.04)

Litter
-0.007
(0.025)

Physical 
condition

-0.029*
(0.011)

R2 0.034
AIC 1025.34
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R2 0.034 0.086
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Results: Interviewer observations 
Response vs.
not

Contact vs. 
not 

Refusal vs. 
not 

Variable Log odd Log odd Log odd

(Intercept)
0.608***
(0.024)

0.976***
(0.011)

0.341***
(0.023)

Access
-0.133***
(0.03)

-0.086***
(0.026)

0.104**
(0.034)

Living in a flat
-0.032
(0.029)

-0.080***
(0.022)

-0.037
(0.032)

Vandalism
0.052
(0.04)

-0.008
(0.024)

-0.044
(0.042)

Litter
-0.007
(0.025)

-0.019
(0.0151)

-0.012
(0.024)

Physical 
condition

-0.029*
(0.011)

-0.008
(0.006)

0.026*
(0.011)

R2 0.034 0.086 0.019
AIC 1025.34 290.91 866.88



Results: Including auxiliary data 

Deviance (Model 1 
vs Model 2)

Deviance 
(Model 2 vs 
Model 3)

Deviance 
(Model 2 vs 
Model 3 a)

P - value

Model 2 6.438 0.3701

Model 3 48.401 0.0000

Model 3 a 29.505 0.0002



Results: Including auxiliary data 
o Interviewer observations remain significant

o Other significant auxiliary variables
oModel 2
o None 

oModel 3
o MOSAIC

oModel 3a 
o Children present

o Full-time employment

o Missingness from commercial data

o (single and recent movers, but only at 10% level) 



Conclusions 
o ESS interviewer observations helpful in predicting nonresponse  

o Quality issues with commercial variables and minimal improvement in model 
fit 

o No “silver bullet” for modelling survey nonresponse 

o Further research needed into
o Validating interviewer observations 

o Conditions under which observations are more/less accurate 
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