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ABSTRACT
The proliferation of Internet of Things (IoT) applications poses formidable challenges in managing data
processing, privacy, and security. In response, technologies such as Fog Computing (FC), Blockchain (BC),
and Federated Learning (FL) have emerged as promising solutions. Combining these technologies can
broaden their scope, and impose novel challenges. This paper conducts a Systematic Literature Review (SLR)
to investigate their integration within the IoT domain, systematically evaluating the current state-of-the-art
by analyzing 40 papers against 38 extraction criteria, encompassing technical characteristics specific to FC,
BC, FL, or their integration. The findings offer insights into the advantages, challenges, opportunities, and
limitations of this integration, addressing data processing, privacy, and security concerns in IoT. By filling a
research gap and directly examining FC, BC, and FL interoperability across architectural layers, this study
contributes to knowledge expansion in the field. This paper proposes a novel framework for implementing
FL and BC within FC environments for IoT applications, alongside a comprehensive synthesis of existing
literature, distinguishing it from previous research efforts. Furthermore, it offers valuable insights into the
current landscape, identifies research needs, and proposes future research directions. The framework and
literature synthesis provided allow readers to access customized information on FC-BC-FL integration,
aiding in designing and implementing robust IoT solutions.

INDEX TERMS Blockchain, Edge Computing, Federated Learning, Fog Computing, Internet of Things,
Systematic Literature Review.

I. INTRODUCTION

THE Internet of Things (IoT) serves as a technolog-
ical paradigm that supports various application do-

mains (e.g., industry, smart cities, healthcare) through the
global telecommunication infrastructure and Cloud Comput-
ing (CC) services [1]–[3]. The rapid growth of IoT has led
to a significant surge in connected devices, revealing vulner-
abilities such as high bandwidth usage, efficiency, latency,
security, privacy, and data heterogeneity [2], [3]. Efforts in the
distributed systems domain have aimed to enhance both IoT
and Cloud paradigms, addressing their flaws. Additionally,
novel solutions like Fog Computing (FC), Blockchain (BC),
and Federated Learning (FL) have emerged to complement
these paradigms [4]–[7], and are the focus of this document.

FC extends CC services closer to devices, thereby reducing
latency and alleviating the cloud’s workload by minimizing
the transmitted data volume [4], [5], [8]. In contrast, BC
enhances the security and precision of information man-
agement using a distributed ledger technology that records
transactions (i.e., data) and employs distributed consensus
protocols to govern these repositories [6], [9]. Lastly, FL,
an emerging field in Artificial Intelligence (AI), tackles data
decentralization by utilizing a distributed computing system
to locally train Machine Learning (ML) models on network
devices. This approach reduces data processing, bandwidth
usage, and reliance on cloud services [7], [10].
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FIGURE 1. Structure of the paper

Numerous secondary studies (or literature reviews) have
recognized that despite the collaborative advancement of
these technologies within IoT solutions, persistent challenges
endure. Yet, these reviews tend to focus primarily on pairs of
technologies: BC and FC [11]–[15], FC and FL [16]–[18],
or BC and FL [16], [19]–[26]. While primary studies are
emerging to explore the direct relationship among all three
technologies, there is a noticeable lack of secondary studies
summarizing key findings and issues across FC, BC, and FL,
highlighting a substantial research gap.

Hence, to comprehensively depict the interplay among
these technologies and systematically capture insights within

the domain, a Systematic Literature Review (SLR) emerges
as an ideal secondary study approach. SLRs enable unbi-
ased identification, evaluation, and interpretation of research
queries within a specific domain [27].
This paper conducts an SLR exploring BC, FC, and FL

integration in IoT applications. Following Kitchenham &
Charters’ guidelines in [27], [28], it emphasizes attributes
like credibility, contribution, transferability, and compliance
[29]. From 2016, when ’Federated Learning’ was coined by
Google [7], to August 2023, a systematic search for 40 papers
was conducted. Additionally, 38 analysis criteria were estab-
lished to evaluate these papers. These criteria were developed
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based on an initial assessment of 16 relevant related reviews.
Findings reveal a lack of collaborative research in architec-
ture, frameworks, heterogeneity, and standardization among
these technologies, offering insights for future research.

As a result of the study, this paper introduces systematical
categorization and classification of criteria for the FC-BC-
FL integration for IoT applications. It provides a structured
framework for understanding the synergies and interactions
among these three technologies, aiding researchers and prac-
titioners in navigating the complexities of their integration
and implementation. The systematic categorization or crite-
ria is organized into distinct dimensions, including architec-
tural approaches, methodological strategies, and application
domains, offering a comprehensive overview of how these
technologies can be combined to tackle IoT challenges.

The structure of this paper is outlined in Figure 1. Sec-
tion II explores the background of the implied technologies,
including Fog/Edge Computing, Blockchain, and Federated
Learning, with an analysis of their integration. Additionally,
it compares similar survey/review papers to highlight the
contribution of this SLR. Section III adapts Kitchenham’s
SLR guidelines to the context. It elaborates on the core of
the SLR, defining the research questions and the extraction
criteria under which the evaluation will be performed. This
section provides a detailed categorization of the technologies
and their integration. Additionally, it describes the process
of selecting papers for analysis in the review. Section IV
validates the SLR methodology by presenting the results of
the analyzed studies, classified under the extraction criteria.
It also presents results by year and country. A synthesis of the
most relevant studies, along with the challenges and oppor-
tunities, forms part of the Section V. Section VI discusses
the advantages and limitations of the FC-BC-FL integration
based on the SLR results. Finally, Section VII presents the
conclusions and outlines avenues for future research.

II. BACKGROUND AND RELATED WORK
This section offers an exhaustive background encompassing
fundamental concepts, architectures, and essential technical
aspects within the domains of Fog Computing, Blockchain,
and Federated Learning technologies. It further examines and
contrasts relevant literature reviews concerning these tech-
nologies, with a specific emphasis on the interconnections
between BC and FC, FC and FL, and BC and FL. This
analysis provides insight into the distinctive contributions of
our work in comparison to prior research endeavors.

A. FOG COMPUTING
Fog Computing, an architectural concept introduced by Cisco
in 2012 [4], represents a paradigm shift that redefines conven-
tional computing structures [5], [30]. This concept involves
the decentralization of the traditional Cloud and the extension
of its services (i.e., storage, processing, networking) to the
network edge. The main goal is to enhance the scalability and
performance of applications by distributing the computational
load away from centralized clouds [4], [5], [8], [30].

At the core of this architecture lie the Fog Nodes (FNs),
which establish connections with an array of counterparts,
such as other nodes, end devices, centralized services, and
even the cloud. Through these connections, FNs extend com-
puting services and resources in closer proximity to end
devices, creating an intricate distributed computing environ-
ment [7]. Furthermore, FC addresses common issues en-
countered in Cloud Computing, including network bandwidth
overuse, latency, request-response time reduction, and more
[4], [5], [30]. This architectural framework has found a par-
ticularly fitting application in the realm of IoT, offering an
exceptional fusion of computing, networking, and storage
capabilities across a wide array of geographically dispersed
devices [4], [5], [8], [30].

1) Fog Computing/Edge Computing, Paradigm Siblings
As we delve into the realm of FC, it becomes imperative to
acknowledge the closely related concept of Edge Computing
(EC). Similar to FC, EC emphasizes the proximity of compu-
tation and storage to data sources. However, these paradigms
display distinct characteristics and functionalities [31], [32].
Edge Computing is intrinsically concerned with localized

processing, often occurring at the immediate first hop from
IoT devices, encompassing smart sensors, smart vehicles,
and WiFi access points. It empowers computation, data pro-
cessing, decision-making, and privacy protection within the
confines of edge devices. While EC excels at optimizing
local network interactions and reducing latency, its scalabil-
ity might be constrained by limited resources and potential
resource contention among multiple IoT applications [31].
In contrast, FC casts a broader net by extending the edge

concept to a hierarchical architecture. This encompasses a
diverse range of network edge devices such as RANs, base
stations, and edge routers. By integrating cloud-like capabil-
ities into the network edge, FC offers a comprehensive suite
of computing, networking, storage, control, and acceleration
services spanning from cloud to IoT devices [31], [32]. The
architecture envisions a seamless platform that caters to vari-
ous industries and application domains, fostering interactions
between edge devices and providing a holistic infrastructure-
level perspective [32]. Overall, while EC emphasizes local-
ized processing at the immediate network edge, FC adopts a
more comprehensive approach. It encompasses a hierarchical
architecture and a broader array of devices and services,
with a focus on seamless integration and the utilization of
cloud resources to address scalability and resource contention
challenges that EC might encounter.
Figure 2 depicts the FC architecture, which comprises

four layers (with EC considered as an integral part of the
infrastructure), each serving a distinct role within the data
processing hierarchy. The architecture is characterized by:
1) Devices / Edge Layer: This base layer comprises phys-

ical devices (e.g., sensors, actuators, IoT devices) that
generate data by gathering it from the environment.
Positioned closest to these devices is the Edge infras-
tructure, acting as an intermediary connecting them
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to upper layers for processing. It conducts initial data
preprocessing before relaying it to higher layers such
as Fog or Cloud, thus minimizing latency by processing
essential data close to its source [5], [8], [12], [31].

2) Fog Layer: It serves as an intermediary between the De-
vices/Edge and Cloud layers, comprising FNs/servers
to bolster processing and storage capacities. The Fog
layer proves invaluable for applications needing greater
computational resources than the Edge layer offers but
not requiring the extensive resources of the Cloud.
It facilitates real-time analytics, decision-making, and
data processing while ensuring low latency [4], [5], [8].

3) Cloud Layer: This layer represents the traditional CC
infrastructure. It provides vast infrastructural (Infras-
tructure as a Service (IaaS)), computational, and stor-
age (Software as a Service (SaaS)) resources that can
be accessed remotely. While the Cloud layer excels in
heavy data analysis, storage, and long-term processing,
it might introduce higher latency due to data transmis-
sion to and from remote data centers [4], [5], [8], [12].

4) Application Layer: The uppermost layer (situated
within the Cloud Layer) is designated for the devel-
opment and deployment of applications and services
(Software as a Service (SaaS)). This encompasses user
interfaces, web services, data analytics, AI services,
and other software components that make use of the
processed data. Applications can interact with data
across all lower layers, making it possible to harness
the benefits of the entire architecture [5], [8], [31].

Taking into account the aforementioned information, the
analysis of subsequent stages in this SLRwill encompass both
FC and pertinent EC studies.

FIGURE 2. A Fog Computing based architecture

B. BLOCKCHAIN
Blockchain, introduced by Satoshi Nakamoto in 2008 is a
decentralized technology that forms the essential framework
for establishing trustworthy digital currency systems [6].
BC systems encompass distributed computing structures

that primarily store and process a Distributed Ledger (DL)
within Peer-to-Peer (P2P) networks [9], [33], [34]. Both per-
missioned and permissionless variants of BC exist, offering
authorized or open participation in the system, respectively.
The data archived within Blockchain DLs can be public or
private, depending on the domain/profile of users capable of
requesting or executing tasks within the system [33].
Miners represent the core of the BC ecosystem, under-

taking the resolution of computational puzzles or problems
(whose complexity is conditionally predefined) to validate
blocks and integrate them into the chain. Various consensus
algorithms, including proof-based mechanisms (e.g., Proof-
of-Work (PoW), Proof-of-Stake (PoS), Proof-of-Authority
(PoA)), as well as non-proof-based strategies (e.g., Byzantine
Fault Tolerance (BFT)), are employed to achieve consensus
on transaction validity [33]. Forking arises when different
valid DL versions emerge, each consensus algorithm having
a distinct protocol for handling forks, while hashing prior
blocks maintains BC’s immutability [9], [34].
The potential application of BC in decentralized cloud

servers at the network edge has garnered significant attention,
leading to the proposition of models like Blockchain-as-a-
Service (BaaS) to revolutionize CC across various domains.
These models aim to elevate the capabilities of CC by seam-
lessly integrating BC technology, offering a versatile array
of functionalities (i.e., e-voting, authentication, and identity
management to trading, reputationmanagement, supply chain
management, data management) [9], [33]–[35].
Although BC is originated in cryptocurrencies like Bitcoin

[6], its impact extends beyond finance. It enables Smart Con-
tract (SC) creation (e.g., Ethereum) and fosters innovation in
decentralized systems, evolving digital interactions and trust
[9], [34], [35].
BC-based systems are structured across five layers (see

Figure 3) comprising hardware/infrastructure, data, network,
consensus (including incentives), and application [9], [33],
[34]. These layers are described below:
1) Hardware / Infrastructure Layer: This architecture’s

foundation layer encompasses tangible components
that form the backbone of the BC network. Devices
(including nodes and miners), establish the network’s
framework. virtual machines (VMs) and containers cre-
ate the computational environment for code execution.
The communication infrastructure ensures seamless in-
teraction, while messaging mechanisms facilitate data
exchange and synchronization [9], [33].

2) Data Layer: It manages the foundational building
blocks of BC data. Transactions serve as the bedrock
of the data structure, with Digital Signatures ensuring
transaction integrity and authenticity. The Merkle Tree
structure optimizes data verification, while the Data
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FIGURE 3. An overview of Blockchain propoerties

Block and Chain Structure establish the chronological
sequence of transactions. Hash Functions and Crypto-
graphic Algorithms play a pivotal role in data security
and encryption within this layer [9], [33].

3) Network Layer: It encompasses the communication and
connectivity infrastructure that enables node interac-
tions. It includes a P2P Network for direct node-to-
node communication, CommunicationMechanisms for
data exchange, Routing to enhance data propagation
efficiency, and Verification mechanisms to authenticate
transmitted data [9], [33].

4) Consensus Layer: This layer assumes a pivotal role in
ensuring network-wide agreement and validation. Con-
sensus Protocols and Algorithms establish rules and
mechanisms for collective transaction validation [9],
[34]. Moreover, within this layer, the incentives sub-
layer orchestrates rewards for participants contributing
to the consensus process, thereby aligning economic
incentives with network integrity [9].

5) Application Layer: Positioned as the topmost layer, it
accommodates a wide range of both financial and non-
financial applications that harness the capabilities of
BC technology. Within this stratum, one can find Smart
Contracts, Financial Applications, and Non-Financial
Applications, representing the diverse spectrum of use
cases that BC is capable of addressing [9], [33], [35].

This comprehensive architectural framework underscores
the intricate interplay of components and mechanisms, col-
lectively realizing the robust capabilities and security inherent
to BC technology, aspects that should be taken into consider-
ation during the development of the SLR.

C. FEDERATED LEARNING
Federated Learning (FL) is a paradigm introduced by Google
in 2016 within the ML and data privacy domain [7]. In tradi-
tional ML approaches, data is often centralized on a single
server for training, giving rise to concerns regarding data
security and privacy breaches. Unlike, FL adopts a distributed
approach, enabling collaborative model training across a net-
work of decentralized devices or servers without sharing raw
data. This decentralized feature not only effectively addresses
privacy concerns but also capitalizes on the collective intelli-
gence derived from diverse data sources [7], [10], [17].
At its core, FL offers distinctive technical features that dif-

ferentiate it from traditional centralized methods. Operating
within a decentralized framework, FL safeguards data privacy
by retaining information locally on devices, selectively shar-
ing only model updates for collaborative training [10], [17].
This unique approach facilitates a privacy-centric aggregation
process, enhances communication efficiency, and seamlessly
adapts to the intricacies of diverse data sources. These at-
tributes make it suited for scenarios involving Fog and Edge
[16]–[18]. Furthermore, FL extends personalized and fault-
tolerant model training capabilities while complying with
stringent data protection regulations. This multi-faceted na-
ture positions FL as a robust and privacy-conscious solution
with expansive potential across various domains [17].
In practical terms, FL empowers local data training while

upholding stringent data privacy. Devices or servers involved
in this process autonomously compute model updates using
their respective datasets, which are subsequently aggregated
to refine the overarching model. This decentralized approach
significantly mitigates the risks associated with centralized
data storage and transmission, offering advantages that ex-
tend beyond privacy. Notably, FL delivers scalability gains,
reduces communication overhead, and proves adaptable to
resource-constrained real-world scenarios [10], [17].
FL architecture consists of four layers (see Figure 4), each

serving a specific role in the decentralized learning process:
1) Client / Infrastructure Layer: This layer encompasses

both devices and local servers that play an active role
in the FL process. Devices contribute their localized
data and learning models to the broader system. Within
this layer, a sub-layer, referred to as the Data Layer,
assumes responsibility for Local DataManagement and
Local Learning Models. The task of Local Data Man-
agement involves overseeing proper data handling and
secure storage on individual devices. Meanwhile, the
Local Learning Models, which are trained using local
data, undergo continuous refinement through updates
throughout the FL process [10], [17], [36].

2) Network Layer: This layer manages interactions among
devices, nodes, local servers, and aggregation servers
within the FL system. It uses advanced Channel Coding
techniques to robust data transmission over potentially
noisy channels, supported by various Communication
Protocols (e.g., 6G, 5G, Z-Wave, ZigBee, Wi-Fi) to
facilitate data exchange [17], [36], [37].
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FIGURE 4. A general architecture for Federated Learning

3) Aggregation Layer: Situated at the heart of the ar-
chitecture, This layer assumes a pivotal role in amal-
gamating local models into a comprehensive global
model. The pivotal Aggregation Server oversees the
Model Aggregation process. Various Aggregation Al-
gorithms dictate how local model updates integrate into
the global model. Model Updates involve transmitting
refined models to the Aggregation Server, which then
generates the comprehensive Global Model. Regular
Global Updates drive the continual refinement of the
overarching model [10], [17], [36], [37].

4) Application Layer: Positioned as the uppermost layer,
this layer customizes the global model to align with
specific applications through Model Customization. It
also encompasses vital services such as Monitoring
and Maintenance, which sustain the optimal perfor-
mance and integrity of the FL system. Analytics extract
valuable insights and patterns from the global model,
while diverse applications spanning financial and non-
financial domains effectively translate themodel’s find-
ings into real-world contexts [10], [17].

Therefore, this comprehensive FL Architecture seamlessly
integrates layers, fostering a unified, efficient system pri-
oritizing data privacy, operational efficiency, and practical
applicability, all considered during SLR development.

D. INTEGRATING FOG COMPUTING, BLOCKCHAIN, AND
FEDERATED LEARNING
Building on the theoretical principles discussed earlier, inte-
grating FC, BC, and FL appears highly feasible due to their
shared decentralized computing foundations. Their intercon-
nections highlight compatibility in both theory and practice,
urging a deeper exploration.

For instance, the FC architecture creates a dynamic frame-
work for distributed and federated computing. Clustering

nodes systematically facilitates collaborative interactions,
fostering an environment for interconnecting federated ser-
vices across domains. This seamless interconnectivity not
only enhances scalability but also aligns intriguingly with
FL’s core principles [8]. This alignment gains significance,
emphasizing the shared focus on optimizing service distribu-
tion for superior application performance.
The potential for synergy becomes more evident when

delving into the realm of Blockchain. BC’s decentralized
nature and focus on secure and transparent data transactions
complement the ideals of both FC and FL. The distributed
and tamper-resistant nature of BC inherently supports the
trust and privacy concerns essential to FL’s data aggregation
process. This synchronization of objectives between BC and
FL creates a foundation for secure, privacy-conscious collab-
orative learning scenarios within an FC environment.
In essence, the FC-BC-FL integration paints a cohesive

picture of decentralized, collaborative, and privacy-conscious
data processing and sharing. Despite inherent distinctions,
these technologies synergistically tackle challenges, foster
innovation, and shape future computing systems across do-
mains while prioritizing security, privacy, and efficiency.
As a first look, Figure 5 visually illustrates the integra-

tion and interaction of FC-BC-FL technologies to collabo-
ratively address common challenges by converging within
each layer, showcasing their synergistic roles and interac-
tions. This view employs a schema with three core layers:
Device/Infrastructure, Network, and Application, acting as a
visual guide that emphasizes their harmonious coexistence
and collaboration. By aligning layers in this schema, Figure 5
offers insights into the interconnected nature of FC (See Fig-
ure 2), BC (See Figure 3), and FL (See Figure 4) architectures.
1) Application Layer: In this layer, FC, BC, and FL exhibit

distinct functionalities. FC’s Layer 3 includes the Cloud
Layer with ample computational resources and the Ap-
plication Layer housing diverse services. BC’s Layer 4,
the Consensus Layer, centers on network-wide agree-
ment, while Layer 5 serves various applications. FL,
within Layer 4, tailors the global model and provides
monitoring and maintenance services, while Layer 3
manages aggregation. This layer demonstrates the syn-
ergy of FC-BC-FL, offering diverse applications.

Federated 
Learning

(FL)

Application

Network

Device / 
Infrastructure

43

32

1

Blockchain
(BC)

54

21

3

Fog 
C omputing 

(FC )

43

1

2

FIGURE 5. FC-BC-FL architectural integration relationship
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2) Network Layer: This Layer facilitates smooth connec-
tivity and communication. FC’s Fog Layer serves as a
bridge between Edge and Cloud, while BC’s layer man-
ages node interactions. FL’s layer orchestrates device-
to-server communication, using advanced coding tech-
niques and protocols to ensure efficient data exchange
and reliable transmission.

3) Device/Infrastructure Layer: At the base, FC’s Layer 1
consists of devices and sensors gathering data, with the
Edge infrastructure nearby for initial processing. BC’s
Layers 1 and 2 establish the hardware foundation and
manage data using transactions, signatures, and cryp-
tographic elements. FL’s Layer 1 includes devices and
local servers, handling the data and learning models.

E. RELATED WORK
Over the last five years, numerous primary studies explored
integrating these technologies (FC/EC, BC, and FL). These
efforts curated influential studies for literature reviews, sym-
bolizing collaborative research progress. This subsection an-
alyzes and compares sixteen of these secondary studies to
identify areas needing further exploration in this field.

As Table 1 shows, prevailing studies have predominantly
focused on examining combinations of two out of the three
technologies: BC-FC [11]–[15], FC-FL [16]–[18], or BC-FL
[16], [19]–[26]. A noticeable trend emerges wherein there is
a scarcity of literature reviews encompassing the integration
of all three technologies comprehensively. The comparison
presented in Table 1 highlights the strengths and weaknesses
of these studies, specifically in areas such as architectural
features, frameworks, integration aspects (privacy, efficiency,
performance, security, interoperability, scalability, data man-

agement, service levels, trust, heterogeneity, resilience, and
access control), as well as the analysis of experimentation fea-
tures or general data analysis of the papers - detailed further
in the subsequent section. These papers excel in their com-
prehensive analyses of specific intersections among the tech-
nologies, elucidating architectures, addressing security con-
cerns, and exploring various application domains. However,
their limitations become apparent in the absence of a holistic
integration across all three paradigms in several studies. Some
prioritize or overlook one of the three technologies, limiting
a comprehensive understanding of their collective potential
within specific criteria or interest areas. Moreover, while
these studies address challenges and solutions within individ-
ual frameworks, there is a recurring oversight in considering
architectural features, thus failing to capture the entirety of
the tripartite integration. Consequently, while these studies
offer valuable insights into isolated intersections, they lack
a cohesive examination of the FC-BC-FL holistic integration.
Therefore, our review distinguishes itself by not only ac-

knowledging the existing research gaps but also by proac-
tively addressing them through a meticulous examination of
the integration of FC/EC-BC-FL. Unlike prior studies which
predominantly focus on partial combinations of these tech-
nologies, our review takes a pioneering step forward by pro-
viding a comprehensive analysis that encompasses all three
paradigms. We meticulously explore various criteria, ranging
from architectural features to security concerns, ensuring
a holistic understanding of the integration’s potential. By
bridging this crucial gap in the literature, our review offers
unparalleled insights that are indispensable for advancing
research and practical applications in this field.

TABLE 1. Related Literature Reviews about integrating FC-BC, FC-FL, BC-FL ( : fully addressed; #: partially addressed)

Paper Year Dimension A
rc
hi
te
ct
ur
al
Fe

at
ur
es

Fr
am

ew
or
ks

FC
Fe

at
ur
es

E
C
Fe

at
ur
es

B
C
Fe

at
ur
es

FL
Fe

at
ur
es

Pr
iv
ac
y

E
ffi
ci
en
cy

Pe
rf
or
m
an
ce

Se
cu
ri
ty

In
te
ro
pe
ra
bi
lit
y

Sc
al
ab
ili
ty

D
at
a
m
an
ag
em

en
t

Se
rv
ic
e
L
ev
el
s

Tr
us
t

H
et
er
og

en
ei
ty

R
es
ili
en
ce

A
cc
es
s
C
on

tr
ol

E
xp

er
im

en
ta
lF

ea
tu
re
s

A
na
ly
si
s
of

th
e
st
ud

ie
s

[11] 2022 FC-BC # #  #         
[12] 2023 FC/EC-BC #    #  # # # # #  
[13] 2019 FC/EC-BC  # #   # #    # #
[14] 2020 FC-BC #   # # # # # #
[15] 2019 FC-BC   #    #  #     #  
[16] 2021 FC-FL/BC-FL   #     # #  # # # #  
[17] 2021 FC-FL  #       #
[18] 2020 FC-FL #     # #  #  
[19] 2021 BC-FL #     #
[20] 2022 BC-FL # #        #
[21] 2021 BC-FL  #     
[22] 2021 BC-FL     #    #
[23] 2022 BC-FL     # #  # #  
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Our Review FC/EC-BC-FL                     
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III. SYSTEMATIC LITERATURE REVIEW
This section outlines the Systematic Literature Review (SLR)
methodology, covering the research approach, review pro-
tocol formulation following Kitchenham’s guidelines, study
selection, and categorization criteria.

Kitchenham’s systematic approach ensures structured, re-
liable, and repeatable acquisition, evaluation, and interpreta-
tion of information [27]. This tailored procedure investigates
Federated Learning and Blockchain convergence within Fog
Computing for IoT applications.

Figure 6 illustrates the three main phases of Kitchenham’s
guide: Planning, Conducting, and Reporting. Here, we focus
on the initial two phases, with the final phase detailed in the
subsequent section.

1. Planning the review 2. Conducting the review 3. Reporting the review

Set Research Question

Identify research and sources

Start the quality assessment

Define extraction criteria

Perform the search proccess

Select the studies

Apply the extraction criteria

Synthetize the findings

Analyse results

Pack and disemine results

FIGURE 6. Kitchenham phases for performing SLR

A. PLANNING THE REVIEW
The planning stage structures the SLR by initiating from the
definition of the Research Questions, which in turn forms the
basis for the SLR protocol statement [27].

1) Research Question Definition
Since the SLR aims to analyze aspects related to the integra-
tion of BC and FL in FC to enhance IoT applications, themain
Research Question (RQ) and three Sub-Research Questions
(SRQs) have been formulated to contribute to specifying the
findings of this study (see Table 2).

SRQ1 seeks to comprehend the intersection of FC, FL, and
BC technologies in architectures, frameworks, application

TABLE 2. Research Question and Sub-Research Questions

RQ How is the integration of Federated Learning (FL) and
Blockchains (BC) in Fog Computing (FC) utilized to support
Internet of Things (IoT) applications, and the associated trends,
challenges, and opportunities?

SRQ1 What are the keymotivations, relationships, research approaches,
and technical dimensions behind integrating FL, BC, and FC to
support IoT applications?

SRQ2 How can the integration of BC and FL techniques in FC support
and improve IoT applications (in terms of security, privacy, effi-
ciency, performance, interoperability, and data management)?

SRQ3 What is the current state of research in the integration of FC,
BC, and FL for supporting IoT applications, including trends,
methodologies, evaluation approaches, key findings, and overall
research status?

scenarios, and use cases. It explores leveraging BC and FL
techniques in FC to enhance IoT applications, encompassing
aspects such as security, privacy, efficiency, performance,
interoperability, and data management.
SRQ2 comprehensively analyzes the integration of BC-

FL within FC for IoT applications, evaluating performance,
efficiency, and security impact while exploring FC interoper-
ability. It examines how FL and BC enhance FC security and
efficiency, including BC’s role in ensuring privacy. The study
explores privacy and security considerations resulting from
FC-FL-BC integration, particularly with Smart Contracts.
Investigating BC-FL synergy for enhanced data management
and security in FC for IoT, it also identifies opportunities to
improve FC-BC-FL integration for diverse IoT applications.
SRQ3 encompasses a comprehensive exploration of the

following aspects: the type of research conducted, the present
state of research including emerging trends, existing draw-
backs and limitations, the benefits derived from integration,
identified research gaps and challenges, methodologies em-
ployed, evaluations of the integration of these three technolo-
gies, and potential opportunities for further advancement.

2) Identify Research and Sources
Kitchenham [28] advises extracting information considering
population, intervention, comparison, outcomes, and context,
as outlined in Table 3.

TABLE 3. Extraction aspects

Aspects Description

Population Studies that involve the FC-BC-FL technologies synergy.
Intervention The study includes a set of technological aspects about

integrating FC-BC-FL technologies, that drive the research
in this area.

Comparison The study aims to compare the different technological as-
pects addressed when integrating FC-BC-FL technologies.

Outcomes To identify the main aspects addressed in the studies that
integrate FC-BC-FL technologies.

Context This study is performed in a research context, where the
experts in the domain present primary studies.

The search process encompasses two stages: Automatic
and Manual. In the initial phase, the Advanced Search tools
within major digital libraries such as IEEE Xplore, ACM,
Springer Link, and Science Direct are utilized to identify
relevant papers. Simultaneously, pertinent Conferences and
Journals linked to the research domain are explored for a
Manual Search on the specified topic. The search strategy
begins by outlining key terms as the search string shows:
"[federated learning AND blockchain AND fog computing]".
It is employed across metadata (i.e., title, abstract, keywords)
for articles from all sources, with syntax adjusted according
to each library. Variations in terminology, such as "Collab-
orative Learning" for FL and "Distributed Ledger" for BC,
are also taken into account. It is important to note that "Edge
Computing," due to its resemblance to Fog Computing, is also
incorporated. The search is specifically focused on studies
from 2016 onwards, as the Federated Learning emergence [7]
is a significant milestone among these technologies.
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3) Quality Assessment
Following the initial selection phase, retrieved studies from
both automated and manual searches undergo evaluation
based on title, abstract, and keywords for inclusion con-
sideration. Discrepancies in the selection are resolved via
consensus after thorough paper examination. Studies meeting
inclusion criteria, such as presenting novel insights on FL-BC
integration in FC, and adhering to English language and at
least 5 pages length criteria, are included. Conversely, studies
falling under exclusion criteria, like introductory, short, and
non-English papers, are excluded. Besides, the quality assess-
ment of the primary studies utilizes a three-point Likert-scale
questionnaire encompassing subjective (issues and solutions
related to FC-BC-FL integration) and objective (relevance of
publication and citation frequency) questions.

Responses to subjective questions vary from +1 "agree-
ment," 0 "partial agreement," to -1 "disagreement." For ob-
jective questions about study quality, responses range from
+1 "very relevant," 0 "relevant," to -1 "not so relevant." The
relevance question considers library ranking and conference
tier. Regarding citation frequency, Journal or Google Scholar
citation reports assess the study’s impact, with responses
ranging from +1 "cited by more than five authors," 0 "par-
tially," to -1 "not been cited." Notably, recent publications
receive a "partially" score to avoid undue penalties.

4) Extraction Criteria
Extraction criteria are essential for systematically gathering
relevant information during the research process. Defining
these criteria helps to deepen the understanding of each
technology and their initial relationships. In this study, these
criteria are established based on information obtained from
the studies discussed in the related works subsection and ad-
ditional existing taxonomies of the implied technologies. This
approach ensures that the collected data and the established
extraction criteria are significant and align with the overarch-
ing research objectives, contributing to a comprehensive anal-
ysis of the interactions between the investigated technologies.
By employing well-defined extraction criteria, the research
process effectively captures and synthesizes essential insights
from various sources, thereby enhancing the overall rigor and
reliability of the research findings [27], [28].

In the following lines, there are defined 38 extraction cri-
teria that cover a wide range of concepts, addressing each of
the three sub-research questions as previously outlined. EC1
to EC18 are utilized to tackle SRQ1 (see Figure 7, 8, and 9),
fromEC19 to EC33 the SRQ2 (see Figure 11), and fromEC34
to EC38 for SRQ3 (see Figure 12).
EC1: Main scope of the study. Indicates the specific related

areas covered within the reviewed study: Fog/Edge Comput-
ing, Blockchain, and Federated Learning (see Figure 7).

The following criteria (EC2-EC4) delineate characteristics
that might be components of architectures as well as the fields
of application integrating FC-BC-FL.
EC2: Architecture Features. Encompasses several sub-

criteria for analyzing the architectural features (see Figure 7).

1) Software Architecture Pattern Type. This sub-criteria
defines the architecture patterns that shape the funda-
mental characteristics of an application [38]. Figure 7
shows architecture patterns that could be employed.

a) Layered. This approach utilizes horizontal layers,
each serving distinct functions to foster modular
and organized development [38].

b) Event Driven. In this pattern, event process-
ing components are decoupled, managing spe-
cific events. It includes two topologies: mediator,
which coordinates multiple event steps using a
central mediator, and broker, connecting events in
a chain without a central mediator [38].

c) Microkernel. It features a core system and plug-in
modules for extensibility and isolation [38].

d) Microservices. This pattern involves deploying
components individually for straightforward scal-
ability, deployment, and decoupling. The archi-
tecture is distributed, with components accessed
remotely; it has evolved from layered and service-
oriented architecture patterns to tackle scalability
and deployment challenges [38].

e) Space-based. Also known as Cloud architecture,
it achieves high scalability by utilizing distributed
shared memory (tuple space) and replacing the
central database with replicated in-memory data
grids. Application data resides in memory and is
replicated among active processing units, alleviat-
ing central database bottlenecks and enabling effi-
cient scaling. Components encompass processing
units and virtualized middleware (handling syn-
chronization and communication) [38].

f) Other. Include alternative abstract representations
or descriptions of the software system’s structure,
behavior, and interactions, offering a high-level
understanding of system components, relation-
ships, and collaboration for desired functionality.

2) Architecture Type. It categorizes architecture types for
integrating the FC-BC-FL technologies, based on FL
architecture perspectives (See Figure 7) [23], [31].

a) Centralized: This architecture involves a sin-
gle central node responsible for communica-
tion, model aggregation, and deployment for
client/edge devices [23], [37].

b) Collaborative: In this architecture, devices create
a mesh-like network, connecting either to a cen-
tral server or nearby devices based on proxim-
ity [23]. This approach can be divided into Dis-
persed Architecture, involving two stages: sub-
global model aggregation within device groups
and global model computation through centraliza-
tion or distribution. Two categories exist within
this sub-classification: centralized dispersed FL
and distributed dispersed FL. Challenges remain
concerning client privacy and non-IID data [37].
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EC2.
Architecture 
Features
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Technological 

solutions / 
frameworks / 
providers for 
applications

EC4. Application

Software 
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Layered
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Other

Architecture Type 
(Integrating 
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Architecture 
Layers 
(FC-BC-FL)

Data Layer

Network Layer

Subchain Layer

Consensus Layer

Contract Layer

Mainchain Layer

Device Layer

Application Layer

Integration Schemes
(FC-BC-FL)

Tight Integration

Loose/Hybrid Integration

Type of Network 
Infrastructure/
Mechanism

Public

Private

Consortium

Hybrid

Data Producers/Suppliers/Vendor/Provider

Service Provider

Consumer

System 
Components/Roles

Infrastructure Provider

Broker

Identity Provider

Federator

Operation 
Mode

Centralized FL

Collaborative FL

Cisco FC Platform

FogHorn Systems

FogHub

Fog/Edge/IoT 
Frameworks

Google IoT Core/Edge

IBM Edge Computing

Microsoft - Azure IoT Edge

Simulator / Formal Model 

Amazon (AWS)

Other (Frameworks, DSLs)

Azure BC

Cisco BC Platform

Ethereum

BC 
Frameworks

Google Could BC

Hyperledger

IBM BC platform

Formal Model

Amazon – AWS Managed BC

Other (Frameworks, DSLs)

Federated AI Technology Enables (FATE)

Federated Learning & 
Differential Privacy (FL&DP)

FedML

FL 
Frameworks

Flower

Google - TensorFlowFederated (TFF)

IBM Federated Learning

Microsoft Azure (Flute) 

Amazon – AWS Managed BC

Other (Frameworks, DSLs)

Paddle Federated Learning (PFL)

Formal Model

BFLC

BLADE-FL

BlockFL / BlockFLA

DeepChain

FedBC

VBFL

Formal Model

BFEL

Other (Frameworks, DSLs)

BC-FL 
Frameworks

Field

Energy

Governance

Healthcare

Industrial Management

Smart Cities

Transport

Others

Business / Finance Management

Scenario

Autonomous Vehicles

Smart Home Security

Supply Chain Management

Other

Use Case

Energy Tradding

Fraud Detection

Personalized Healthcare

Other

Architectural Features

EC1. Main Scope 
of the study

Fog Computing (FC)

Edge Computing (EC)

Blockchain (BC)

Federated Learning (FL)

FIGURE 7. SRQ1 Extraction Criteria. Architectural Features (EC2-EC4)
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c) Decentralized (Fully Distributed): In this archi-
tecture, processing shifts to clients or edge nodes,
eliminating the need for a third-party entity to
aggregate the global model. Clients connect in
a P2P or mutual communication manner to ex-
change local model updates and aggregate the
global model [23], [37].

d) Hierarchical: It includes regional coordination
nodes to manage various edge/fog clusters,
thereby reducing the central node’s workload
[12], [23], [31], [37]. It also considers regional
architecture as a sub-classification, wherein edge
clusters are assigned to regional aggregation
nodes, eliminating central aggregation [23].

3) Architecture Layers. Considering that IoT applications
are commonly presented in Layered architectures, this
sub-extraction criteria provides a list of layers that can
be utilized, and are common, in IoT applications when
integrating FC-BC-FL (See Figure 7) [12], [36], [39].

a) Device Layer (Infrastructure/Physical): Consist-
ing of clients participating in the application (e.g.,
mobile devices, computers, sensors) [12], [39].

b) Data Layer: This layer collects, stores, and man-
ages data from the devices in the system [12].

c) Network Layer: Operating as a decentralized P2P
network, allowing direct resource sharing among
peers without intermediaries. Peers can serve var-
ious functions and are organized based on support
roles like wallets, databases, miners, or routing. It
enables distributed resource sharing and removes
the need for central authorities [12].

d) Subchain Layer: Comprising multiple isolated
networks with client, leader replica, and follower
replica entities, this architecture operates within a
multi-access FC scenario. Here, FNs function as
independent replicas for transaction authentica-
tion and information exchange. The utilization of
a BC consortium ensures compliance with device
access control [39].

e) Consensus Layer: Verifies the block trustworthi-
ness and maintains accurate ledger copies. How-
ever, forks can occur due to malicious nodes,
network faults, or communication delays, posing
a major challenge for consensus algorithms [12].

f) Contract Layer: This layer is responsible for the
management of digital currency and the creation
and administration of SCs [12].

g) Mainchain Layer: This layer is designed for FL
tasks and is deployed on distributed FNs. Its pur-
pose is to maintain and verify transactions in a
decentralized manner [12], [39].

h) Application Layer: Represents The application
layer is the topmost layer in the software architec-
ture and is responsible for providing specific func-
tionalities and services to end-users [12], [39].

The BC-FL integration is described and classified by con-
sidering techniques and implementation schemas, as pre-
sented in [20], [24]. Subsequently, the analysis extends to
the integration with FC. To analyze this extraction criterion,
selected sub-criteria include integration schemes and the type
of network infrastructure/mechanism explained below.

4) Integration Schemes. The study [12] suggests two types
of integration between IoT and BC applications. As
well, this integration schema can be extended to the FC-
BC-FL integration (See Figure 7).

a) Tight Integration: It mandates all IoT communi-
cations through BC, making devices peers and
recording interactions for accountability, thus fa-
cilitating comprehensive monitoring [12].

b) Loose / Hybrid integration: It involves optional
interaction recording on BC, optimizing resource
usage. It combines decentralized recording with
real-time communication for frequent interac-
tions, yet requires careful distance optimization
and compromises decentralization security [12].

5) Type of Network infrastructure/Mechanism. The stud-
ies in [20], [21], [24], [40] outline BC-FL integration
mechanisms, which remain consistent even when FC is
incorporated. These mechanisms are derived from var-
ious BC types. Illustrated in (Figure 7), they comprise:

a) Public: In this case, all data is visible to nodes,
enabling participation in FL and resource con-
tribution. BC consists of connected blocks with
cryptographic hashes, ensuring tamper resistance
and immutability. Data privacy relies on encryp-
tion or hashes [24], [40].

b) Private: Limits BC network to selected partic-
ipants for data privacy in sensitive scenarios.
Write permission is restricted to an organization
or group, providing tighter control. Offers flexible
configuration, and central governance with con-
trolled mining [20], [24], [40].

c) Consortium 1: It merges public and private BCs,
using a defined group for block validation. It
employs a signature mechanism for approval and
spans multiple organizations. Consensus is regu-
lated by pre-authorized nodes, and reading rights
can be public or limited. However, controlled con-
sortium BCs risk tampering if nodes permit [20],
[21], [24], [26], [40].

d) Hybrid: It combines public and private features,
offering flexibility and balance in data sharing
and control. This versatility suits a range of ap-
plications, providing transparency in some areas
while preserving privacy in others, thereby offer-

1A Consortium BC involves multiple collaborating organizations with
restricted access, enabling shared governance and data sharing. Conversely, a
Hybrid BC combines public and private elements, allowing both public par-
ticipation and private data access. The key difference lies in their fundamental
structure and participant control.
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ing organizations benefits from both BCs within
a single solution [20], [24], [40].

6) System Components/Roles. This criterion categorizes
the roles present in federated system applications, in-
frastructures, and smart services. The components/roles
considered presented in Figure 7 are described below:
a) Data Generation: This entity generates or legally

owns/controls the data. It includes sub-roles like
Producers, Suppliers, Vendors, and Providers
[12], analyzed in EC18 within the FL domain.

b) Service Provider:Offers software andMLmodels
to the ecosystem [12].

c) Consumer:An entity that consumes resources/assets
(e.g., data, services) following guidelines and
policies provided by Producers/Providers [12].

d) Infrastructure Provider: A participant that sup-
plies computing resources to the ecosystem [12].

e) Broker: Facilitates resource registration and dis-
covery (e.g., infrastructures, services, data sets)
via metadata and self-descriptions [12].

f) Identity Provider: Creates and manages partici-
pant identity information [12].

g) Federator: Enables and facilitates interaction be-
tween providers and consumers [12].

7) OperationMode.Describes the FL operation within the
application, based on the aggregation process for the
global model [20]. Two types exist (see Figure 7):
a) Centralized FL: In this scenario, global model up-

dates occur on a central server, where local model
parameters are aggregated (this process relies on
the central server for both the aggregation process
and global model updates) [20].

b) Collaborative FL: In this setup, aggregation be-
gins at the end devices. Subsequently, the ag-
gregated model is shared with the central server
for final aggregation. Here, devices with limited
communication or resources share their model
parameters with nearby devices [20].

EC3: Technological solutions/frameworks/providers for
applications. This extraction criterion identifies and catego-
rizes technological solution providers or frameworks for each
of the selected technologies (See Figure 7):

1) Fog/IoT/Edge Frameworks.Categorizes popular frame-
works for Fog solutions (including Edge and IoT),
including Amazon Web Services (AWS), Cisco FC
Platform, FogHorn Systems, and others, alongside self-
developed and Domain-Specific Languages (DSLs) 2.

2) Blockchain Frameworks. Groups of well-known BC
frameworks such as AWS, Azure BC, Ethereum, Hy-
perledger, and more, supplemented by DSLs and other
frameworks.

2A Domain-Specific Language (DSL) is a specialized programming or
specification language designed for a specific industry or task, solving
problems within that domain with tailored syntax and semantics, enhancing
tasks like scientific computing or financial modeling.

3) Federated Learning Frameworks. Classifies leading
Federated Learning frameworks like AWS, FATE,
FL&DP, TFF, and more, encompassing self-developed
models, DSLs, and other [41], [42].

4) BC-based FL Frameworks. Categorizes existing BC
and FL integration frameworks, including BFEL,
BFLC, Blade-FL, and others, alongwith self-developed
models and additional frameworks [43]–[48], [48],
[49].

EC4: Application. This criterion classifies application sce-
narios, further subdivided to categorize each analyzed pri-
mary study’s application (see Figure 7) :
1) Field of application. It encompasses various typical

application fields, including Business/Finance Man-
agement, Energy, Governance, Healthcare, Industrial
Management, Smart Cities/Smart Homes, Transport,
and others [17], [26], [50]–[52] (see Figure 7).

2) Scenario. It classifies deployment situations, environ-
ments, or contexts where technology or system (re-
fer to Figure 7). It characterizes unique circumstances
under which the technology is applied, emphasizing
challenges, requirements, or usage conditions affecting
implementation or operation. Examples can include
Autonomous Vehicles, Data Governance, Smart Home
Security, Supply Chain Management, and more.

3) Use case. It outlines specific instances or examples
that illustrate how a technology or system is utilized to
address a particular problem or fulfill a specific need
(see Figure 7). These depictions detail interactions,
processes, and advantages of practical technology im-
plementation. Examples include Energy Trading, Fraud
Detection, Personalized Healthcare, and more.

The following criteria outline the essential technical com-
ponents and attributes of Fog Computing about the FC-BC-
FL integration (See Figure 8). They assist in defining the
integration’s elements and improving understanding for a
more precise categorization of each primary study.
EC5: Cloud features. It describes the cloud structure in two

main parameters as shown in Figure 8, and described below:
1) Type of cloud. Defines the type of cloud used in the

solution [17], [53]. Figure 8 present their classification:
a) Private. Here, services and infrastructure are pro-

vided by third-party providers via the Internet.
Resources are shared among multiple users. Scal-
ability and cost-effectiveness are key advantages.

b) Public. In this setup, infrastructure and services
are tailored for a single organization, offering
greater control, security, and customization op-
tions, though with increased maintenance and in-
frastructure requirements.

c) Community. Shared clouds for organizations with
common interests, such as government agen-
cies or educational institutions, facilitate resource
sharing, collaboration, and security control.
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d) Hybrid. It combines public and private clouds,
allowing organizations to leverage the benefits
of both. It offers flexibility, scalability, and the
ability to handle varying workloads efficiently.

2) Cloud server design. Define FL aggregation server
types for cloud implementation [17] (see Figure 8).

a) Containers based design. This design offers
lightweight, scalable deployment with faster
startup times [17].

b) Virtual Machines based design. provide stronger
isolation and compatibility.

c) Hybrid based design. Describes a combination of
container-based and virtual machines.

EC6. Fog (Edge) nodes features. The FN serves as a pivotal
element within the FC architecture [8]. This criterion assists
in delineating and recognizing the attributes of this element
within the review of primary studies, utilizing the subsequent
sub-criteria as depicted in Figure 8:

1) Node Design. It encompasses both hardware (Physical)
and Software (Virtual) aspects [8], [17].

2) Node Type. This criterion outlines different FN config-
urations, encompassing base stations, cloudlets, gate-
ways, micro data centers, MEC nodes, routers, servers,
switches, virtual machines, virtual switches, vehicles,
and other customized designs. Each node type corre-
sponds to specific functionalities and roles within the
FC architecture, contributing to the ecosystem’s overall
efficiency and performance [8], [17], [50], [54].

3) Node Tasks. This sub-extraction criterion provides in-
sights into the tasks that a node can undertake within an
FC-BC-FL solution (see Figure 8).

a) Mining (BC). The node engages in mining activi-
ties for BC-related operations.

b) Model Aggregation (FL). The node facilitates FL
processes by aggregating models of end devices.

c) Processing. The node handles conventional FC
tasks, such as data storage and processing.

4) Node Functionality (Fog). It outlines the designated
role of the FN [8], [12] (see Figure 8).

a) Fog Gateway Node (FGN). A node functioning
as an intermediary, connecting IoT devices at the
edge with the Fog Computing infrastructure [12].

b) Fog Orchestration Controller (FOC). A node re-
sponsible for establishing a control layer in the
Fog, overseeing resources, and coordinating com-
munication. FOCs manage tasks such as task
offloading, scheduling, and resource allocation
while considering factors like communication
cost and latency [12].

c) Fog Computing Node (FCN). A node comprising
one or multiple physical devices endowed with
processing and sensing capabilities. These de-
vices empower the Fog to execute tasks assigned
by FOCs [8], [12].

d) Fog Storage Node (FSN). A node locating a dis-
tributed database/repository [12].

5) Node Collaboration type for FL. The classification of
collaboration among FNs in the FL process depends on
the nature of the application and the available commu-
nication resources. Training an FL model for a massive
number of IoT devices incurs communication resource
overhead. Collaborating between nodes helps alleviate
this process [17], [33] (see Figure 8).
a) Horizontal. FNs at the same level collaborate and

share resources to collectively handle tasks and
provide services [17]. Collaboration between end
devices and edge/fog servers [33].

b) Vertical. FNs at different levels collaborate with
higher-level nodes providing support and offload-
ing tasks to lower-level nodes. Collaboration oc-
curs between Edge/Fog and the Cloud [17], [33].

c) Hybrid. Merges horizontal and vertical collab-
oration, enabling flexible and adaptive resource
sharing and task distribution in FNs [17], [33].

6) Service Models. Similar to the Cloud, the FN offers
service models that encompass IaaS, PaaS, and SaaS
(see Figure 8) [8].

7) Deployment Models. Just like the Cloud, the FN has the
following deployment models (see Figure 8) [8]:
a) Public FN. A node provisioned for open use by

the general public [8].
b) Private FN. A node dedicated to a single organi-

zation with multiple consumers [8].
c) Community FN. A node provisioned exclusively

for use by a specific community of consumers
from organizations that have shared concerns [8].

d) Hybrid FN. A complex node formed by combin-
ing private, community, and public nodes [8].

8) Collaboration Between Nodes. Are the methods for
coordinating collaborative interactions among diverse
FNs within the edge network [54] (see Figure 8):
a) Cluster. Nodes collaborate by forming clusters

based on homogeneity or location, considering
load balancing and functional development [54].

b) P2P. In FC, node P2P collaboration is common,
either hierarchical or flat order. P2P collaboration
can be home, local, or non-local based on proxim-
ity. It enables the sharing of processed output and
virtual computing instances but raises concerns
about reliability and access control [54].

c) Master-slave. It is a master FN that controls
the functionalities of slave nodes. This approach,
alongwith cluster and P2P interactions, can create
a hybrid collaborative network in FC [54].

9) Networking System. There exist several computing
paradigms in different networking systems where FC
has been integrated (see Figure 8), including:
a) IoT. Networking system for device-to-device in-

teraction, categorized as industry or home-based
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execution environment, stated in various forms
like wireless sensors/actuators, Cyber-Physical
Systems, and embedded system networks [54].

b) Content DistributionNetwork (CDN).Networking
system composed of distributed proxy servers
that provide content to end-users ensuring high
performance and availability [54].

c) Long-Reach Passive Optical Network (LRPON) /
Power Line Communication (PLC). FC integrated
with LRPON optimizes home, industry, and wire-
less backhaul network design, and additionally
integrates into electric power distribution [54].

d) Mobile Network (MN) / Radio Access Network
(RAN). FC in networking systems in mobile net-
works, particularly in 5G, as well as in other
mobile networks like 3G and 4G. Besides, the
Radio Access Network (RAN) facilitates commu-
nication of individual devices with other entities
of a network through radio connections [54].

e) Vehicular Network (VN). Networking systems
connecting vehicles conformed by computational
and networking capabilities [54].

EC7. Clients (End Devices) features. Clients play a crucial
role in FC-BC-FL integration, interacting with central servers
or distributed networks for service, data, or resource requests.
This criterion helps identify client attributes via the sub-
criteria in Figure 8.

1) Client Design.The client design can either beHardware
(Physical) or Software (Virtual) (see Figure 8) [17].

The clients represent the configuration and functionality of
the devices. Two types of clients are presented:

2) Type of Clients (End-Devices/Gadgets). They encom-
pass a variety of categories, including actuators, sen-
sors, controllers, data users/data centers, IoT de-
vices/gateways, andmobile devices. The latter category
includes devices withmobility within the network, such
as cell phones, tablets, and smartwatches. Additionally,
there are smart devices with high computing capabili-
ties (e.g., laptops, PCs, Raspberry Pi). Besides, vehicles
and other categories (see Figure 8) [12], [17], [55].

3) Type of clients (BC Devices/Equipment). Client types
for BC include virtual machines, containers, services,
messaging, and others (see Figure 8) [12], [23], [24].

4) Device Connections. The clients can be connected both
wireless or wired (see Figure 8) [12].

5) Device Tasks (FC-BC-FL).Describes the possible tasks
that the end-device performs in a FC-BC-FL solution,
including (see Figure 8):

a) Mining (BC). Device performs BC mining tasks.
b) Local Model Training (FL). End device partici-

pates in FL processes to train models on-device.
c) Local Model Aggregation (FL). The end device

contributes to FL tasks involving model aggrega-
tion within the end devices.

d) Processing. End device undertakes conventional
FC functions (e.g., data storage, management).

6) Client - Local ML models. Describe the ML models
potentially executed by clients (see Figure 8) [17], [20].
These models encompass Convolutional Neural Net-
works (CNN), Feed-Forward Neural Networks (FNN),
K-means, Long short-term memory (LSTM), Naive
Bayes, Stochastic Gradient Descent (SGD), Support
Vector Machines (SVM), and others.

7) Clients used resources. The clients can use the follow-
ing resources when performing (see Figure 8)

a) Computational Resources. Refer to the comput-
ing power, processing capabilities, and storage ca-
pacity of devices or systems. These resources are
essential for performing data processing, running
algorithms, and executing tasks efficiently [17].

b) Communicational Resources. Represent the net-
work infrastructure, bandwidth, and communi-
cation protocols that enable data exchange and
connectivity between devices or systems. These
resources facilitate data transfer, and communica-
tion between nodes, and support the information
flow within a network [17].

8) Data Distribution Type. It describes how data is dis-
tributed within the clients’ datasets, especially in the
ML and data analysis context (see Figure 8) [56], [57].

a) Independent Identically Distributed (IID). Here,
each data point within the client’s dataset is inde-
pendent of others, and these data points are drawn
from the same underlying distribution [56], [57].

b) Non-IID.Are datasets within the client where data
points are not independent and can come from
different underlying distributions. Such situations
often occur in real-world contexts due to varia-
tions in data sources or devices [56], [57].

The following extraction criteria highlight the Blockchain
key attributes to consider during the primary studies review
(see Figure 9). These attributes are organized following the
layered architecture, covering from the contract to the physi-
cal layer (The application layer was previously analyzed).
EC8. BC Contract Layer. This criterion concerns the con-

tract layer, encompassing script codes, algorithms, and SCs
embedded in the BC to execute complex business rules.
These contracts automatically trigger predefined actions or
transactions upon meeting specific conditions agreed upon
by network nodes [13], [23], [33], [37]. The subsequent sub-
criteria (see Figure 9) outline the analyzable features.

1) Type of Contract. Defines the types of contacts that can
be part of the BC system [13], [58] (See Figure 9).

a) Scripts. The BC’s contract layer introduces pro-
grammable features, enabling advanced scripting.
Scripts are basic code pieces used for simple
transaction validation in BC networks [58].
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FIGURE 9. Blockchain Features (EC8-EC13)

b) Smart Contracts.ASC is amore powerful form of
contract that enables the automation of complex
agreements and business logic on the BC [13]. It is
a data and code collection, also referred to as func-
tions and states, which is deployed using cryp-
tographically signed transactions on the BC. Ex-
amples of platforms with SCs include Ethereum’s
SCs and Hyperledger Fabric’s chain code [34].

2) Type of Smart Contracts. (see Figure 9).

a) Deterministic Smart Contracts. These contracts
execute actions based solely on predefined condi-
tions and do not require any external input or off-
chain data. They are entirely self-executing and
deterministic in nature [59].

b) Non-Deterministic Smart Contracts. These con-
tracts rely on external input or off-chain data to
execute actions. They may involve human inter-
vention or external systems to trigger certain ac-
tions or decisions within the contract [59].

3) Smart Contracts Study Scope. (see Figure 9).

a) Improvement. If the primary study proposes alter-
native methods to enhance the SC functionality
verification. These methods can be Modeling-
driven or Optimization-driven [58].

b) Usage. If the primary study demonstrates the
utilization of SCs across various domains. This
usage can be either resource-driven or driven by
cross-organizational collaboration [58].
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EC9. BC Incentive Layer. This layer, economically rewards
specific nodes, motivating their active block verification and
decentralizationmaintenance (See Figure 9). It ensures incen-
tive issuance and distribution, encouraging node participation
in the consensus process [23], [60].

1) BC Incentive Mechanisms. They encompass a variety
of approaches designed to motivate and reward partic-
ipants (nodes) within a BC network for their contri-
butions to maintaining the network’s security, consen-
sus, and overall functionality [23]. These mechanisms
are categorized as follows: Bitcoins, Ether, Mining
Rewards, and others (e.g., Governance Participation,
Staking Rewards, Transaction Fees, ZCash).

EC10. BC Consensus Layer. This extraction criterion out-
lines the Consensus Layer in BC, detailing the protocols
that network participants follow to establish consensus on
valid transactions and ensure system security. This layer can
employ diverse algorithms for achieving decentralized agree-
ment [23], [33]. The attributes of this layer help define the
core of this extraction criterion (See Figure 9), including:

1) Consensus Algorithms (CA). In BC, the CAs ensure
ledger integrity, security, and efficiency among un-
trusted nodes in the P2P network. Their primary goal
is to achieve agreement on adding new blocks to the
ledger. Different CAs are used in BC systems, eachwith
its strengths and weaknesses [20], [22], [33], [34], [40],
[61] (See Figure 9). The CA categorization is:

a) Proof of Authority (PoA). It relies on trusted val-
idators who are authorized to create new blocks
and validate transactions based on their recog-
nized identity within the network.

b) Proof of Contribution (PoCot). It rewards nodes
based on their tangible contributions to the net-
work, such as providing computational resources,
storage, or services that improve functionality.

c) Proof of Elapsed Time (PoET). It ensures fairness
by having nodes wait for a randomly assigned
time, and the first node to complete its waiting
time gets the right to propose a new block.

d) Proof of Knowledge (PoK). It requires nodes to
prove their possession of specific knowledge or
information before they can participate in consen-
sus. It emphasizes using knowledge-based proofs.

e) Proof of Schedule (PoS). It selects block creators
based on a predefined schedule, often determined
by factors like the node’s age, wealth, or a combi-
nation of both. This aims to provide a determinis-
tic way of choosing validators.

f) Proof of Stake (PoS). Similar to PoW, it chooses
validators based on the cryptocurrency they hold
and are willing to "stake" as collateral. This re-
duces energy consumption compared to PoW and
encourages active participation from those who
hold more stake in the network.

g) Proof of Work (PoW). It entails solving complex
mathematical problems (using significant com-
putational power). Miners compete to solve the
problem, and the first one to solve it gets to create
the next block.

h) Byzantine Fault Tolerance (BFT). It addresses
faulty nodes in a network, ensuring consensus
despite malicious behavior or failures. It guaran-
tees agreement even with a specific number of
nodes behaving maliciously or failing, enhancing
security and consistency in untrustworthy or un-
reliable node scenarios. The algorithm employs
a voting or agreement process among nodes to
determine transaction validity.

i) Delegated BFT (DBFT). Extends BFT by involv-
ing trusted nodes or delegates in consensus. These
nodes validate transactions through agreement.
Trusted delegates streamline consensus, speeding
transaction confirmations, especially in BC net-
works with predetermined validators or delegates
responsible for consensus.

j) Others. Covering extra CAs such as Proof of "X"
(Authentication, Capacity, Importance, Learning,
Retrievability, Space, Storage, Training Quality,
Verification), Delegated Proof of Stake (DpoS),
Crash Fault Tolerance (CFT), and more.

2) Consensus Protocols (CP). CPs underpin BC security
and performance. CPs achieve decentralized consensus
on a shared transaction ledger, defining how nodes ex-
change messages and make decisions. Design choices
impact transaction capacity, scalability, and fault toler-
ance [33], [62]–[64]. The general CP types are:

a) Compute-intensive based.CPs based on compute-
intensive algorithms are characterized by their
high energy consumption during the mining pro-
cess. It primarily focuses on PoW [62].

b) Capability based (Consensus based on Proof-of-
X). This category extends beyond energy con-
sumption and considers non-computing capabil-
ities. These protocols factor in various aspects,
such as the amount of cryptocurrency owned by a
miner, their contribution to the community, trust-
worthiness, or the storage they possess [62]. It
includes all "proof-of-X" except PoW [63], [64].

c) Voting based. They use voting systems to elect
a miner for block generation, addressing energy
consumption and wealth dominance concerns.
They tolerate Byzantine faults, ensuring consen-
sus despite node failures or malicious behavior.
This category is divided into BFT-based consen-
sus, achieved by following Byzantine algorithms
[63], [64], and CFT-based. BFT-based prevents
failing and malicious nodes, while CFT-based ad-
dresses only failing/crashing nodes using proto-
cols like Raft and Federated [62].
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d) DAG-Based Consensus. This category covers CPs
that use DAG-Based algorithms [64].

Note that CA defines the overall strategy for consensus,
while CP specifies the detailed rules and mechanisms for
communication among nodes to achieve consensus.

3) Consensus Protocol Configuration. The protocol con-
figuration plays a crucial role in a BC network, impact-
ing security and scalability [40].
a) Security. For security purposes, Nakamoto con-

sensus systems employ strategies such as await-
ing a specific number of blocks (X-Block confir-
mation) or implementing checkpoints to mitigate
double-spending risks (Checkpointing).

b) Scalability. It can be improved by adjusting block
size or mining difficulty to increase transaction
processing rate (e.g., adjusting original block size
and frequency or increasing block size/reducing
mining size). However, this might lead to more
frequent forks and longer waiting times for con-
firmation blocks by users.

EC11. BC Network. This BC layer defines the networking
implementation within the BC system [13]. This criterion is
analyzed by the following sub-criteria (see Figure 9).

1) Network Mechanism. This aspect’s primary goal is to
distribute data generated by the data layer. The network
mechanisms include (see Figure 9):
a) Peer-to-peer (P2P). In decentralized networks,

each participant functions as a peer [13].
b) Client-Server. While P2P networks are common

in BC to ensure decentralization and eliminate
central intermediaries, BC-FL integration might
involve other network architectures depending on
specific BC implementation requirements [13].

2) Network Topology. Referring to the structure and orga-
nization of nodes and their communication [13], [33],
[40], different network topology types are used in BC
systems, categorized as follows (see Figure 9):
a) Fully decentralized. his topology lacks a central

authority [13], [33], [40].
b) Partially decentralized. Some centralization ele-

ments exist in this topology [13], [33], [40].
c) Sharded. This topology divides into small subsets

called shards to achieve scalability [13], [33].
3) Network Categorization. BC networks are categorized

based on permission models, outlining authorized enti-
ties for maintenance [33], [34] (see Figure 9).
a) Permissionless. Here, anyone can participate (as

the public internet). Permissionless BC networks
are decentralized ledgers open for anyone to pub-
lish blocks without requiring permission. Users
can read/write to the ledger, but malicious users
might try to undermine the system [33], [34].

b) Permissioned. This network type requires autho-
rization for block publishing, controlling read and

transaction access. They can be open for reading
to anyone or restrict access to authorized individ-
uals. These networks use consensus models for
block publishing, being faster and less computa-
tionally intense than the permissionless [33], [34].

EC12. BC Data. The significance of data in BC is relevant.
Consequently, This criterion highlights the attributes pertain-
ing to data within a BC environment (refer to Figure 9).

1) Chaining Approach. This encompasses the structure
of authenticated data from the consensus layer storage
(see Figure 9). It includes:
a) Main chain structure (Linear). It is the traditional

BC, where blocks are linked in a linear chain, and
each block contains the hash of the previous block
(e.g., Bitcoin) [13], [33].

b) DAG chain. In this case, the blocks are connected
in a non-linear way, forming a graph structure
without cycles. Each block references multiple
previous blocks, increasing scalability and trans-
action parallelism (e.g., IoTa, PriFob) [33].

c) Off-chain. In this chaining approach, the transac-
tions are processed outside the main BC, and only
the final outcome is recorded on the main chain.
This approach reduces on-chain congestion and
enhances privacy [13], [33].

d) Sidechain. An independent BC that is interopera-
ble with the main BC, allowing specific functions
or applications to operate autonomously while
maintaining a connection for enhanced security
and flexibility [13].

e) Plasma chain. This represents a hierarchical
structure comprising child chains linked to the
main BC, utilizing merkleized proofs to facilitate
rapid and cost-effective transactions. This archi-
tecture enhances the scalability of BC by reducing
the workload on the main chain and enabling
parallel processing. [13].

2) Data Structure. In BC, it defines how the information
is stored and linked together to form a chain of blocks.
This data structure allows for the secure and efficient
storage and retrieval of data, enabling the decentralized
and distributed nature of BC technology [40]. The BC
systems use several data structures (see Figure 9):
a) Blockchain. It is the traditional d data structure

formed by interconnected blocks. When conflict-
ing blocks arise, network participants typically
opt for the longest chain as the valid one [40].

b) GHOST (Greedy Heaviest-Observed Sub-Tree).
By using the GHOST protocol, miners modify the
data structure by including competing indepen-
dently mined blocks (uncle blocks) in their chain,
adding weight to their chain for selection as the
main chain. This enhances network efficiency and
throughput by recognizing concurrent work and
incorporating uncle blocks in the consensus [40].
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c) BlockDAG. Moving from a linear chain to a Di-
rected Acyclic Graph (DAG) permits the integra-
tion of non-conflicting transactions from uncle
blocks into the primary chain. Selection criteria
can favor the longest chain or the heaviest sub-
tree, determined by block length or collective dif-
ficulty. Additionally, customization of the internal
block structure is achievable. [40].

d) Segregated witness. It is a proposed solution in
the Bitcoin community that separates transaction
signatures (witnesses) from the transaction data,
reducing their impact on block size. This ap-
proach improves scalability by decreasing storage
requirements since all transactions are replicated
on every node in a BC network [40].

3) Data Privacy. It is the protection of sensitive and per-
sonal information on the BC, ensuring authorized ac-
cess and restricting unauthorized disclosure [12], [40].
The data privacy can be achieved by (see Figure 9):

a) Soft privacy technologies. Are techniques that
protect privacy without fundamentally altering
data, allowing for data processing while safe-
guarding sensitive information.

b) Hard privacy technologies. Are strong measures
involving irreversible data transformation or en-
cryption, offering enhanced privacy assurances
while potentially constraining specific data pro-
cessing capabilities.

c) Data Anonymization. Refers to the process of
removing or modifying personally identifiable
information from datasets to prevent individual
identification while enabling useful data analysis.

d) Data Masking. It is the Technique of concealing
sensitive data withmodified or randomized values
to protect privacy while maintaining data realism
for specific purposes like testing or development.

4) Data Security. Ensure data integrity, confidentiality,
and availability through encryption, access controls,
and digital signatures. The techniques include Encryp-
tion, Authentication, Forensics, and Replication [12],
[40], [52] (see Figure 9).

5) Data Encapsulation. In the data layer, the data is col-
lected through transactions from the physical layer.
Then, the first step is to encrypt or encapsulate the data
[12]. This sub-criterion describes the data encapsula-
tion alternatives for data (see Figure 9).

a) Hashing. One-way function, converts data to
fixed-size hash and verifies data integrity in BC.

b) Digital signatures. They use asymmetric cryptog-
raphy, provide authenticity and non-repudiation,
and verify the sender and data integrity.

c) Asymmetric Cryptographic Algorithms. These al-
gorithms employ a pair of keys—a public key and
a private key. The public key is utilized for encryp-
tion, while the private key is used for decryption.

Data encrypted with the public key can solely
be decrypted using the corresponding private key,
ensuring secure communication between parties
without requiring a shared secret.

6) Hash Algorithms. It is a mathematical function that
transforms an input (often termed a message) into a
fixed-size string of characters, known as a hash value
or code. This output typically provides a distinct repre-
sentation of the input data, with minor changes yielding
significantly different hash values [65]. This criterion
categorizes Hash Algorithms into SHA-256, SHA-512,
and Others (e.g., Ethash, ring signatures, cunningham
chain) as presented in Figure 9.

EC13. BC Hardware / Infrastructure. This extraction crite-
rion describes the BC physical structure (with special analysis
in the BC-based FL) and their relevant elements which are
detailed in Figure 9, and analyzed below:
1) Miners (BC based FL).Miners are important elements

in the BC domain. They validate transactions, solve
complex puzzles to add blocks and secure the network
while earning rewards. In the BC-based FL context,
miners are responsible for the secure and trustable ex-
change of learning model parameters in a distributed
manner [17], [33]. They can be classified into (see
Figure 9):
a) Static. These stationary devices play a crucial role

in the BC network, contributing their high compu-
tational power to validate transactions, generate
new blocks, and ensure the security of FL. Static
miners exhibit the highest computational power,
the lowest forking probability, and the highest
block propagation capability [17], [33].

b) Flying. Are Unmanned Aerial Vehicles (UAVs)
that provide computational resources to validate
transactions and generate blocks. This miner has
low computational power, high forking probabil-
ity, and the highest block propagation [17], [33].

c) Mobile. Similar to autonomous cars, movable de-
vices actively participate in mining. They use
computational power and connectivity to con-
tribute to the BC network, ensuring secure pa-
rameter exchange in learning models. These min-
ers boast high computational power, low forking
probability, and low block propagation [17], [33].

2) Node Types (BC based FL). The nodes are the network
participants [62]. The node types are (see Figure 9):
a) Simple/Light Node. A network node that can only

send and receive transactions, without storing a
copy of the ledger or validating transactions [62].

b) Full Node. A node that stores a copy of the entire
ledger and can validate transactions [62].

c) Mining node (Miners/Block Generators). A full
node within the network that possesses themining
capability, which involves creating new blocks
and adding them to the BC [62].

VOLUME 11, 2023 19



Valdez et al.: Exploring the Synergy of FC, BC, and FL for IoT Applications: A Systematic Literature Review

3) Node Tasks (BC based FL). The nodes in a BC-based
FL can perform tasks such as:

a) Consensus Mechanisms: Nodes collaborate to
reach a consensus on the validity and order of
transactions. Examples include Proof of Work
(PoW), Proof of Stake (PoS), and Practical
Byzantine Fault Tolerance (PBFT) [60], [62].

b) Transaction Validation. Nodes collaborate to val-
idate transactions by verifying their integrity, au-
thenticity, and adherence to the predefined rules
or smart contracts [52], [60], [62].

c) Block Propagation. Nodes collaborate to prop-
agate newly created blocks across the network.
This involves broadcasting the block to other
nodes for verification and inclusion in their BC
local copy [60], [62].

d) Block Verification. Nodes collaborate to verify
the correctness of blocks by performing crypto-
graphic operations, checking signatures, and val-
idating transactions within the block [60], [62].

e) Block Validation. The nodes collaborate to vali-
date the entire BC, ensuring its consistency and
integrity. They reach a consensus on the BC state
and agree on the next block to be added [60], [62].

f) Data Synchronization. Nodes collaborate to syn-
chronize their local copies of the BC, ensuring
that they have the same version of the ledger.
This involves sharing and updating the BC data
between nodes [60], [62].

4) Node Collaboration Type (BC-based FL). It defines
three types in a BC-based FL solution [33], [44], [62]:

a) Consensus-Based Collaboration. Nodes in the
BC network collaborate to reach a consensus on
the validity and ordering of federated learning
updates. Through consensus algorithms such as
Proof-of-Work (PoW) or Proof-of-Stake (PoS),
nodes collectively validate and agree on the up-
dates contributed by participating devices or enti-
ties. This collaboration ensures the integrity and
consistency of the FL process [44].

b) Aggregation-Based Collaboration. Nodes collab-
orate to perform aggregation of local model up-
dates contributed by participating devices. Each
node receives the individual model updates, ag-
gregates them using specific aggregation algo-
rithms (e.g., FedAvg), and generates a new global
model. The collaboration among nodes enables
the merging of knowledge from different devices
while preserving data privacy [44], [60], [66].

These node collaboration types are crucial for the success-
ful operation of BC network-based FL. They enable secure,
decentralized coordination among nodes, ensure trustworthy
updates and model aggregation, and provide a framework for
collective decision-making and governance.

The following extraction criteria outline the main Feder-
ated Learning features to be considered when reviewing the
primary studies. The features are established based on the
layered architecture, starting from the global model layer
to the data layer (The application and physical layers were
previously analyzed) (see Figure 10).
EC14. FL Global Model. It describes the Global Model

layer characteristics by the sub-criteria shown in Figure 10.

1) Federated Optimization Schemes. In FL, they aim to
minimize the global loss function (i.e., the overall per-
formance measure used to evaluate the accuracy and
quality of the global model) [17]. Two types exist:

a) Single Task. In this case, the global federated
learning model is trained only for a single task
(e.g., FedAvg, FedProx, and q-FedAvg) [17].

b) Multi task. In this case, it involves the training of
multiple models for different tasks (e.g., Feder-
ated Multitask Learning (FML)) [17].

2) FL Algorithms. They enable devices to collaboratively
train a shared global model without sharing raw data.
Local models’ updates are aggregated iteratively, pre-
serving privacy and decentralizing data. Within the
realm of FL, various algorithmic approaches have
been developed, each tailored to address distinct ob-
jectives and challenges. These include Auditable FL
(AFL), Communication-Efficient FL (CEFL), Clus-
tered FL (CFL), Chain FL (CFL-Chain), Fine-Grained
FL (FGFL), Incentive-aware FL (IFL), Reliability-
aware FL (RAFL), Reward FL (RFL), Reputation-
Aware FL (RFL), and others [24], [39] (see Figure 10).

EC15. FL Incentive Layer. This category contains the in-
centive mechanisms employed within the FL domain. These
mechanisms serve as strategies or tools intended to incen-
tivize and reward participants, including nodes/miners and
end devices, within an FL network. These incentives aim
to encourage their active engagement in the learning pro-
cess and the sharing of updates from their local models
while upholding data privacy and security [17], [23]. Some
of the incentive mechanisms include (see Figure 10): Auc-
tions, Blockchains, Contact theory, Reinforcement Learning,
Game-theoretic, Matching theory, Shapely value, Stackelberg
Game [17], [20], [23], and others.
EC16. FL Aggregation.Aggregation is the merging of local

model updates frommultiple devices to create a global model
while preserving data privacy [10], [36]. This criterion helps
in identifying important FL aggregation facts (see Figure 10).

1) FL Aggregator Type (For FL-FC/IoT applications). An
aggregator is the device that performs the aggregation
process which consists of initiating, combining local
model updates, and constructing new global models.
The aggregator types include Cloud Servers, Data Cen-
ters, Data Servers, Data Workers, FL Servers, Security
Gateway, and Others [10].
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FIGURE 10. Federated Learning Features (EC14-EC18)

2) FL Aggregation Time. The FL methods are categorized
into three synchronization schemes based on when
global model aggregation occurs [23] (see Figure 10).

a) Synchronous. This scheme entails simultaneous
training of all active devices, resulting in idle time
for high computational devices and slow conver-
gence due to the slowest device [23].

b) Asynchronous. It allows devices to update the
global model separately, improving convergence
but taking more communication resources [23].

c) Semi-Synchronous. This aggregation time strikes

a balance between synchronous and asyn-
chronous processes, enabling local training until
synchronization points. It cuts communication
costs and optimizes resource utilization, enhanc-
ing model convergence, especially for devices
with diverse computational capabilities [23].

3) FL Aggregation Algorithms. An aggregation algorithm
combines outcomes from training individual models
on clients’ devices with their data, updating the global
model. Algorithms include (see Figure 10) Fed AVG,
FedProx, FedMA, and others [10], [17], [20], [36], [42].
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4) FL Aggregation Approaches. As known, the aggrega-
tion algorithms in FL are crucial for updating global
models. Various approaches are used based on goals
like privacy protection, convergence rate improvement,
and fraud prevention. Each has pros and cons, and some
suit specific contexts better [36] (see Figure 10).

a) Adversarial. It identifies and mitigates the impact
of malicious clients or outlier model updates [36].

b) Average. It averages the client updates [36].
c) Bayesian. It is employed for aggregating model

updates while considering uncertainty [36].
d) Differential Privacy Average. Introduce random

noise to the model updates before aggregation to
guarantee privacy [36].

e) Ensemble Based.Merge model updates from var-
ious models trained on diverse data subsets [36].

f) Hierarchical. It performs the aggregation process
at different levels of a hierarchical structure [36].

g) Momentum. It incorporates a momentum factor
into the model updates before aggregation to en-
hance the speed of convergence [36].

h) Personalized. Takes clients’ unique characteris-
tics into account [36].

i) Quantization. Decrease the bit representation of
model updates before sending them [36].

j) Secure. It ensures privacy with techniques like
homomorphic encryption or secure multi-party
computation, safeguarding data during computa-
tion and transmission [36].

k) Stochastic. Solutions in this category utilize ran-
domness or probabilistic methods during the
model update aggregation process. It aims to en-
hance privacy, improve convergence, and mitigate
malicious or outlier model updates influence [39].

l) Weighted.Assignweights to clients’ contributions
based on their performance or other criteria [36].

5) FLOperation modes based on global aggregation fash-
ion. The global aggregation fashion refers to how local
learning models from several devices or servers are
combined to create a global model in FL [17]. Thus,
based on the mentioned information, the FL operation
modes are (see Figure 10):

a) Centralized aggregation-enabled FL. The aggre-
gations take place at distributed servers without
using a centralized aggregation [17], [20].

b) Distributed aggregation-enabled FL. The aggre-
gation occurs at distributed servers without rely-
ing on a central aggregation point. End devices or
servers share their model updates with each other.
The aggregations perform distributedly [17].

c) Hierarchical FL. In hierarchical FL, the local
learning models are aggregated at edge servers
before global aggregation at the cloud [17].

d) Collaborative FL. The devices with limited com-
munication resources send their models to nearby

devices with better resources, and the aggregated
models are sent to a centralized server [17], [20].

e) Dispersed FL. It is a novel approach where sub-
global FL models are computed within differ-
ent groups, then transferred between groups, and
finally aggregated iteratively until a desirable
global FL accuracy is achieved [17].

6) FL Learning Style. Before the aggregation process, the
models are trained following a specific learning style.
It refers to the approach or methodology used by an
algorithm or model to process and learn from data. It
defines how the model generalizes from the provided
data to make predictions or decisions on new, unseen
data [36]. These styles include:
a) Supervised. Use labeled data to train a model,

where input-output pairs are provided, allowing
the model to learn to make predictions or classifi-
cations on new data [36].

b) Unsupervised. Deal with unlabeled data, finding
patterns or structures within it, without explicit
target outputs, often used for clustering or dimen-
sionality reduction [36].

c) Semi-supervised. Combine labeled and unlabeled
data, leveraging the unlabeled data to enhance
model performancewith limited labeled data [36].

d) Reinforcement. Involve an agent interacting with
an environment, learning from feedback in the
form of rewards or penalties to make optimal
decisions and actions to reach a specific goal [36].

EC17. FL Network. This extraction criterion classifies the
network features in FL. While the criteria discussed in EC6
and EC13 have described important network characteristics
of FC and BC, there is one remaining feature that is crucial in
the FL domain and in the integration of these three technolo-
gies which is the number of participants in the network.

1) Network Type (FL Scale). Since FL can occur in a range
of types [23], [41]. This extraction criterion defines
the scales of FL networks regarding the number of
participants (See Figure 10):
a) Cross-device. It involves a large number of client

devices, like IoT devices and smartphones, with
limited data size and intermittent network connec-
tivity. The challenge is to effectively utilize con-
tributions from diverse devices to collaboratively
train a global model [23], [41], [42], [67].

b) Cross-silo. It involves a small number of clients
(tens to hundreds), like data centers or organi-
zations, working together with large data sets,
reliable connectivity, and powerful computing re-
sources. The security and performance of the FL
system depend on the network type and other
complex criteria related to ML objectives and
privacy constraints [23], [41], [42], [67].

EC18. FL Data. It classifies some of the considerations in
the data layer within the FL domain (See Figure 10).
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1) FL Data Management. The data layer in FL involves
various features regarding data that are essential for the
FL system functionality, including key data manage-
ment aspects (see Figure 10).

a) Data Distribution. The data layer deals with how
data is distributed across multiple devices, clients,
or nodes participating in the FL process. Data
can be heterogeneous, non-IID, and may have
different features at each device [10], [36], [39].

b) Data Privacy. Privacy preservation is crucial in
FL, as data is kept decentralized and sensitive
information remains on individual devices. Tech-
niques like differential privacy and encryption are
employed to protect data privacy during the FL
process [10], [23], [26], [41], [52].

c) Data Aggregation. The data layer manages how
local model updates from different devices are
aggregated to create a global model. Aggregation
methods need to be efficient and secure while
considering communication resources [10], [36].

d) Data Synchronization. FL systems need to handle
the synchronization of data updates across devices
with intermittent connectivity. The data layer en-
sures timely and reliable synchronization of local
model updates [23].

e) Data Partitioning. Data partitioning involves di-
viding data across devices or clients for train-
ing local models. Different partitioning strategies
(vertical, horizontal, transfer learning) are em-
ployed based on the data distribution and learning
objectives [10], [12], [20], [42], [67].

f) Data Availability. The data layer addresses issues
related to data availability, as some devices may
be offline or inaccessible at times. Data avail-
ability mechanisms must ensure that devices can
effectively contribute to the FL process.

g) Data Heterogeneity FL systems often deal with
data heterogeneity, where devices have different
data formats, types, and distributions. The data
layer manages these variations to create a coher-
ent global model [12], [17], [23].

h) Data Bias. The data layer handles data bias, en-
suring that biased data from specific devices does
not negatively impact the global model’s perfor-
mance. Techniques to address bias and fairness
are incorporated [36].

2) Type of FL infrastructure based on data partition-
ing. The FL is used in scenarios where data is dis-
tributed across multiple devices with different variants
of clients, usage data, and applications [20], [37], [42].
This diversity allows ML models to have better gener-
alization capabilities through continuous updates. Data
partitioning in FL includes (see Figure 10):

a) Vertical FL. In this case, IoT devices from differ-
ent clusters with shared data interests train ML

models collaboratively without relying on central
authority [20], [24], [42].

b) Horizontal FL.In this case, clients with similar
data features share their data for collaborative
learning [20], [24], [42].

c) Transfer Learning. In this case, pre-trained mod-
els are shared among devices to train local ML
models, providing better results compared to
training from scratch [20], [24], [42].

3) FL Data Entities. These are entities, organizations, or
businesses that generate or legally own/control the data
[12]. The classification is (See Figure 10):

a) Data producer. It is an entity, organization, or
business that generates or creates data. They are
the source of the data and have legal ownership or
control over it. They can be individuals, compa-
nies, sensors, devices, or any entity that generates
data as part of its operations or activities [12].

b) Data Supplier. It is an entity or organization that
supplies or provides data to others. The term "sup-
plier" is used interchangeably with "producer,"
referring to entities that generate or own data [12].

c) Data Vendor. It is an entity or business that sells
or trades data as a product or service. Vendors
act as intermediaries between data producers and
consumers, aggregating and offering data from
multiple sources [12].

d) Data Provider. These entities mediate between
data producers and the data ecosystem. They
collect data from various producers and offer it to
the ecosystem on behalf of the producers, making
data access more convenient for consumers [12].

The extraction criteria below outline the impact of FC-BC-
FL integration in primary studies across domains like privacy,
efficiency, security, interoperability, scalability, data manage-
ment, resource allocation, service metrics, trust, resilience,
access control, heterogeneity, and more (See Figure 12).
EC19. Privacy. It entails the protection of sensitive data and

user information during the collaborative model training and
chaining process [20], [41], [68], [69]. This criterion defines
several categories to analyze the privacy impact in the FC-
BC-FL integration across primary studies (see Figure 11).

1) Privacy-related purposes (BC-FL).

a) Data privacy. In the BC-FL integration is ad-
dressed through accurate data provenance and
decentralized access control mechanisms, using
spatiotemporal chaotic models and encryption for
IoT data protection [68].

b) Identification privacy. BC-based identity man-
agement systems with access control and self-
certified cryptography ensure secure authentica-
tion, confidentiality, and auditability, safeguard-
ing identities in IIoT data [68].
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FIGURE 11. SRQ2 Extraction Criteria (EC19 - EC26)
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FIGURE 11. SRQ2 Extraction Criteria (EC27 - EC33)

c) Location privacy. BC-enabled vehicular FC and
pseudonym systems ensure anonymous verifica-
tion, secure pseudonymmanagement, and reliable
data sharing while protecting the location infor-
mation of nodes [26], [68].

d) Privacy support. BC integration in FC enhances
privacy, reducing the need for centralized third
parties through features like Consortium BC and
TLSP, preserving data security and privacy [68].

2) Privacy Techniques.This criterion classifies the privacy
techniques which are methods to safeguard sensitive
data, such as encryption, data anonymization, access
control, and secure communication, ensuring confiden-
tiality and protection from unauthorized access [20].
a) Anonymization. This method is utilized to safe-

guard sensitive data by eliminating or encrypt-
ing personally identifiable information (PII) from
datasets. It guarantees that individuals’ iden-
tities cannot be associated with specific data
entries, preserving privacy and confidentiality.
Anonymization finds widespread use in various
domains, such as healthcare, finance, and IoT, to
thwart unauthorized access and shield user infor-
mation from potential threats [20].

b) Differential privacy. This privacy protection tech-
nique adds controlled noise during query evalu-
ation to safeguard data. It is applied in diverse
fields, including BC-enabled IoT. For instance,
in healthcare, perturbation-based differential pri-
vacy adds noise to patient records, preventing
privacy attacks [20], [42].

c) Encryption. Encryption is a widely used privacy
technique in BC-enabled IoT and other networks.
It ensures secure communication using public key
encryption and protects sensitive data. Applica-
tions include securing vehicular networks and

wearable health devices. However, encryption re-
quires significant computation and may increase
communication overhead [20].

d) Mixing. This privacy technique in IoT involves
encrypted transactions sent to trusted third-party
servers, which then mix and forward them to
transmitter nodes, ensuring privacy. To decentral-
ize the process and protect user privacy, Coin-
Shuffle techniques leverage the BC network.

e) Smart Contract. Are programmable codes with
condition statements executed when conditions
are met. In BC-enabled smart contracts, IoT in-
formation is stored in code and deployed when
conditions are satisfied [20].

3) Privacy Preserving FL (PPFL) schemes. The PPFL
aims to achieve a balance between data privacy and data
utility when applying privacy-preserving techniques to
FL frameworks. The goal is to enable collaborative
model training across multiple devices while protecting
the privacy of individual data owners [69]. This extrac-
tion criterion classifies four PPFLs:
a) Anonymization-based Privacy-Preserving FL.

These methods prioritize privacy and data util-
ity by applying anonymization schemes like k-
anonymity to protect private data during col-
laborative model training. They defend against
malicious attacks and have shown better privacy
preservation and model performance compared to
differential privacy-based FL methods [69].

b) Encryption-based Privacy-Preserving FL. These
methods employ cryptographic techniques for
privacy preservation, and these methods can be
subcategorized into homomorphic encryption-
based, secret sharing–based, and secure multi-
party computation-based PPFL methods [52],
[69].
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c) Hybrid Privacy-Preserving FL. These methods
strike a balance between data privacy and util-
ity by combining cryptographic and perturbation-
based techniques. They address computation and
communication overheads while preserving pri-
vacy and data accuracy. Various approaches in-
tegrate homomorphic encryption, secret sharing,
differential privacy, and secure multiparty com-
putation to ensure data privacy without sacrificing
the accuracy of FL models [69].

d) Perturbation-based Privacy-Preserving FL. This
method adds intentional noise to data for pri-
vacy while enabling collaborative model train-
ing. Noise obfuscates individual data, preserv-
ing privacy. Four subcategories include global
and local differential privacy-based, additive, and
multiplicative perturbation-based PPFL methods.
These techniques balance data privacy and utility
in FL scenarios [69].

EC20. Efficiency. This criterion helps to analyze the effi-
ciency of the solutions presented in the primary studies as
a critical aspect of the FC-BC-FL integration. It refers to
the system’s ability to perform tasks with minimal resource
consumption and optimal performance. The following sub-
criteria support the analysis of efficiency (see Figure 11).

1) Computational Efficiency (Learning Efficiency).Refers
to how effectively the integrated system performs
model training using available computational resources
[10], [39], [68].

2) Cost Efficiency. Examines the overall expenses associ-
ated with implementing and maintaining the integrated
system compared to the benefits it provides [10], [42].

3) Energy Efficiency. Focuses on how well the system
utilizes energy resources during model training and
communication processes [68].

4) Resource Efficiency. Evaluates the utilization of re-
sources such as bandwidth, memory, data sharing, and
storage in the integrated system [10], [26], [68].

5) Time Efficiency. Assesses how quickly the system can
complete tasks, enabling real-time or near-real-time
decision-making [68].

EC21. Performance. This extraction criterion helps to ana-
lyze the performance of the solutions presented in the primary
studies. Performance in the context of FC-BC-FL integration
refers to how well the system functions and delivers results
in terms of its overall effectiveness, speed, and accuracy [10],
[68]. It encompasses several aspects related to the system’s
capabilities and achievements (see Figure 11), including:

1) Accuracy.The correctness and reliability of the model’s
predictions and results [68].

2) Energy. The amount of power or energy consumed
during the integration process [68].

3) Fault Tolerance. The system’s ability to maintain func-
tionality despite failures or errors [68].

4) Latency (Consensus Latency). The time taken to reach
a consensus in the BC network [68].

5) Precision. The level of detail and accuracy in model
training and inference [39], [68].

6) Resources. The utilization and allocation of computing,
memory, and network resources [39], [68].

EC22. Security. This extraction criterion assesses the
security-related aspects of the solutions presented in the pri-
mary studies. Security in FC-BC-FL integration aims to pro-
tect the system from unauthorized access, data breaches, and
malicious attacks. It guarantees data confidentiality, integrity,
and availability during collaborative model training, secures
the BC network and smart contracts, and prevents data tam-
pering and unauthorized modifications. Trusted entities are
permitted to participate in FL, ensuring controlled access to
sensitive information [68] (see Figure 11).

1) Security Concern. While traditional FC systems face
significant security vulnerabilities due to their location
between end devices and cloud data centers [54], in
the FC-BC-FL integration, security concerns aim to
protect the system from unauthorized access, ensure
data confidentiality and integrity, prevent disruptions in
availability, and safeguard sensitive information during
collaborative model training [17], [54], [68]. Existing
studies may address security concerns related to:

a) Availability. Ensuring that the system remains ac-
cessible and functional to entitled users [17], [68].

b) Privacy. To Implement privacy-preserving mech-
anisms to protect individual data while allowing
collaborative model training in a federated learn-
ing environment [17], [54].

c) Encryption. Applying strong encryption tech-
niques to protect data during transmission and
storage, preventing unauthorized access to sensi-
tive information [17], [54].

d) Vulnerability. Address potential weaknesses in
the embedded system to mitigate attacks that may
disrupt system functionality [17], [54], [68].

e) Fraud Detection.Detecting and preventing fraud-
ulent activities within the integrated system [68].

f) Security Support. Implementing measures to sup-
port secure and reliable operations [68].

g) Confidentiality. Safeguarding sensitive data from
unauthorized access or disclosure [42], [68].

h) ntegrity.Ensuring the accuracy and consistency of
data and models [42], [68].

i) Robustness. Enhancing the system’s resilience to
withstand attacks, failures, or adverse conditions,
keeping its operation and security [17], [54], [68].

2) Physical Security. In the context of integrating FC, BC,
and FL, physical security entails protecting hardware
(e.g., FC, BC nodes), against tampering, theft, and
unauthorized access. Physical security encompasses
access control, secure storage, tamper-evident mecha-
nisms, electrical/electronic connections, and others.
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3) Physical Security Beneficiary. In the context of present-
ing physical security in the primary study, the bene-
ficiaries of security measures can be the edge server,
cloud server, end devices, miners, or none.

4) Cyber Security Beneficiary. Cybersecurity defends
against digital threats, ensuring data confidentiality,
integrity, and availability during collaborative model
training [17], [23], [68]. Since the subsequent extrac-
tion criteria analyze specific cyber-security concerns,
this extraction criterion classifies the beneficiaries of
the implemented cyber security within the solutions:
a) Network Security. Securing the communication

channels and infrastructure to prevent unautho-
rized access and data breaches.

b) Endpoint Security. Securing individual devices
and endpoints (e.g., computers, mobile devices)
to prevent malware and unauthorized access.

c) Data Security. Protecting sensitive data from
unauthorized access, modification, or theft, both
during transmission and storage.

d) Application Security. Securing software applica-
tions and systems from vulnerabilities and ex-
ploits to prevent potential cyber-attacks.

e) Cloud Security. Securing data and cloud-hosted
applications hosted in cloud environments, to pre-
vent data breaches and unauthorized access.

5) Type of Attacks. An attack represents deliberate and
malicious actions or attempts to exploit vulnerabilities
or weaknesses in a system, network, or application. The
primary goal of attacks is to gain unauthorized access,
disrupt normal operations, steal sensitive information,
manipulate data, or cause harm to the targeted entity
[69]. Below are classified the general attack types that
could be part of FC-BC-FL integration developments:
a) Passive Attack. Are attempts to observe computa-

tions and data during collaborative model training
without directly altering the system [69].

b) Active Attack. Are deliberate actions to influence
the training process andmanipulate model param-
eters to achieve adversarial objectives [69].

6) Attacks. This criterion classifies the possible attacks
analyzed within the primary studies. The classified at-
tacks are common in the areas of FL and BC.
a) Background Knowledge Attack. It is a major

privacy-oriented attack originating from the de-
vice’s local data and global model updates re-
ceived from the central authority. In FL, this at-
tack exploits data and global model updates to
potentially leak privacy information. Collusion
attacks, a specific form of this attack, involvemul-
tiple parties sharing knowledge, and disclosing
more sensitive information due to the freedom of
devices to join and leave FL systems [25].

b) Byzantine Attacks. These attacks disrupt FL sys-
temmodel convergence. A resilience strategy em-

ploys stochastic quantization, outlier detection,
and secure model aggregation. Large-scale FL is
susceptible due to diverse, low-powered edge de-
vices, making prevention challenging [23], [25].

c) Poisoning Attacks.Are significant threats that aim
to manipulate training data and global models to
mislead the learning output [25]. They cover data
andmodel Poisoning attacks [18], [23], [41], [42].

d) Model Poisoning Attacks. In FL, these attacks
aim to compromise the global model directly by
manipulating its updates or learning rules, often
provingmore effective than data poisoning. These
attacks employ techniques like gradient manipu-
lation or altering training rules to undermine the
global model’s performance. Preventing model
poisoning in FL is challenging given the large
number of participants, requiring innovative de-
fense strategies for effective detection and mitiga-
tion of sophisticated attacks [18], [23], [41], [42].

e) Data Poisoning Attacks. In FL, these attacks com-
promise the integrity of training data to mislead
the model’s performance such as label flipping,
watermarking, perturbation, and backdoor inser-
tion, which intentionally fool the model and re-
duce overall accuracy. These attacks call for ur-
gent solutions to protect the global model from
being poisoned by malicious participants, requir-
ing careful defense strategies like FoolsGold and
model evaluation to detect and mitigate Sybil-
based data poisoning attacks [18], [23], [41], [42].

f) Evasion Attacks. These attacks deceive the target
model with adversarial samples during prediction,
causing inaccurate results when the global model
is deployed on end devices [23].

g) Free-riding Attacks. Attacks where participants
benefit from the global model without actively
contributing to training. This behavior can under-
mine system fairness and efficiency, and various
approaches, including BC-based solutions, aim to
detect and mitigate such attacks [18], [23], [42].

h) Inference Attacks. In FL, these attacks aim to
extract sensitive information about participants,
training data, and labels; compromising privacy
and impacting performance. They include mem-
bership inference attacks (e.g., Confidence score-
based, label-based), data properties inference at-
tacks, data samples attacks, labels inference at-
tacks, and model inversion attacks (e.g., Class
representation) [23], [25], [41], [42], [69].

i) Distributed Denial of Service (DDoS). In large-
scale FL systems, DDoS involves thousands of
edge devices participating in the learning task,
potentially causing communication channel over-
occupation and computational resource overload.
This can lead to high latency, physical failure of
infrastructure, and denial of service [25].
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7) Type of Attackers. This criterion describes the potential
adversaries in the FC-BC-FL integration. Including:
a) Insiders. These attackers, including clients and

the central server responsible for model aggrega-
tion in FL (i.e., malicious clients and servers), can
gain access to intermediate training updates and
the final model, posing privacy and information
inference risks [42], [69].

b) Outsiders. This type of attacker are outsider who
can probe private data through the final model
or query results (e.g., consumers and eavesdrop-
pers). Moreover, these attackers can exploit ac-
cess to the final model, while eavesdroppers may
steal intermediate training updates, both causing
significant privacy risks [42], [69].

8) Moment of Attacks. This extraction criterion defines the
phases where the attacks occur. These moments are:
a) Training phase. In this phase, model updates are

vulnerable to privacy leakage as adversaries can
access local gradients, model weights, aggregated
updates, and the final model, with eavesdroppers
intercepting communication between participants
and the aggregator, posing additional risks [69].

b) Inference Phase. In this phase, privacy risks pri-
marily arise from the released final model, en-
abling attacks based on model parameters and
queries. Adversaries can perform inference at-
tacks to extract sensitive information about train-
ing datasets or infer membership [69].

9) Attack Target. This extraction criterion, Attack Target,
describes the specific targets where attacks can occur,
which encompass weight updates, gradient updates,
and trained models [69].

10) Attack Reason. The attacks aim to compromise pri-
vacy and extract valuable information about the training
data. Potential triggers for these attacks include:
a) Inferring class representative.Generate represen-

tative samples for studying training datasets [69].
b) Inferring membership.Determine if a data sample

was used for model training [42], [69].
c) Inferring properties of private training data.Gain

information about the datasets [69].
d) Inferring training input and labels. Reconstruct

the original data and labels [69].
11) Defense Methods against attacks. Defines and classi-

fies several methods that could have been considered
as methods against attacks. These include:
a) Differential Privacy (DP). These methods aim to

enhance data privacy by injecting noise into input
data, making it difficult to distinguish individ-
ual entries with a high degree of certainty. DP
safeguards FL model parameters against infor-
mation leakage and defends against attacks such
as backdoor attacks while maintaining privacy in
federated analysis models. DP mechanisms strike

a balance between preserving data privacy and
maintaining accuracy during FL [41], [67].

b) Sniper. A defense against distributed poisoning
attacks in FL, able to recognize legitimate users
and reduce poisoning attack success rates even
with multiple attackers [42].

c) Knowledge distillation. A model compression
technique sharing knowledge instead ofmodel pa-
rameters to enhance FL client data security [42].

d) Anomaly detection. Utilizes statistical methods to
identify deviations from normal behavior in FL,
useful for detecting various attacks such as data
poisoning and trojan threats [42].

e) Moving target defense. A proactive defense ar-
chitecture that continuously changes to increase
the cost and complexity for attackers, protecting
against intrusion at different levels in FL [42].

f) FederatedMultiTask Learning.Extends FL to col-
laboratively train personalized but shared models
among devices, addressing communication cost
and fault tolerance challenges [42].

g) Data Sanitization. Filters out suspicious data
points as an anomaly detection technique to de-
fend against data poisoning attacks in FL [42].

h) Foolsgold. A defense against compromised
clients in FL, efficient against Sybil-based, label
flipping, and backdoor poisoning attacks [42].

i) Prunning. A technique to minimize the size of
ML models in FL, reducing complexity and im-
proving accuracy to address communication and
computation limitations on client devices [42].

j) Homomorphic encryption (HE). This method en-
ables mathematical operations on encrypted data
without decryption. The output remains encrypted
and decrypting it yields the result of the opera-
tions on the plaintext [67].

k) Outlier Detection. This method is a defense strat-
egy that aims to identify and deny malicious in-
fluence. Approaches such as “reject on negative
impact” measure test error and reject updates that
don’t improve the global model; or the TRIM
method removes outliers with high residuals to
minimize global objective loss, proving effective
against various poisoning attacks [41].

l) Robust Aggregation. It involves combining model
updates from multiple participants while address-
ing challenges like noisy or malicious data, net-
work instabilities, and attacks. The goal is to
maintain accuracy and reliability by mitigating
outliers and adversarial behaviors, ensuring the
collaborative learning process integrity [41].

m) Secure Multi-Party Computation (MPC). It is a
cryptographic protocol enabling users to perform
computations with private inputs. Data owners
send encrypted data to servers for model training
or analysis [42], [67].
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n) Secure Aggregation (SecAgg) protocol. This
method uses secure MPC, allowing untrusted
parties to evaluate functions on hidden inputs.
Trusted execution environments (e.g., Intel SGX)
are used to protect computations within secure en-
claves. SecAgg protocol uses MPC and involves
data owners performing local training and sending
encrypted model weights to the aggregator for
gradient aggregation. [41], [67].

o) The trusted execution environment (TEE). These
are trustable computational environments that en-
sure the code and data security within them. It can
enhance the central server credibility [42], [67].

EC23. Interoperability (Standards). Standards are founda-
tional documents that offer guidance across various domains,
ensuring optimal performance and simplifying the use of
information technology. They provide precise specifications
for system interactions, like network protocols, and concep-
tual blueprints for software development, such as software
architecture. Adhering to standards enhances interoperability,
security, and efficiency, promoting seamless information ex-
change and technology adoption based on common formats
and criteria [70]. This criterion assesses whether primary
studies integrate standardization in their FC-BC-FL integra-
tion. Subcategories encompass prominent standard organi-
zations: ISO Standards provide international guidelines for
optimal performance in defined scopes [71]. IEEE Standards
ensure consistency and interoperability in various technology
fields [55]. NIST Standards offer guidance in cybersecurity,
technology, and measurement [72]. Consider Domain Spe-
cific Languages (DSL), is relevant due to their specialization
for specific application domains, streamlining tasks, and im-
proving efficiency, although achieving broader interoperabil-
ity often requires standardization [73]. Additional standards
and guidelines are included in Others (see Figure 11).
EC24. Scalability. When integrating FC-BC-FL, scalabil-

ity issues arise due to the different mechanisms in each
technology. For instance, some solutions have limitations in
scalability and power requirements, while others sacrifice
security, privacy, or decentralization [68]. This extraction
criterion helps in identifying key scalability parameters that
could have been addressed in the primary studies to improve
the scalability of these integrated systems (see Figure 11):

1) Scalability Support. It refers to implementing architec-
tures and techniques to address scalability challenges
arising from diverse mechanisms in each technology.
This involves designing systems to efficiently manage
numerous devices and transactions, improving real-
world performance (e.g., via smart contracts, secure
data management platforms, integrated frameworks,
distributed SDN controllers, and scalable public BC
with two-chain structures) [68].

2) Mobility. It refers to the ability to transfer data and
perform tasks efficiently and securely across mobile
and distributed devices [68].

3) Regulations/Standards. It refers to the use of BC and
SCs to establish transparent rules for transactions and
IoT devices, ensuring compliance and secure resource
management [68]. It also involves setting guidelines
and policies to govern the sharing and privacy of data
among participating devices or clients in FL to ensure
compliance with legal and ethical requirements.

EC25. Data Management. FC-BC-FL integration leads to
data management issues arising due to the differences in the
mechanisms of handling data, as well as the heterogeneity and
distributed nature of IoT devices/nodes in each technology
[54]. This criterion helps in identifying key data management
parameters that could have been addressed in the primary
studies to improve these integrated systems.

1) Storage. In the FC-BC-FL integration, storage refers to
the management of data from IoT devices. Transitory
fog storage allows fast data model updates. Besides,
various protocols and techniques, including BC ca-
pability, regeneration coding, and encryption, ensure
secure and efficient data storage [54].

2) Sharing. It involves securely and efficiently sharing
data among participants, ensuring trust, and main-
taining integrity through methods such as consensus
and encryption. Techniques like storing hash values in
blockchain and cross-chain sharing ensure reliable data
exchange in diverse IoT/FC systems [50], [54].

3) Validation. It ensures data accuracy, integrity, and au-
thenticity before storage or access. Techniques like
digital signatures, smart contracts, and timestamping on
the BC ledger ensure secure validation in the FL pro-
cess, maintaining data integrity across entities. These
mechanisms preserve privacy, security, and perfor-
mance in the BC-FC integration [52], [54].

EC26. Resource Allocation / Service provisioning metrics.
Resource allocation and service provisioning metrics in FC-
BC-FL integration are performance indicators used to assess
the efficient utilization of resources for executing tasks (e.g.,
FL tasks) [68]. They ensure sufficient resource allocation,
optimize system performance, and leverage the combined
capabilities of BC, FC, and FL technologies. This extraction
criterion categorizes various resource allocation and service
provisioning metrics that could have been addressed in the
primary studies, considering several domains:

1) Time. Time is a key metric for resource allocation and
service provisioning in FC-BC-FL integration, measur-
ing task efficiency, response times, and system perfor-
mance. It evaluates the timely allocation of resources to
meet application and service demands [54]. There are
sub-criteria to consider:

a) Communication. It indicates the time for exchang-
ing model updates or data elements between the
central server and clients or between FC/Mining
nodes, impacting training efficiency, communica-
tion overhead, and node selection [54].
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b) Computation.Measures task execution efficiency,
helping in resource and power management [54].

c) Deadline. Set the maximum service delivery de-
lay, and detail latency-sensitive applications [54].
Below, are described some BC-FL Time metrics.

d) Training Time. It is the time taken to train the ML
models in the FL process. This metric indicates
the efficiency of the training process across mul-
tiple clients or nodes in a federated environment.

e) Consensus Time. In BC-based systems, the time
required to reach consensus on new transactions
or blocks. This metric affects the speed and scal-
ability of the BC network.

f) Block Time. The time interval between the cre-
ation of consecutive blocks in a BC. This metric
determines the speed at which new transactions
are added to the BC.

g) Transaction Time. The time taken to process and
validate a single transaction in the BC network.
This metric influences the responsiveness and ef-
ficiency of the BC system.

h) Confirmation Time. In BC networks using con-
sensus mechanisms (e.g., PoW), the confirmation
time for new block validity impacts transaction
security and finality.

2) Data. The metrics concerning data are:

a) Data Flow. It defines data transmission patterns
(event-driven or real-time) and influences re-
source allocation and service provisioning [54].

b) Data Size. The volume of data processed through
BC, FC, or FL, that impacts resource provisioning
and computational space requirements [54].
Below, are described some BC-FL Data metrics.

c) Data Distribution. Describes the distribution of
data across participating clients, which can impact
the model’s performance and convergence.

d) Data Privacy. Measures the level of privacy pro-
tection during data sharing and model updates to
ensure compliance with privacy regulations and
prevent data leakage.

e) Data Heterogeneity. Evaluates the diversity and
variation of data among clients, affecting the gen-
eralization and robustness of the FL model.

f) Data Immutability. Refers to the property of data
being tamper-resistant once recorded on the BC,
ensuring the integrity and trustworthiness of data.

g) Data Transparency. Measures the degree of visi-
bility and accessibility of data stored on the BC to
promote accountability and auditability.

h) Data Storage Efficiency. Evaluates the efficiency
of storing data on the BC, considering factors like
data size, storage cost, and scalability to optimize
resource utilization.

3) Cost. The metrics about cost-impacting resource and
service provisioning in the FC-BC-FL integration are:

a) Networking Cost. It includes bandwidth expenses,
uploading, and inter-nodal data sharing costs [54].

b) Deployment Cost. Refers to infrastructure place-
ment expenses, considering Fog/Mining node po-
sitioning and virtual computing instances [54].

c) Execution Cost. It refers to the computational
expenses of Fog/Mining nodes while processing
tasks, calculated based on task completion time
and resource usage cost [54].
Below, are considered some BC-FL Cost metrics.

d) Communication Cost. The expenses incurred in
transmitting model updates or gradients between
the central server and individual clients during the
FL process [42].

e) Computation Cost. The computational expenses
involved in training and updating the models on
the client devices during the FL process [42].

f) Transaction Fee. The cost paid by users for each
transaction executed on the BC network or FL
training. This fee is essential to incentivize miners
or validators to include the transaction in a block
and secure the network (i.e., FL or BC Incentives).

4) Context. It refers to the situation or condition of entities
in various circumstances. They include:

a) User Context. It comprises features, usage history,
and feedback, impacting resource allocation [54].

b) Application Context. Enfolds operational require-
ments like processing and networking needs [54].

5) Energy Consumption. It is a crucial concern in FC-BC-
FL integration. Studies prioritize energy-related issues
for FC-BC-FL resources and services provisioning, op-
timizing consumption, and considering end devices’
energy constraints [54].

EC27. Service Level Objectives (SLOs). An SLO is a
measurable performance goal set to ensure the quality and
reliability of a service. It represents the desired level of service
performance and is used to monitor and maintain service
quality.Meeting SLOs is essential for delivering a satisfactory
user experience [54]. The SLOs include (see Figure 11).

1) Latency management. To optimize communication be-
tween FC nodes, BC ledger, and FL clients, minimizing
service delivery time and achieving low latency while
meeting QoS requirements [54].

2) Cost management. It is to strategically deploy Fog
nodes and utilize cost-effective FC-BC-FL infras-
tructure configurations to minimize costs in Fog
nodes/miners for resource hosting, ensuring cost-
efficient provisioning of resources and services [54].

3) Network management. Enabling flexible, virtualized
network structures to ensure seamless connectivity
among FNs, BC miners, and FL clients. Designing an
architecture for efficient resource discovery and com-
munication across FC-BC-FL environments, particu-
larly catering to the highly distributed IoT devices. This
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entails defining SLOs targeting Congestion, Virtualiza-
tion, and Connectivity [54].

4) Computation management. It entails SLOs oriented to:
a) Resource estimation. Optimizing resource allo-

cation in FC-BC-FL integration is vital, consid-
ering user characteristics, Quality of Experience
(QoE), and device features. This ensures efficient
resource allocation for FL tasks, maintaining the
desired Quality of Service (QoS) and accurately
determining service prices [54].

b) Workload allocation. It focuses on optimizing re-
source utilization, minimizing idle periods, and
ensuring balanced load distribution among var-
ious components. Effective workload allocation
involves distributing computational tasks effi-
ciently among Fog nodes, clients, and the BC
network. Scheduling-based policies play a key
role in achieving these objectives and improving
the overall QoE in the system [54].

c) Coordination. Efficient Fog resource coordina-
tion is vital for FL. Using a directed graph-based
model optimizes communication and computa-
tion, ensuring effective resource use across Fog
nodes and federated entities. [54].

5) Application management. It entails SLOs oriented to:
a) Programming platform. Platforms using simpli-

fied programming models for large-scale applica-
tions in Fog computing. A distributed data flow
platform facilitates application development. In
FC-BC-FL integration, an efficient and compat-
ible programming platform is vital [54].

b) Scaling. Are scalable techniques to optimize re-
source utilization and enhance QoE for BC min-
ing and FL tasks [54].

c) Offloading. It distributes tasks efficiently among
federated entities, considering resource availabil-
ity and improving FL performance [54].

6) Data management. It includes data management, such
as data analytics, resource allocation, and low-latency
data aggregation, in the SLOs of the studies.

7) Power management. It has power consumption consid-
erations (e.g., miner node energy, cloud energy) as part
of the SLOs in the studies [54].

EC28. Trust. Represent trust connections between nodes,
enabling entities to trust each other for specific activities. Its
primary functions are to establish an entity’s trustworthiness
for others and assess the trustworthiness of other entities.
However, trust management can be energy-intensive, which
poses challenges for resource-constrained IoT devices [68].
It outlines sub-criteria related to trust (see Figure 11).

1) Trust support. Mechanisms enabling secure interac-
tions and cooperation among entities in FC-BC-FL
integration [68].

2) QoS. It is the level of performance and reliability in FC-
BC-FL operations [68].

3) Transparency. Are visible decision-making processes
and data-handling practices for trust-building [68].

4) Reliability It is the Consistency and dependability of
accurate results in the integrated system [68].

5) Reputation. It is the Assessment of entity trustworthi-
ness based on past behaviors in FC-BC-FL [68].

6) Payment. It is the fair and secure handling of financial
transactions and incentives among participants [68].

EC29. Resilience (Proper of BC). It refers to the capacity
to withstand and recover from challenges and disruptions,
adapting and maintaining functionality in adverse situations.
It involves proactive planning and the ability to bounce back
quickly after setbacks [34]. This extraction criterion classifies
a resilience-related sub-criterion in BC (see Figure 11):
1) Forking

a) Soft Forks. Backwards-compatible changes to a
BC implementation, allowing non-updated nodes
to still transact with updated nodes [34].

b) Hard Forks. Non-backwards-compatible changes
to a blockchain implementation require all nodes
to switch to the updated protocol, resulting in the
creation of two independent BC versions [34].

EC30. Access Control. This extraction criterion aids in the
analysis of access control, involving the use of countermea-
sures and tactics to secure access to data [68]. The following
sub-criteria assist in addressing this criterion (see Figure 11):
1) Authorization. It ensures access for authenticated users,

using BC to enable distributed processes among fog
nodes. It enhances data sharing, integrity, and security,
mitigating centralized storage concerns, and improves
privacy for IoT devices through SCs [26], [68].

2) Key Management. It involves cryptographic procedures
to protect data, requiring encryption and access control.
BC-based schemes manage secure keys, enable mutual
authentication, and provide efficient key management
for secure group channels in Fog-based IoT systems.
BC is utilized to ensure data integrity, and message
security, and detect malicious nodes in decentralized
key management frameworks [68].

3) Authentication. It ensures user identity verification and
prevents fraudulent communications. Integrated BC se-
curity models provide privacy and authentication, en-
hancing security and privacy for distributed vehicular
fog services and smart vehicle systems in FC [68].

EC31. Heterogeneity. Refers to the diverse elements or
entities within a system. In integrating FC-BC-FL, manag-
ing diverse environments requires seamless interactions and
interoperability. This criterion includes sub-criteria such as
data format, device, protocol, and network heterogeneity.
EC32. Model (Local / Global). The models are critical el-

ements within FC-BC-FL integration; therefore, they require
precision and security to ensure success [39]. This extraction
criterion categorizes two important features that could have
been addressed in the primary studies to guarantee the effec-
tiveness of the models (see Figure 11). These are:
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1) Model Precision. It is the accuracy and correctness of
locally trained models on FNs ensure they faithfully
represent their datasets. In global FL, this extends to the
accuracy of the aggregated global model, encapsulating
the collective knowledge of all local models [17], [20].

2) Model Verification. It assures the authenticity and se-
curity of FL models. BC verifies model integrity by
storing cryptographic hashes, ensuring reliability and
detecting tampering or malicious activities [20], [39].

EC33. Other Considerations. This extraction criterion cat-
egorizes additional aspects that could have been evaluated in
the primary studies regarding the integration of BC, FC, and
FL to enhance IoT applications (see Figure 11):

1) Economical Considerations. Entails assessing the fi-
nancial aspects and cost implications of integrat-
ing these technologies, analyzing expenses, cost-
effectiveness, and Return on Investment (ROI), and
optimizing resource allocation for maximal benefits.

2) User Acceptance. Assesses stakeholders’ preparedness
for the integrated system, addressing user expectations,
handling resistance to change, ensuring user-friendly
interfaces, and collecting feedback for enhancements.

3) Environmental Impacts. Evaluate the integration’s en-
vironmental impact from energy use, carbon footprint,
and resource consumption, while backing sustainability
via energy-efficient and eco-friendly methods.

The upcoming criteria (Figure 12) align with SRQ3, aiding
in characterizing research phases, validations, relevance, and
key aspects, directly extracted from primary studies.

EC34. Phases. In traditional computer science, the stan-
dard life cycle includes key phases like analysis, design,
implementation, and testing. In an FC-BC-FL integration
project, these phases are used as reference points to assess
the project’s progress. During the review, primary studies
are categorized by the specific phase they address, such as
Analysis, Design, Implementation, or Testing (see Figure 12).
EC35. Type of validation.Assessing research quality is vital

across various scientific fields and study levels [74]. This
criterion classifies the validationmethods that primary studies
may utilize to evaluate their solutions [75] (see Figure 12).

1) Experiment. Involves strict control and randomization
of variables to establish causality.

2) Quasi-Experiment. Utilizes controlled variables for
causality when full control is not feasible.

3) Prototyping. Creates an initial product version for de-
sign and functionality testing.

4) Study Case. Analyzes a specific case deeply to under-
stand a phenomenon or problem.

5) Surveys. Collects data through structured questions to
gauge trends or opinions.

6) Proof of Concept.Demonstrates idea feasibility, even if
it is small or incomplete.

7) Other. Another type of validation.

EC36. Experiment Features (Simulation Configurations,
Tools). This extraction criterion outlines experiment details
in primary studies, including (see Figure 12):

1) Type of Scenario. Real or Simulation.

Conference

Design 

Analysis

Implementation

Testing

EC34. Phases
EC35. Type of 

validation

Proof of concepts

Prototype

Quasi-Experimentation

Experiment

Study Case

Survey

Others

EC36. Experiment 
Features

Type of Scenario
Real

Simulation

Simulation Tools

FISCO Blockchain system

Python (Pythorch)

MatLab

Others

Dataset Type
FEMNIST

Others

Data Type

Images

Time series

Text

Others

Number of clients

0-10

10-20

20- *

EC37. Relevance 
of the Study

A*

A

B

Other

Journal

Q1

Q2

Q3

Q4

EC38. Study General 
Information

Approach Scope
Real

Simulation

Status of the Study
New

Extension

Countries

China

Germany

Japan

UEA

Year of publication
2016 - 2019

2019 - 2023

USA

UK

Other

Canada

FIGURE 12. SRQ3 Extraction Criteria (EC34 - EC38)
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2) Simulation Tools. The tools include FISCO Blockchain
system, Python (PyTorch), MatLab, among others.

3) Dataset Type. There are classified utilized datasets to
perform experiments [39] (e.g., FEMNIST).

4) Data Type.Types of data used in experiments, including
images, time series, text, and more.

5) Number of clients. Ranging from 0-10, 10-20, to 20-*
in real or simulated scenarios.".

EC37. Relevance of the study. It classifies the study rele-
vance into two categories: Conference Rank (i.e., A*, A, B,
Other) or Journal Rank (i.e., Q1, Q2, Q3, Q4) (see Figure 12).
EC38. Study General Information.Defines essential publi-

cation details for primary studies (see Figure 12).

1) Approach scope. Specifies whether the study was con-
ducted or supported in academia or industry.

2) Status of the study. The study is new, or an extension.
3) Year of Publication. Starting from the milestone of the

FL emergence. The years of publication are categorized
into two groups: 2016 – 2019, and 2019 – 2023.

4) Country. Specifies the country where the study was
conducted (not where it was published).

B. CONDUCTING THE REVIEW
The process for selecting primary studies is illustrated in Fig-
ure 13. Initially, 153 papers were retrieved through automatic
search following the planning stage and search guidelines.
Subsequently, the inclusion/exclusion criteria stated in the
quality assessment were applied, resulting in the selection
of 32 papers. Additionally, 8 papers were added through a
manual search in specialized conferences and journals. Thus,
40 primary studies were selected for the SLR (see Table 4).

IEEE
(15)

ACM
(3)

Springer 
Link
(108)

Science 
Direct
(27)

71

Filtering Conferences and Journals (-82)

Filtering by inclusion / exclusion criteria (-39)

32

Manual Search (+8)

40

40

Primary Studies

15 18 126

153

FIGURE 13. Selection of the primary studies for performing the SLR

TABLE 4. Selected primary studies addressing FC-BC-FL integration

Source Paper Year Paper ID

IEEE

[39] 2021 P01
[76] 2022 P02
[77] 2020 P03
[78] 2022 P04
[79] 2022 P05
[80] 2023 P06
[81] 2023 P07
[82] 2020 P08
[83] 2022 P09
[84] 2023 P10
[85] 2022 P11

ACM [86] 2020 P12
[87] 2021 P13

Springer Link

[88] 2021 P14
[89] 2023 P15
[90] 2020 P16
[91] 2023 P17
[92] 2023 P18

Science Direct

[93] 2022 P19
[94] 2022 P20
[95] 2022 P21
[96] 2020 P22
[97] 2022 P23
[98] 2023 P24
[99] 2023 P25
[100] 2021 P26
[101] 2023 P27
[102] 2022 P28
[103] 2023 P29
[104] 2023 P30
[105] 2023 P31
[106] 2023 P32

Conference [107] 2023 P33

Journal

[108] 2022 P34
[109] 2022 P35
[110] 2023 P36
[111] 2020 P37
[112] 2023 P38
[113] 2022 P39
[114] 2023 P40

IV. REPORTING THE SLR RESULTS
This section presents SLR results. The reporting is segmented
into two parts: first, results per extraction criterion; second,
findings concerning age and year of publication.

A. RESULTS PER EXTRACTION CRITERION
The results for each extraction criterion are presented and
discussed in this sub-section. These findings are presented in
percentages, corresponding to the number of studies out of
40 that cover or consider these criteria while integrating FC-
BC-FL, grouped by sub-research question (i.e., SRQ1, SRQ2,
SRQ3). All results with values greater than 0 are considered;
however, those below this threshold have been excluded.

1) SRQ1 results
Figure 14 (a) and Figure 14 (b) display the outcomes of SRQ1,
all of the selected studies focus on BC and FL technologies
(100%). Additionally, 75% of these studies delve into the
edge, while 50% explore research including FC. In this con-
text, the primary motivations driving this integration encom-
pass enhanced data privacy (highlighted in 93%of the studies)
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FIGURE 14. Results per extraction criterion, SRQ1 (EC1-EC7)
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FIGURE 14. Results per extraction criterion, SRQ1 (EC8-EC18)

and improved data synchronization (68%). FL, identified in
all studies, plays a pivotal role in model aggregation (100%)
within a decentralized architecture (70%) distributed across
multiple layers such as Device (88%), Data (93%), and Net-
work (90%). Notably, the architecture design predominantly
leans towards layered (68%) and microservices (53%) pat-
terns. The technical dimensions echo a trend favoring hybrid
integration schemes (58%) and a consortium-based BC-FL
network infrastructure (45%), showcasing a balance between
different approaches for system design. EC3 shows insights
into frameworks supporting FC-BC-FL convergence, and it
reveals a general presence of Formal Models in major IoT
players like AWS, Azure, TFF, and others (e.g., IHS [106]).
In BCEthereum andHyperledger reign supreme, while others
(e.g., Algorand [78], [83], [94], AFFIRM [84], Solidity [98])
also hold a presence. In FL, Google TFF is the most popular.
Integrated BC-FL frameworks present overall formal models,
besides the use of others (i.e., Fedtrust [83], AFFIRM [84]),

frameworks like Blade-FL and VBFL are underrepresented,
suggesting the need for further exploration. Applications
span diverse sectors, prominently healthcare (35%), industrial
management (30%), smart cities (30%), and others (i.e., smart
grid [83], disaster response [86], BC reliability prediction
[88], Internet of Battle Things (IoBT) [96], Internet of Drone
Things (IoDT) [103], Agriculture [98], MEC [101], Society
[105], Gamming [109], Industry 5.0 [114]) (43%) indicating
the versatility and potential impact of this integration. Within
Cloud Features (EC5), a hybrid cloud deployment model
(48%) and container-based cloud server design (43%) stand
out, emphasizing flexibility and scalability. Fog (Edge) Node
Features (EC6) spotlight hardware-centric designs (70%) and
diverse node types, with gateways (40%) and Fog Com-
puting Nodes (FCN) (83%) dominating. The Client (End-
Devices) Features (EC7) underscore the prevalent usage of
IoT devices/gateways (68%) and the significance of wireless
connections (100%) in this ecosystem. Blockchain-related
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dimensions elucidate a strong inclination towards smart con-
tracts (93%), permissioned networks (70%), and consensus
algorithms such as PoW (38%). Federated Learning’s global
model (EC14) primarily revolves around single-task feder-
ated optimization schemes (80%) and an array of federated
learning algorithms (83%). FLAggregation (EC16) strategies
lean towards average-based approaches (73%) in a distributed
aggregation-enabled FL (73%) environment, showcasing col-
laborative learning paradigms. Furthermore, FL Data Man-
agement (EC18) accentuates the importance of data privacy
(93%) and distribution (75%) within federated learning se-
tups. The synthesis of these findings delineates a landscape
where the integration of FL, BC, and FC for IoT applications
thrives on decentralized, collaborative, and privacy-centric
approaches, spanning multifaceted domains and demanding
versatile technical infrastructures to materialize their poten-
tial. This detailed exploration reveals the interconnected na-
ture of FL, BC, and FC in driving IoT applications toward
enhanced security, privacy, and decentralized operation.

The FC-BC-FL convergence serves as a catalyst for inno-
vative solutions across various domains, prominently health-
care, industrial management, and smart cities. The robust
architecture primarily follows a layered and microservices
pattern, accommodating the complexities of this integration.
Notably, the emphasis on hybrid integration schemes and
consortium-based network infrastructures reflects the pursuit
of balanced system design strategies. Cloud deployment and
Fog (Edge) Node designs exhibit flexibility and scalability,
essential for accommodating diverse IoT environments. The
prevalence of wireless connections and the utilization of IoT
devices/gateways underscore the omnipresence of edge de-
vices in this ecosystem.Within the BC realm, smart contracts,
permissioned networks, and consensus algorithms like PoW
emerge as pivotal components. FL, on the other hand, empha-
sizes collaborative learning paradigms through diverse opti-
mization schemes and algorithms. Moreover, FL’s focus on
data privacy and distribution within its management echoes
the criticality of secure and synchronized data handling. Over-
all, this synthesis delineates a landscape wherein the FC-BC-
FL integration for IoT thrives on decentralized, collabora-
tive, and privacy-centric approaches, demanding multifaceted
technical infrastructures to harness their full potential.

2) SRQ2 results
Figure 15 showcases the results concerning SRQ2 (EC19-
EC33). Notably, within the realm of security, the findings
underscored the significance of encryption techniques (93%)
in BC, along with encryption-based privacy-preserving FL
(70%) and privacy-preserving schemes (FL) (70%). Addi-
tionally, the analysis emphasized the prevalence of security
concerns related to availability (53%), confidentiality (88%),
and integrity (90%). Efficiency, another pivotal facet, demon-
strated computational efficiency (95%) as a predominant fac-
tor, albeit with lesser emphasis on cost efficiency (10%).
Performance indicators showed promising trends in terms of
accuracy (90%) but also flagged concerns regarding energy

(40%) and latency (58%). Moreover, interoperability and
data management surfaced as critical domains, with storage
(93%), data sharing (93%), and validation (98%) ranking
significantly. Noteworthy within resource allocation/service
provisioning metrics were aspects like training time (78%)
and data flow (80%), signifying their importance in opti-
mizing FC. The SLR further highlighted the prominence of
trust support (85%), authorization (98%), and key manage-
ment (85%) within the trust and access control domains,
crucial for securing IoT applications. Overall, the findings
converge on the potential of BC and FL amalgamation in
FC to substantially fortify IoT applications, particularly by
addressing security concerns, enhancing privacy, optimizing
efficiency, ensuring interoperability, managing data effec-
tively, and fortifying trust and access control mechanisms.
Besides, from the results can be mentioned that the strengths
in privacy preservation, efficiency optimization, and security
fortification. Notably, the research emphasizes robust privacy
measures, efficient resource utilization, and a strong security
focus, showcasing the potential of this integration to fortify
IoT ecosystems against data breaches and vulnerabilities.
Insights into attack types and defense mechanisms further
contribute to foundational strategies for proactive security
measures. However, the research landscape reveals notable
weaknesses, including limited real-world implementations,
challenges in standardization and interoperability, incom-
plete exploration of evolving attack vectors, and insufficient
scrutiny of scalability and cost implications. Bridging these
gaps requires concerted efforts toward practical deployments,
standardized protocols, comprehensive security considera-
tions, and a deeper understanding of scalability and cost-
effectiveness to fully harness the transformative potential of
FC-BC-FL integration within IoT domains.

3) SRQ3 results
Figure 16 illustrates the outcomes related to SRQ3 (EC34-
EC38). The analysis reveals a predominant emphasis on the
stages of Analysis (93%), Design (95%), and Implementation
(98%), indicating a mature developmental process compared
to Testing (85%). Primary validation methods include ex-
periments (63%) and proof of concepts (28%), indicating a
preference for empirical verification. Additionally, the eval-
uation of Experiment Features shows a tendency towards
simulated scenarios (43%) over real-world instances. Python
(PyTorch) (38%) and various unspecified tools (80%) are
the dominant choices for Blockchain systems and simulation
tools, respectively. Diverse datasets such as FEMNIST (8%)
and MNIST (35%) have been predominantly used, focusing
primarily on images (43%). Notably, most experiments in-
volve a substantial number of clients (20-*), indicating scala-
bility considerations. Overall, the review portrays a landscape
where robust design and implementation are evident, yet fur-
ther exploration and validation in diverse real-world scenarios
are necessary for comprehensive advancements. The integra-
tion of these technologies displays a maturing progression
through developmental phases but with noticeable disparities
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(P: 2, 10-11, 16-17, 20, 22, 25-28, 31-32, 35, 37-38)

(P: 1, 3-40)

(P: 3, 5, 7-13, 15-21, 23-25, 27-29, 32, 34-35, 37-40)

(P: 1-17, 19-29, 31-40)

(P: 1, 3-7, 9-10, 13, 19-21, 24-29, 31-40)

(P: 3, 13-14, 17, 21, 23-24, 26, 38)
(P: 3, 13, 16, 18-19, 24-25, 27, 32, 36-39)

(P: 1, 3-4, 8-10, 12-13, 16, 18, 20-26, 28-29, 31-32, 34-38, 40)

(P: 1, 3-8, 11, 13-16, 18-19, 21-23, 25, 27, 29-32, 34-39)

(P: 4-5, 7-8, 12-23, 25-29, 32-38, 40)
(P: 4, 6-7, 9, 13, 15, 17-19, 23-25, 27-30, 33-40)

(P: 3, 5-6, 16, 19-21, 23, 26-27, 29-32, 34-40)
(P: 1, 4-5, 7-9, 11, 15-19, 21, 23, 25-26, 28-29, 32-40)

(P: 1, 4, 7, 10, 13, 15-16, 18-19, 23-24, 33, 35-40)

(P: 2-5, 7, 9-11, 13-15, 17-25, 28-40)
(P: 1-3, 9, 12, 15, 17-19, 23-24, 34, 36-40)

(P: 1-2, 4-10, 13-26, 28-31, 33-36, 38-40)

(P: 4-11, 14, 18-21, 23, 25-28, 35-36, 38-39)

(P: 1-6, 9-13, 16, 18-26, 28-29, 32-40)
(P: 1-15, 17-19, 21-23, 26, 28-29, 32-40)

(P: 2, 4-5, 10, 15-16, 18, 20, 22, 25-28, 33, 36, 38-39)
(P: 3, 25, 28, 36)

(P: 5-6, 10, 12, 16-17, 21)

(P: 3, 11, 13-14, 19, 24-26, 28, 37, 40)

(P: 1-10, 12-40)

(P: 1-7, 12-26, 28-29, 31-40)

(P: 1-2, 4-5, 7, 11, 13-21, 23-30, 32-39)

(P: 2, 7, 9-11, 16, 18-24, 28, 30-31, 34-40)

(P: 1-2, 4-5, 7, 10-12, 14, 16, 18, 21-29, 32-40)

(P: 2-3, 10, 19, 25-26, 34-36, 38)
(P: 1-2, 4, 6-7, 10, 12-14, 16, 21-22, 24, 26-27, 33-36, 38-39)

(P: 1, 2, 4, 6-12, 14, 16-17, 19-30, 32, 34-38)

(P: 1-9, 13, 15-16, 18-21, 23-31, 33-37, 39-40)

(P: 2-12, 15-17, 19-20, 27, 31, 34-35, 37-39)

(P: 20, 30)

(P: 10, 16, 24, 34, 38)

FIGURE 15. Results per extraction criterion, SRQ2 (EC19 - EC33)

in testing and validation methodologies. While significant
progress is evident in the design and implementation stages,
the relatively lower emphasis on testing (85%) suggests a po-
tential gap that requires further scrutiny to ensure the robust-
ness and reliability of integrated systems. The prevalent use
of experimental validation methods highlights an empirical
inclination within the research community, to seek tangible
evidence to validate theoretical frameworks. The prevalence
of simulated scenarios (43%) suggests a practical approach

towards initial validation, but also indicates the necessity for
deeper exploration in real-world settings to ensure practical
applicability. The dominance of Python (i.e. PyTorch) in
Blockchain systems and the use of unspecified tools reflect
both flexibility and ambiguity within the domain. These find-
ings underscore the need for a balanced approach, combining
theoretical robustness with a nuanced understanding of prac-
tical applicability to strengthen the evolution of FC, BC, and
FL integration for IoT applications.
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FIGURE 16. Results per extraction criterion, SRQ3 (EC34 - EC38)

B. RESULTS PER YEAR AND COUNTRY

FIGURE 17. Results per country and year

Figure 17 shows the distribution of results across different
years and countries among the 40 selected studies. Based on
the figure, we can state that all these studies were conducted
from 2020 onwards, indicating the contemporary relevance
of this evolving research field. As of 2023 (with the analysis
considered until August), 40% of the studies were conducted,
underscoring the current prevalence of this topic. Among the
countries showing a substantial interest in integrating these
technologies, China leads with 17 studies, followed by the
United States and Canada with 8 studies each, and Australia
with 7 studies. Additionally, parts of Europe, Africa, andArab
countries have shown notable interest in this field. While
the FL concept emerged in 2016, it took time to integrate
these technologies. Nevertheless, recent trends unmistakably
demonstrate the growing significance of this combination.

V. DISCUSSION
This section synthesizes the relevant aspects derived from the
review, covering various approaches and techniques for in-
tegrating FC-BC-FL technologies. This synthesis is based on
carefully selected extraction criteria and is illustrated through
bubble graphs, analyzing the technologies integration, along-
side their associated challenges and opportunities.

A. CHALLENGES AND OPPORTUNITIES. THE SYNTHESIS
OF THE MOST RELEVANT FINDINGS
This subsection synthesizes key findings concerning existing
frameworks, application fields, interoperability, networking
systems, on-chain/off-chain structures, and BC-FL features.

1) Frameworks use per application field and standardization
Figure 18 illustrates the practical application of BC and FL
frameworks in specific fields and the standardization when
integrating FC-BC-FL, providing insights into the number of
studies addressing each framework within particular applica-
tion fields. Several studies feature innovative formal models
crafted to introduce solutions for integrating FC-BC-FL. No-
tably, Healthcare (six studies in BC, six in FL, 12 in BC-FL),
Industry (three studies in BC, six in FL, 10 in BC-FL), Smart
Cities (four studies in BC, five in FL, 11 in BC-FL), Transport
(four studies in BC, five in FL, 8 in BC-FL), and Others (five
studies in BC, 8 in FL, 15 in BC-FL) emerge as a main area
for BC and FL framework implementation.
However, a significant research gap exists in utilizing cer-

tain existing frameworks and exploiting their capabilities.
For example, there is limited exploration of frameworks like
Flower, IBM FL, or Azure Flute within FL. Similarly, there
is a lack of exploration in utilizing IBM BC, Cisco BC,
or wider adoption of Ethereum or Hyperledger for BC ap-
plications. Moreover, existing BC-FL frameworks have not
been used within fields integrating all three technologies.
Moreover, most analyzed studies introduce formal models
for new frameworks, posing a challenge in testing their ap-
plication in different fields to demonstrate their versatility.
Additionally, the Energy and Business sectors under-utilize
these frameworks, resulting in research gaps. Addressing
these areas presents significant opportunities to strengthen
existing frameworks and explore untapped areas.
In this early phase of developing specialized frameworks

for integrating FC-BC-FL, notable efforts are underway to
bridge this gap. These efforts involve creating new formal
models that integrate distributed intelligence and security into
applications. Additionally, existing platforms are compelled
to adapt to these requirements, aiming to provide the com-
bined capabilities of these three technologies to IoT applica-
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tions. Both emerging and established frameworks are empha-
sizing this integration, promising more robust IoT solutions.

Regarding standardization, there is a notable absence of
using existing sources like IEEE, ISO, and NIST to standard-
ize BC-FL frameworks for instance to wider adoption and
convergence of these technologies. Furthermore, the specifi-
cation of elements within solutions using tools like DSLs is
lacking investigation (see Figure 18).

Emphasizing the importance of specification and stan-
dardization across FC/EC-BC-FL integration is crucial for
seamless interoperability, compatibility mitigation, security
enhancement, and innovation acceleration. Standards provide
a unified framework for communication and collaboration, fa-
cilitating cohesive system development and enabling efficient
utilization of combined technology benefits. Adherence to
standardized protocols fosters trust and confidence in data ex-
change integrity, vital for privacy-sensitive and reliable appli-
cations. Ultimately, specification and standardization propel
widespread adoption and advancement of these technologies
across diverse industries.

An important challenge lies in ensuring that new solutions
prioritize adherence to standards and specifications, fostering
scalability and interoperability. By aligning with established
norms from reputable organizations, developers can pave
the way for seamless integration and accelerated adoption,
ultimately driving advancements in the field.

2) BC and FL features per networking systems
Figure 19 illustrates the distribution of studies examining
networking systems that integrate FC-BC-FL, encompassing
various BC features like consensus protocols, chaining ap-
proaches, and data security, alongside FL elements such as
aggregator types, aggregation algorithms, and learning styles.
The adoption of specific BC-FL features is primarily ob-

served in IoT networks, with notable application domains
including vehicular and mobile/RAN networks. The rapid
emergence of 5G and forthcoming challenges posed by 6G
networks create a pressing need to enhance distributed sys-
tems within these mobile scenarios. Mobile environments en-
capsulate essential components of FC/EC, offering an optimal
platform for implementing BC technology and FL method-
ologies. However, despite potential advantages, there remains
a significant gap in understanding how to effectively leverage
these technologies within dynamic and resource-constrained
Mobile/RAN network environments.
An analysis of the consensus protocols utilized across

diverse networking systems reveals prevailing trends. No-
tably, capability-based protocols feature prominently, with
11 studies in IoT, one in CDN, two in LRPON/PLC, six in
mobile/RAN, and five in vehicular networks. Additionally,
compute-intensive protocols are notable, with 13 studies in
IoT and three each in vehicular and mobile/RAN networks,
while voting-based protocols exhibit presence with 8 in IoT,

FIGURE 18. BC, FL, and BC-FL frameworks used by application fields in FC-BC-FL integration
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one each in CDN and LRPON/PLC, and three each in mo-
bile/RAN and vehicular networks. In contrast, DAG-based
protocols appear less utilized, represented by only one study
in IoT and one in vehicular networks, despite the increas-
ing FC-BC-FL integration. Furthermore, alternative forms of
consensus like Secure Multiparty Computation-based (P10),
are presented in IoT and vehicular networks (see Figure 19).

Regarding the chaining approach, the main chain pre-
dominates in IoT applications, drawing significant attention
with 24 dedicated studies. Specifically, 10 studies focused on
mobile/RAN, six on vehicular networks, four on CDN, and
one on LRPON/PLC within the main chain paradigm. Addi-
tionally, off-chain chaining approaches play a role in these
network types, with 16 studies in IoT, 7 in Mobile/RAN, four
in vehicular networks, and one in CDN. It’s also noteworthy
that sidechain approaches, with five studies in IoT and two in
Mobile/RAN and vehicular networks, and DAG approaches
with no studies, appear to be underutilized within these con-
texts. Conversely, the types of aggregators used by network
systems in integrating FC-BC-FL show that FL servers are
most commonly used, with 16 studies in IoT, two in CDN, one
in LRPON, 7 inMobile/RAN, and five in vehicular networks.
Moreover, cloud servers (11 studies in IoT, one each in CDN
and vehicular, and two in Mobile/RAN networks) and other
aggregators (e.g., fog/edge nodes, fog/edge servers, edge de-

vices, CDN servers, Fog Cloud Agent - FCA) are commonly
employed, with 13 studies in IoT, 7 in mobile/RAN, three in
vehicular and CDN, and two in LRPON/PLC (see Figure 19).
The most utilized aggregation algorithms in networking

systems are FedAvg algorithms (14 studies in IoT, two in
CDN, one in LRPON/PLC, six in Mobile, and five in vehicu-
lar networks). However, there is a lack of utilization of other
aggregation algorithms such as FedProx or FedMA. Other
types of aggregations are more prevalent, as observed in 20
studies for IoT, 10 in Mobile/RAN, and five in vehicular net-
works (e.g., Stochastic Gradient Descend (SGD), Distributed
Approximate Newton (DAN), DLP-LDP, Differential Privacy
SGD, FedSGD). Nonetheless, the learning styles employed
across networking systems indicate a prevalence of super-
vised models, with 13 studies in IoT, six in Mobile/RAN,
five in vehicular networks, and one in CDN. Additionally,
unsupervised, semi-supervised, and reinforcement learning
methods are utilized, but to a lesser extent (see Figure 19).

VI. ADVANTAGES AND LIMITATIONS OF THE FC-BC-FL
INTEGRATION
The synergy among FC, BC, and FL offers several advantages
but also presents limitations depending on their utilized ap-
proaches and techniques. Following the SLR development,
this section will address these crucial aspects.

FIGURE 19. Fog/Edge node networking system used by BC: consensus protocol, chaining approach, data security, FL: aggregator type, aggregation
algorithms, learning style
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A. ADVANTAGES
1) Data Privacy. The integration allows sensitive data to

be processed locally on edge devices or within the
fog network, reducing the need to transmit raw data
to centralized servers. Through BC’s immutable and
transparent ledger, data access and transactions are se-
curely recorded, ensuring that only authorized parties
can access specific data. FL further reinforces privacy
by enabling model training on decentralized edge de-
vices without transferring raw data, therebyminimizing
the risk of data exposure and preserving user privacy.

2) Data Security. The integration leverages distributed
ledger technology provided by BC, which ensures
tamper-resistant and transparent data transactions. The
FC/EC processing closer to the source reduces the at-
tack surface and vulnerabilities associated with trans-
mitting data over long distances. FL allowsmodel train-
ing directly on fog/edge devices, avoiding the need to
transfer sensitive data to centralized servers, thus miti-
gating the risk of interception or unauthorized access.

3) Decentralization. It embodies the core of integrating
these technologies. BC decentralizes the consensus
process, ensuring no single entity controls the network.
This distributed consensus model enhances trust and
eliminates intermediaries, lowering the risk of data
manipulation or censorship. Fog/Edge further decen-
tralizes data processing by enabling computations at
the network’s edge, closer to data sources, reducing
reliance on centralized cloud infrastructure. FL decen-
tralizes model training by allowing edge devices to
collaboratively train models without sending raw data
to a central server.

4) Scalability. This integration optimizes the utilization
of computing resources and scalability by distributing
computational tasks across Fog/Edge nodes, enabling
data processing and model training closer to the data
source, thereby reducing latency and bandwidth re-
quirements. BC ensures scalability by providing a plat-
form for recording and validating transactions, accom-
modating growing data volumes without performance
issues. FL enhances scalability by enabling collabo-
rative model training across data sources, leveraging
collective computational power and bandwidth while
minimizing reliance on centralized infrastructure.

5) Synchronization. This integration facilitates synchro-
nization through efficient coordination of data process-
ing and model updates across distributed Fog/Edge
nodes. It ensures timely synchronization of data with-
out relying heavily on centralized servers. BC synchro-
nizes data transactions across all nodes in the network,
ensuring consistency and transparency. FL synchro-
nizes model updates across sources, allowing models
to learn from diverse data sources while maintaining
synchronization with the central model.

6) Other. Additional benefits include collaborative model
training, enabling distributed devices to enhance a
global model while safeguarding data privacy, thereby
improving accuracy and compliance. Another advan-
tage is optimized data processing, ensuring efficient
resource utilization by processing data closer to its
source, leading to enhanced scalability, resilience, and
security. Together, these features offer a comprehen-
sive solution for maximizing utility and security in
distributed data applications.

B. LIMITATIONS
1) Complexity. Integrating FC-BC-FL requires intricate

system design and coordination, which may increase
implementation complexity and development costs.

2) Security Concerns. While BC enhances data security,
it’s not immune to vulnerabilities such as attacks or
smart contract bugs. FL relies on secure communica-
tion protocols to protect privacy, but edge devices may
still be susceptible to physical attacks or malware.

3) Data Privacy and Regulation. FL addresses privacy
concerns by keeping data local, but regulatory com-
pliance and data governance become more challeng-
ing in distributed environments. Ensuring compliance
with privacy regulations such as GDPR requires careful
management of data access and consent mechanisms.

4) Performance Overhead. The additional computational
and communication overhead introduced by BC and
FL may impact system performance, particularly in
resource-constrained IoT environments. Balancing per-
formance requirements with security and privacy con-
cerns is essential for successful integration.

5) Ethical Issues. Integrating FC-BC-FL presents ethi-
cal considerations that demand careful examination.
Foremost among these are concerns surrounding data
privacy, as the vast amounts of sensitive information
generated by IoT devices require robust safeguards
to prevent unauthorized access or misuse. Security is
another critical aspect, as the decentralized nature of
these technologies introduces new vulnerabilities that
must be addressed to mitigate potential cyber threats.
Furthermore, the deployment of such advanced sys-
tems may have profound social implications, including
issues of digital divide, algorithmic bias, and the ex-
acerbation of existing inequalities. Therefore, ethical
frameworks must be established to guide the respon-
sible development and implementation of these tech-
nologies, ensuring that they not only deliver technical
advancements but also uphold fundamental principles
of fairness, transparency, and societal well-being.

As presented, the integration of these paradigms show-
cases promising opportunities to enhance IoT solutions. Here,
addressing their complexities and limitations is crucial to
realizing their full potential in real-world applications.

VOLUME 11, 2023 41



Valdez et al.: Exploring the Synergy of FC, BC, and FL for IoT Applications: A Systematic Literature Review

VII. CONCLUSIONS AND FUTURE WORK
Integrating Fog/Edge Computing, Blockchain, and Federated
Learning within the Internet of Things ecosystem presents a
compelling avenue for enhancing various network systems
and applications. This SLR study presented an analysis and
categorization of BC and FL technologies within FC envi-
ronments, addressing a research gap. While adhering to the
guidelines outlined by Kitchenham for conducting an SLR, it
is crucial to acknowledge inherent limitations in the process.
Despite efforts to encompass a broad spectrum of sources,
inadvertent exclusion of relevant studies due to stringent in-
clusion criteria remains a possibility. Furthermore, resource
constraints such as time limitations and database accessibility
may impact the review’s comprehensiveness. In addition to
limitations in the review process, constraints regarding the
findings obtained must be acknowledged, such as potential
biases among selected studies. Moreover, the dynamic nature
of the involved technologies may render some findings out-
dated or incomplete. Thus, while the SLR provides valuable
insights, it is imperative to interpret results with awareness
of these limitations, ensuring a nuanced understanding of the
research landscape.

The success attained in this study, compared to existing
ones, can be attributed to several key factors that enhance
its effectiveness in addressing research objectives. Firstly, the
meticulous analysis involved comparing 16 similar literature
review studies against our SLR proposal, which allowed us
to identify critical gaps in existing research concerning the
analysis of FC/EC-BC-FL integration. Consequently, areas
requiring further exploration were pinpointed, and provided
a detailed assessment of them. This approach enriches the
understanding of the subject matter and brings a holistic per-
spective by examining the integration of all three paradigms
comprehensively, rather than focusing solely on partial com-
binations as presented in existing studies. Secondly, the
meticulous examination of various criteria, including archi-
tectural features, security concerns, and application domains,
provides a comprehensive overview of integration potential.

The SLR of 40 papers uncovers insights into this emerging
field, using 38 criteria covering FC-BC-FL integration’s ar-
chitectural and technical features. Since 2020, there has been
a notable rise in interest from enterprises and academia in
developed nations contributing to integrated solutions with
these technologies. The survey data was analyzed criteria by
criteria to showcase their influence and consideration within
the domain. Additionally, a combined analysis unveils rela-
tionships and research prospects. Interpretations of strengths,
weaknesses, and research directions for FC-BC-FL integra-
tion from the surveyed literature are also provided.

The FC-BC-FL integration presents multifaceted advan-
tages poised to revolutionize IoT landscapes, offering en-
hanced data privacy, security, and decentralized consensus
mechanisms through BC, while FL facilitates collaborative
model training without compromising data privacy. Simulta-
neously, FC/EC optimizes data processing, reducing latency
by distributing computational tasks closer to the data source

for amplified efficiency and responsiveness within IoT frame-
works, offering future directions for improving integration
and leveraging its advantages. These can include:
Frameworks Utilization and Implementation: Future ef-

forts could focus on developing guidelines or tools to fa-
cilitate widespread and practical implementation of existing
frameworks. The emergence of novel formal models and
frameworks within examined studies signifies a proactive
response to specialized framework deficiencies, significantly
contributing to the maturation of integration methodologies.
However, additional efforts are needed.
Specification and Standardization: Establishing technical

and industry standards and protocols would ensure interop-
erability and streamline integration practices, fostering more
robust and scalable implementations.
Exploration in Diverse Network Contexts: Examining how

this integration can extend its benefits to diverse network
environments beyond IoT, including Mobile/RAN Networks
(e.g., 5G and 6G), would broaden its applicability and poten-
tial impact. For instance, addressing computation offloading
or resource allocation needs. Further exploration in these
networks would unveil insights and opportunities for lever-
aging integration to tackle specific challenges or enhance
performance across various applications.
Comprehensive Approach: Emphasizing interdisciplinary

collaborations and holistic research efforts to address identi-
fied gaps, enhance understanding, and advance the integra-
tion’s applicability.
In conclusion, the synthesis of these technologies within

the IoT domain represents an avant-garde approach poised to
augment network systems profoundly. Addressing the identi-
fied gaps in existing frameworks, standardization efforts, and
expanding the scope to encompass diverse network scenarios
can further enrich the understanding and applicability of this
integration. This comprehensive approach holds immense
promise in propelling the evolution of IoT ecosystems to-
wards heightened efficiency, security, and scalability.
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