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ABSTRACT Accurate sensing and localisation are considered as necessary features of future communi-
cation systems, including 6G. To harness the full potential of radio frequency (RF) and optical wireless
communication (OWC), the localisation of user devices is essential, which further facilitates efficient beam
steering, handover, and resource allocation. In this paper, we have considered a practical scenario where
users are mobile with random device orientation. A convolutional neural network (CNN) is introduced to
estimate the user position and orientation based on the received signal strength (RSS). CNN demonstrates
superior performance in optical wireless positioning by proficiently extracting features from only RSS
data. According to the simulation results it is observed that, by adjusting the structure of the dataset, a
significant improvement in the estimation of the location is obtained in comparison with previous methods.
We also consider having the noisy orientation data from the device sensors and investigate localisation
performance in such a scenario. Finally, the impact of configuration of access points (APs) on the model
is studied. This work demonstrates that a low-complexity accurate localisation, with average error as low

as 1.8 cm, is indeed feasible.

INDEX TERMS LiFi, 6G, indoor positioning, transceiver, access point distribution.

. INTRODUCTION

ITH the increasing demand for connectivity, com-

munication technologies are rapidly evolving to
provide high data rates, extremely low latency, and extensive
coverage [1]. The Internet of Things (IoT) technology has
also seen exponential growth in recent years. This means
that we not only need to make significant breakthroughs
in data capacity, but also focus on the critical needs
that arise in IoT and other relevant services, such as
sensing and positioning [2]. Global Navigation Satellite
System (GNSS) uses satellite radio navigation technology to
determine the spatial location and timing of targets [3]. The
Global Positioning System (GPS) was the first operational
GNSS and is the most widely used system globally.

It relies on satellites continuously transmitting signals
to ground receivers which use signal characteristics to
calculate distances and positions, enabling accurate nav-
igation and measurement operations [4]. However, GPS
positioning accuracy is greatly degraded in indoor settings
due to strong fading and shadowing effects. Therefore,
utilising indoor communication systems for positioning has
emerged as a promising approach, simultaneously offering
communication and sensing capabilities [5], [6]. The accu-
racy of WiFi, cellular, and Bluetooth indoor positioning
systems are generally low in indoor environments due to
multi-path and other physical effects. A deep review of
various localisation techniques is presented in a recent
study [7].
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TABLE 1. The comparison between DL-based VLP system.

Network Space Size Positioning error Remark
Weighted K-Nearest Neighbors [14] 2D 5% 5 x 3 (m) 34 cm 2D positioning with single-directional structure
Supervised Learning [15] 2D 4 x4 x2.5 (m) 3.5 cm 2D positioning and 25 Transmitters
DNN [16] 2D 5 x5 x 3 (m) 1.662cm 2D positioning and high complexity on computation
Two layer Artificial Neural Networks (ANNs) [17] 3D 0.9 x1x0.4 (m) less than 1 cm small room size
ANNS s [18] 3D 5% 5 x 3 (m) 10.53 cm Position and orientation estimation with single-directional structure

Optical wireless communication and light-fidelity (liFi) are
high performance communication systems benefiting from
unique features of light waves [8]. In this field, various
optical wireless positioning systems are being proposed,
generally showing superior localization performance com-
pared to radio technologies. According to [9], a spatial
modulation (SM)-based positioning algorithm achieves high
accuracy of both 2-dimensional (2D) and 3-dimensional
(3D) localisation, e.g., an average of 2.8 cm for a 3D
localisation at a signal-to-noise ratio (SNR) of 30 dB. These
results suggest that the algorithm performs exceptionally
well in an idealized environment and a specific movement
type. However, it is important to note that this work
does not account for random orientation and achieving the
assumed high SNR is challenging in practical scenarios.
Furthermore, in [10], a low-complexity, time-difference-of-
arrival (TDOA)-based indoor visible light positioning system
utilizing an enhanced cross-correlation localization scheme
was proposed and validated through experiments. The system
demonstrates an average positioning accuracy of 9.2 cm
within relatively small area of a 1.2 x 1.2 m® area at a
height of 2 m.

However, conventional visible light communication (VLC)
localization techniques often encounter multiple local min-
ima challenges and necessitate supplementary data like initial
positioning, pre-estimated orientation, or extra infrastructure
alongside iterative algorithms [11], [12], [13].

Deep learning approaches have also been used for accurate
positioning. Table 1 lists some of the most relevant works
which use deep learning techniques. In [14], [15], [16], the
positioning error was estimated in a 2D range, considering
movement only in X-Y plane, but the model in this paper
will consider the 3D range of the movements, more closely
reflecting real-world scenarios. The model in [17] consider
a small room of size by 0.9 x 1 x 0.4 m, while this paper
assume a room size of 5 x 5 x 3 m. In [18], the authors
addressed the challenge of estimating the 3D position and
orientation of user equipment (UE) with single photodiode
(PD) structure in an indoor LiFi systems, without prior
knowledge of emission power. The average position error
was 10.53 cm. CNNs excel in complex environments of
optical wireless systems, processing all the physical effects
of the environment and spatial light distribution effectively,
even in dynamic, obstructed settings. One of the significant
advantages of CNNs is their ability to extract meaningful
features from the data, including those components tradition-
ally considered as noise or imperfections. Moreover, CNNs
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can potentially adapt to new environments and reduce the
need for re-calibration.

In this paper, we introduce a novel method that
employs deep learning techniques, specifically artificial
neural networks (ANNSs), to enhance estimation accuracy.
We use a multi-directional transceiver structure for the UE,
featuring pairs of LED/PDs on the top side of the screen
and three additional pairs on the other three sides. This is
a promising structure which provides enhanced performance
in the presence of random device orientation [19]. The CNN
model in [18], cannot be used directly for positioning with
a multi-directional transceiver. Our initial tests showed a
performance degradation, even with multiple transceivers. In
order to improve the performance for the multi-directional
structure, a new CNN model is developed for estimating
both position and orientation. Additionally, we consider
a new datasets structure, using orientation information as
feature vectors while focusing on the position estimation.
This represents a scenario where orientation data is available
from sensors of the device. The UE orientation information
is measured via the phone sensor and recorded via software.
This data is affected by noise from various sources and
thus have an impact on the positioning accuracy. We
further proposed a simple noise reduction algorithm for
the training phase which reduced the impact of noise.
The study also examines various number of APs for the
system. Simulations indicate that the positioning error is
1.81cm with 16 APs in a noise-free environment, and
2.31cm in the noisy scenario. Notably, with the system
simplified to a low-cost and low-complexity APs configu-
ration, the current model continues to demonstrate robust
performance. Our results show that a CNN-based positioning
algorithm can achieve a low error in the range of 2 cm
which is remarkable when compared to radio positioning
systems.

The remainder of the paper is organized as follow.
Section II introduces the system model which includes
typical indoor LiFi model. Section III describes the deep
learning framework. Finally, Sections IV and V discuss the
simulation results and conclusion respectively.

Il. SYSTEM MODEL

In this section, we present the system model including the
environment, transceiver structure, channel model, random
orientation model, and the received signal strength (RSS)
analysis.
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FIGURE 1. The typical visible light positioning system.

FIGURE 2. MDT structure for User Equipment.

A. SYSTEM SETUP

The layout of the LiFi system inside the room is depicted
in Fig. 1. The dimensions of the room are denoted as L x
W x Hroom, respectively, representing the length, width and
height of the room. APs are installed on the ceiling, each
facing the floor. Each AP comprises an LED and a PD in
close proximity to one another. The LEDs in the APs are
utilized for illumination and data transmission, while the
PDs are responsible for data reception. The UE is equipped
with Infrared (IR)-LEDs and suitable PDs. As demonstrated
in [19], having multiple receivers on different sides of
UE can enhance the communication performance. Thus,
adopting this concept, we consider the structure comprising
multiple pairs of LED/PD, as illustrated in Fig. 2. LED/PD
transceiver pairs are commercially available to be integrated
in small UEs, such as the ‘Light Antenna ONE’ developed by
pureLiFi [20], which is notably compact, with a size of only
14.5mm. The multi-directional transceiver (MDT) design
integrates pairs of LED/PDs on top of the screen, with three
additional pairs positioned on the remaining sides of the UE.
The downlink is facilitated by the AP’s LED, transmitting
data in the visible light spectrum to the PD on the UE, while
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the uplink is realised through UE’s IR-LED, transmitting the
IR spectrum with the PD on the AP responsible for signal
detection and reception. This configuration is strategically
designed to address challenges frequently encountered in
practical environments, such as obstructions, limited field of
view (FOV), and the random position and orientation of the
UE. By using each of the four IR-LED/PD pairs, the MDT
structure can significantly reduce the impact of mentioned
issues. In the assessment of RSS, the aggregate of the
signal intensities from four IR-LED/PD pairs is calculated
irrespective of the UE’s position and orientation.

B. CHANNEL MODEL

We primarily focus on the uplink for the purpose of UE
localisation and consider the intensity modulation direct
detection (IM/DD) approach. As depicted in Fig. 1 and
Fig. 2, the system has Ny = 1 or 4 IR-LEDs as transmitter
elements. In addition, there are Ny PDs on the ceiling
functioning as receive elements. In this paper, we investigate
the impact of varying the number of access points (APs).
Here, N; represents the variable number of APs, which
includes values of 4, 5, 8, and 16. The channel model can
be succinctly expressed as

y=Hx+n, ey

where x represents the transmitted signal vector with
dimensions N; x 1. The vectors y and n correspond to the
received signal vector, also Ny x 1 in length, and noise
vector at each PDs, respectively. The noise in the current
system is assumed to be real-valued additive Gaussian white
noise, encapsulating all potential noise sources, such as shot
noise and thermal noise, denoted as n ~ A (ONr,onzINr).
The variance of noise is expressed as anz = NoB where Ny
denotes the single-sided power spectral density of the noise,
and B represents the bandwidth. The channel matrix H is
detailed below:

hi,  hip hi N,
ha1  hap ha N,

= ) . ) 2
hn, o B2 hn,.N,

The element h; j(i=1,...,N;, j=1,..., Ny in the channel
matrix represents the gain of the link between the j” UE
transmitter and i”” PD. This gain can be calculated as follow:

hij = h S + B0 3)

The equation indicates that the channel gain is the sum of
the Line-of-Sight (LOS) channel gain and Non-Line-of-Sight
(NLOS) channel gain. The distance d between transmitter
and receiver pairs, and the orientation of the UE determines
the LOS channel gain. The geometry of uplink channel
model is shown in Fig. 3. As illustrated in the left of Fig. 3,
the channel model geometry for LOS in iy AP and j;; LED
pairs is demonstrated. @ refers to the half-power semiangle
of LEDs; ¢;; represents the radiance angle of LEDs, which
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j IR-LED j™" IR-LED

FIGURE 3. Uplink channel model geometry of indoor LiFi system.

is essentially the angle between the vector transmitter (TXx)
- receiver(Rx) and the normal vector of LEDs; whereas, at
the AP side, W stands for the FOV of PDs on the AP; and
Y is the angle of incidence at the receiver side. With the
above orientation and position parameters, the LOS channel
gain can be calculated by

DA i i i
hiy® = —(n;;— d?,) cos" (¢, )rect <—¢q)"’ ) COS(wi,j)rect<—1{y’/ )
“4)

where m represents the Lambertian emission order of LEDs
which could be obtained as m = —1/log,(cos(®1,2)), where
the @1, is the half-power semiangle. The parameter A in (4)
refers to the area of PD. In the case of the NLOS channel
model, frequency domain analysis is utilised, which can
take into account an infinite number of reflections, thereby
enabling the accurate determination of the diffusion link,
as noted by [21]. It is common to segment the indoor
environment into small-area surface elements capable of
reflecting light beams. These planar elements are assumed
to have a FOV of 90° and a Lambertian order m =
1. Assuming the entire indoor model comprises N such
elements, and considering the case of infinite number of
reflections between iy AP and j;, LEDs, the channel gain
hy}“os of the NLOS can be expressed as

NS = TG, (1- EG,) 't (5)

where the vector t represents the link between LEDs and
the surface elements in the indoor system, while the link
between the surface of room and the i;; PDs on the APs is
given as r. The matrix G, describes the reflectivity of all the
reflective surface elements, where G, = diag(¢y, ..., {N).
The matrix E, having the dimensions of N x N, represents
the LOS link transfer function for the surface elements, and
the matrix I is an identity matrix of order N in the equation.

C. RANDOM ORIENTATION MODEL

Some devices such as smartphones, are capable of obtaining
their corresponding 3D angles through a sensor and record
angles using corresponding software. These angles can be
interpreted as rotation angle for the initial coordinates, which
include yaw (), pitch (8), and roll (y). As shown in the
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FIGURE 4. Orientation angle of user equipment: (a) normal coordinate; (b) yaw
rotation angle on z-axis; (c) pitch rotation angle on x-axis; (d) roll rotation angle on
y-axis.

figure, these represent the rotation of the UE around the
z-axis, x-axis, and y-axis, respectively. Depending on the
actual use case, the range of yaw angle extends from 0° to
360°, the pitch angle varies from —180° to 180°, and the
roll angle fluctuates from —90° to 90°. In accordance with
Euler’s rotation theorem, the rotation matrix can be denoted
as R = R, Rg R,, where Ry,Rg and R, are shown in
eq. (6) below.

Following the rotation matrix, the normal vectors n}J
of all the LEDs can be modified by nj‘? = Rng, where
ny represents the initial state of the normal vector. The
stochastic distribution of orientation angles («, 8, y) are
fitted as truncated Laplace distribution as described in [19].

[cos(ax) —sin(e) 0O
R, = | sin(x) cos(w) O],
| 0 0 1
1 0 0
Rg=|0 cos(B) —sin(B) |,
|0 sin(B) cos(B)
[ cos(y) 0 sin(y)
R,=| 0 1 0 (©)
| —sin(y) 0 cos(y)

D. RECEIVED SIGNAL STRENGTH (RSS) ANALYSIS

In [18], RSS analysis was implemented to estimate the
orientation and position of UE. In this estimation system, in
order to obtain a more accurate 3D position and orientation,
a reference signal needed to be transferred to the APs on
the ceiling via the UE. We consider both communication
and positioning functions, aligning closely with the realistic
application scenarios. Consequently, the APs and UEs within
the system comprise LED/PD pairs. The channel transmitting
from the LED at the AP to the PD at the UE is designated as
the downlink, primarily utilized for communication purposes.
Conversely, the channel from the IR-LED at the UE to the
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PD at the AP is defined as the uplink and is employed
for both communication and positioning purposes. We only
study positioning in this work. Building upon this concept,
our approach involves the utilization of pulse-amplitude
modulation (PAM) of order M. Consequently, the signal
transmitted by LEDs can be considered equivalent to one of
the M-PAM intensities, expressible as I, = %m for m €
[ 0,M —1 ], where I is the mean optical power emitted [2].
The received vector of signals at the iy, AP is then determined
by substituting the channel gain matrix and input signals s
into to eq. (1), resulting in y; = (A ZJNZ‘I h; j)s + n;, where
A denotes the PD responsivity. The SNR received at the iy,
APs side is thus calculated as

N, 2
(2 5% i) Peec
pPi = 2 (7

Oy

where the P, in the equation represents the electrical power

of the transmitted signal s, given by P = IIZ)TC%—:L} These
equations allows us to derive the corresponding SNR from
the channel gain and the variance of the noise in the channel.
Each AP can have a distinct SNR value, leading to an SNR
vector of N, x 1 dimensions as p = [p1, p2, ..., pn,]. SNR
values are dependent on channel gains, which are influenced
by the position and orientation of the UEs. Thus, each SNR
vector correlates with a specific device position (X,y,z) and
a orientation (o, 8, ¥).

lll. RSS-BASED DEEP LEARNING MODELS FOR 3D
POSITION ESTIMATION

Conventional positioning techniques, such as using time-of-
arrival (TOA), require the precise measurement of signal
travel time from the UE to various receivers. Additionally,
these methods may depend on a predefined awareness of the
signal’s transmission power. However, deep learning-based
approaches obviates these prerequisites by autonomously
learning to interpret and analyze the characteristics of
positioning signals directly from the collected data, thereby
eliminating the dependency on pre-existing positional or
power level information. In [18], it was demonstrated that
ANNSs in deep learning can be effectively applied to estimate
the position and orientation of UE. From simulation results
comparing CNNs with Multilayer Perceptrons (MLPs),
we learned that models employing CNNs achieve higher
estimation accuracy compared to those using MLPs. The
following sections will detail the data set generation and the
implemented deep learning framework.

A. DATASETS GENERATION

Each UE is randomly located within the indoor environment.
Without loss of generality, its random distribution can be
regarded as a uniform distribution, allowing the probability
density functions (PDFs) of 3D position (x,y,z) of the UEs
to be expressed as

(8a)

[l

Se(x) = %“[_g, ](X),
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1
HO) = WM[ %%](y), (8b)

(@) = (8¢)

Haovioes 0 Hacices @,

where Hgevyice 18 in the range of 0 < Hgeyices < Hroom- For
the orientation datasets, we use the empirical distributions
from [22] to achieve a highly accurate, measurement-
based orientation datasets (o, 8, y). The UE rotation angles,
recorded as yaw angle «, pitch angle 8, and roll angle y, are
fitted as truncated Laplace distribution with mean and stan-
dard deviation represented as (uq, 0y) = (2 —90°,3.67°),
(g, o) = (40.78°,2.39°) and (uy,0,) = (—0.84°,2.21°)
respectively [19]. In this context, Q2 expresses the direction
that the user faces when seating or moving. From a statistical
aspect, the movement direction angle 2 can be treated
as following the uniformly distribution in [0°, 360°]. To
generate a target dataset of size N, the following steps are
necessary: the position of the user’s device is sampled with
a uniform distribution function, and €2 is defined to generate
the movement directional angles, thereby establishing the
orientation of the UEs. Based on the previously calculated
channel matrix H, the SNR vector p derived from H can
also be obtained. As such, two forms of datasets need to
be generated. The first, named Position and Orientation
estimation Dataset, estimates the position and orientation
from the feature of SNR vectors. Here, the SNR vectors p,
derived as described above, will be used as feature vectors,
and the corresponding 3D position and 3D orientation
will be labeled as (x,y,z, «, B, y), as shown in Fig. 5(a).
The second dataset is named Orientation-aided positioning
Dataset, for which the emphasis is on the 3D position of
user equipment (UE), with orientation data (o, 8, y) obtained
from other sources, e.g., smart device sensors. This dataset
uses SNR vectors p and orientations as inputs, with the
position (x,y,z) as the CNN output, serving as labels for
accurate UE positioning. Details are depicted in Fig 5(b). The
primary rationale for generating two datasets is to reduce the
complexity of the method and avoid unnecessary orientation
estimation.

B. CNN MODEL IMPLEMENTATION

The primary objective is to identify a CNN with optimal
parameters for extracting features from input vectors.
Essentially, CNNs are networks designed to map and train
continually, seeking the optimal parameters of CNN through
comparison with a prediction error matrix.

The main training approach involves using corresponding
feature vectors, either Position and Orientation estimation
Dataset or Orientation-aided positioning Dataset and along
with their labels, to instantaneously capture and extract
features. This process aims to minimize the final loss
function before saturation. A typical CNN will consist of
several different layers: the input layer, convolutional layer,
Rectified Linear Unit (ReLU) layer, pooling layer, and fully
connected (FC) layer. By stacking these layers sequentially,
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(a) Position and Orientation estimation Dataset
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UE Position

Features
Received SNR vector & UE Orientation
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(b) Orientation-aided positioning Dataset

FIGURE 5. Dataset Structure.

a complete CNN can be formed. The input layer initiates
the neural network, receiving the feature vector p and
the bias parameter b; as inputs. The Dth hidden layer
typically comprises convolutional layers, ReLU layers and
pooling layers, where each dth layer, for d € [1, D], can be
considered as consisting of My neuron units. The neurons
with each dth layer interconnected with the neurons in the
d + 1th layer to form a neural network. After traversing
the D layers of hidden units, the output progresses to the
FC layer for final classification. The FC layer plays the
role of “classifier” in the whole CNN. If the operations of
convolutional layer, pooling layer and activation function
are to map the original data to the hidden layer feature
space (the process of feature extraction and selection), the
FC layer plays the role of mapping the learned feature
representation to the label vectors of the samples. In other
words, it is to integrate the features together (highly purified
features) to facilitate handing over to the final classifier
or regression. Thus, it outputs the 3D position and 3D
orientation parameters of the UEs.

The convolutional layers of this network, which increase
exponentially in the number of filters or neurons, enable the
network to progressively extract a broader and more complex
range of features. Early layers focus on simpler features
like edges or basic textures, while subsequent layers address
more complex structures critical for detailed recognition
tasks. Employing a small kernel size throughout these layers
balances spatial resolution with feature extraction capability,
preserving essential details.

4524

ReLU activation is employed throughout the layers to
compute non-linearity efficiently, reduce computational load,
and prevent the vanishing gradient problem, where gradients
diminish during backpropagation, can stall the learning
process in deep learning models. The network transitions
from feature extraction to synthesis in the fully connected
layers, which feature a large number of neurons to integrate
the extracted features. This integration enables the network
to learn from a vast feature set and identify intricate
patterns necessary for final predictions. While ReLU is used
predominantly, the final layer employs a linear activation
function suitable for numerical outputs as in regression
models or specific classifications.

The Mean Squared Error (MSE) serves as the loss function
to refine and enhance the network’s predictive accuracy,
making it a tool in scenarios demanding high precision
in continuous numerical forecasts. The MSE quantifies the
average squared discrepancies between predicted values (3;)
and observed actual values (y;), as defined by the following
equation:

[
Loss = — 2()’:’ — )’ &)
i=

This expression underscores the squaring of prediction errors,
averaged across all data points, and is applied in regression
analyses to enhance prediction accuracy by minimizing MSE
throughout the training of machine learning models. Here, n
represents the quantity of datasets employed in the training
and validation stages. Specifically, in a dataset focused on
the estimation of position and orientation, J; and y; in the
equation denote the normalised estimated and actual values
of position and orientation (x, Yy, z, «, B, y), respectively. In
addition, for the orientation-aided positioning dataset, y; and
y; refer to the normalised predicted and actual positions
x,y,2).

Following the implementation and training of the CNN
models, optimal parameters are determined. The system then
transitions to the testing phase. SNR values are measured at
the APs on the ceiling, alongside UE information, are input
into the trained model, which then estimates the required
information. The UEs are connected to at least one AP at
any time which indicates that the links between the APs and
UEs are activated. Having only one non-zero link suggests
that the UE is close to the corresponding AP and oriented
towards it. Upon detecting new SNR values, the trained
CNN model processes these values to estimate the UE’s 3D
position.

IV. SIMULATION RESULTS

A. SIMULATION PARAMETERS

Parameters for the typical indoor LiFi system are set as
Lx WX Hpom = 5 %5 x3 m? In order to compare
the positioning performance of multi-directional with single-
directional structures, the number of APs chosen is the same
as in [18], i.e., Ny = 16. These APs are arranged in a
4 x 4 array, each one metre apart, centrally placed on the
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TABLE 2. Basic LiFi system simulation parameters.

Parameter symbol actual value
Room size L xW X Hyoom 5m X bm X 3m
LED half-power semiangle ) 60°
PD responsivity Ry 0.6 A/W
single PD size Ay lcm?
Maximum UE’s height Hgevice 1.5m
Maximum UE’s power P az 0.01 W
Reflection index of the wall ¢ 0.7
PDs FOV 4 90 °
System bandwidth B 10 MHz
Noise power spectral density No 10~2'W/Hz

TABLE 3. Current CNN for the multi-directional structure.

Layers  |No. of Filters/Neurons|Filter size|Activation Function|Padding
ConlD No.1 8 2 ReLU None
ConlD No.2 16 2 ReLU None
ConlD No.3 32 2 ReLU None
ConlD No.4 64 2 ReLU None
ConlD No.5 128 2 ReLU None
ConlD No.6 256 2 ReLU None
FC layers-1 4096 Neurons - ReLU -
FC layers-2 4096 Neurons - ReLU -
FC layers-3 n-outputs(6) - Linear -

square ceiling and oriented vertically downwards. The size
of the UE mimics a standard mobile phone, measuring 14 x
7 x 1 cm [19]. For the single-directional structure, the LED
is positioned 6 cm above the center of mobile phone. For
the multi-directional structure, the PD associated with n3 is
placed at the center of the corresponding side, and the PDs
indicates by n> and n4 are positioned 1.5 cm from the top
edge. Other relevant simulation parameters are presented in
the Table 2.

B. CNN PARAMETERS AND SPECIFICATION

The architecture of the proposed CNN is detailed in Table 3.
This CNN network consists of 1 input layer, 6 convolution
layers and 3 FC layers. In the convolutional layers, filter and
stride size are respectively 2 and 1, with the number of filters
increasing exponentially from 8 to 256. The first two FC
layers have 4096 neurons each, while the third layer serves
as a dropout layer with 6 outputs. There are two datasets
considered for the current CNN input, which have the size of
N =10°and N = 10° points. Moreover, for each dataset size
N, the 0.9 x N points are used for training the CNN model,
and the remainder for testing. In terms of CNN structure, the
CNN in [18] consists of 4 hidden layers with 256 neurons per
layer and 64 filters. However, the current CNN employs an
increasing number of filters per convolutional layer, which
captures a more detailed hierarchy of features, particularly
beneficial for complex pattern recognition tasks. While the
previous CNN used a kernel size of 16, the current CNN uses
smaller kernel sizes like 2x2 across all convolutional layers,
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FIGURE 6. Comparative analysis of single-directional (S) and multi-directional
(M) structures in positioning performance: previous CNN (preCNN) vs. current work
(newCNN) in train and validation (val) phase.

allowing for finer granularity in feature extraction. More
importantly, we introduced a brand new orientation-aided
dataset as input, providing additional and more accurate
features to the CNN. Overall, a more effective CNN structure
and refined datasets have led to a significant improvement
in positioning accuracy.

C. POSITION AND ORIENTATION ESTIMATION
We first evaluated the new MDT datasets using the model
from [18], which apply the CNN model with 4 1D
convolution layers, 4 normalization layers and 4 dropout
layers, combining with 64 filters in each convolution layer.
The loss function is Mean-Squared-Error (MSE), and the loss
trend is shown in Fig. 6. This figure presents the estimated
loss by MSE against the epoch index over a total of 30
epochs for both training and validation processes. It can be
seen that the performance for MDT is degraded, despite
having multiple transmitters in different directions, compared
to the single-directional structure when the same CNN model
in [18] used. The new CNN in Table 3 enables MDT to
produce a better performance. Utilizing the new CNN, the
loss trend is also denoted in Fig. 6. The results reveal that
the new CNN network yields significantly lower losses than
the previous model, both in training and validation. With a
dataset size of N = 106, training and validation losses are
approximately 18%, which is a notable improvement.

Accuracy is a commonly used metric to assess the
performance of classification models. The calculation of
accuracy is relatively straightforward, primarily measuring
the ratio of the number of samples correctly predicted by
the model to the total number of samples. However, the
calculation of the accuracy rate in this system addresses a
complex classification problem, necessitating the introduc-
tion of a threshold. The formula for calculating the accuracy
rate is as follows:

Number of accurate estimations

Accuracy = (10)

Total number of estimations
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An accurate estimation is defined as an estimation where
the Euclidean Distance error is less than or equal to the
accepted error, denoted as €, which is measured in meters,
determining the allowable distance from the actual position
that can still be considered an accurate estimation. In this
study, we employ the default parameter value for the Adam
optimizer, set at 10~ m.

Although the new network was able to reduce the loss
to less than 20%, the model achieved an accuracy of
only 70% in estimating position and orientation. In order
to evaluate which parameter is responsible for the poor
accuracy performance, the Cumulative Distribution Function
(CDF) is introduced for position error and orientation error
in yaw, pitch and roll angles, respectively. The position
and orientation error samples can be calculated as follows:
position error =| (estimated position — exact position) |;
orientation error =| (estimated angles — exact angles) |. The
CDFs of the position and orientation error are shown in the
Fig. 7.

According to the CDF, it is evident that the yaw angle
exerts the most significant influence on the overall estimation
accuracy, whereas the 80% position errors are below 10cm,
pitch and roll angle errors are under 2°. Importantly, for the
positioning system, the accuracy of the position information
(x,y,z) is paramount. Given the improving accuracy of
device sensors in measuring the orientation angle of the
UE, it is feasible to utilize the angle measured by the
phone’s sensor, along with the SNR vector, as feature vectors.
Consequently, the position (x, y, z) can be exclusively used
as the label. Note that the availability of the orientation data
is an assumption for specific scenarios, such as smartphones,
which may not be applicable to other use cases. This
approach may enhance the performance of the CNN. The
following section presents the process and results.

D. ORIENTATION-AIDED POSITIONING

1) NOISE-FREE POSITION ESTIMATION

We use the Orientation-aided positioning dataset and assume
that the measured orientation data are accurate. With this
assumption, the parameters of the model remain largely
unchanged, except for the modification of the FC layer in the
final CNN layer, which should be configured to produce an
output vector with a size of 3. The input dataset structure, on
the other hand, is as shown in the Fig. 5(b), where orientation
dataset is generated by the exact data without measurement
noise. The datasets are available in two sizes, with N = 10°
and N = 10° respectively. The performance of the proposed
CNN using Orientation-aided positioning, are illustrated in
Fig. 8. In the Fig. 8(a), the training and validation loss for
the dataset sizes of N = 10° and N = 10° have decreased
to the 1% and 0.5%, respectively, representing a dramatic
improvement compared to the previous results using the
position and orientation estimation dataset, 17%, shown in
the Fig. 6. Concurrently, the accuracy of both the training
and validation datasets has improved to approximately 96%
and 98%. These results suggest that considering orientation
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as a feature vector contributes positively to the accuracy of
position estimation.

2) IMPACT OF DISTRIBUTION OF APS

In real-time applications, having 16 LEDs on the ceiling
may be excessive for a single room, necessitating a re-
evaluation of the number of LEDs and the impact of APs
in the current system. As illustrated in the Fig. 9, we
modify the distribution and quantity of APs to the following
configuration. For the training of the CNN model, datasets
of varying sizes, specifically N = 10° and N = 10°, are
utilized to accommodate the differences in AP distributions.
The outcomes of this approach are illustrated in the Fig. 10.

As expected, a lower number of APs corresponds to a
reduction of accuracy. Furthermore, the CNN model encoun-
ters a bottleneck when the number of APs is reduced to four
where the validation loss and accuracy saturated, despite the
continuously decreasing and increasing in the training loss
and accuracy separately, as depicted in Fig. 10(a) and 10(b).
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This phenomenon can be attributed to the fact that a
reduction in the number of LEDs leads to a corresponding
decrease in the quantity of features that the CNN can extract,
consequently resulting in the saturation of its processing
capacity. In contrast, expanding the dataset size to N =
10°, the proposed CNN can reduce the MSE loss to 1.5%
accompanied by 95% accuracy with just 4 LEDs.

3) POSITION ESTIMATION CONSIDERING NOISE AND
WITH NOISE REDUCTION

In order to match the system with practical scenarios, it
is necessary to introduce noise into the orientation dataset.
Based on the data from [2], the error in rotation angles
measured by the mobile phone sensors can be approximated
as standard deviation of 2.2°. Therefore, random Gaussian
white noise with standard deviation of 2.2° was added to
the generated 3D orientation dataset used as the sensor
measurement, while other parameters remained unchanged.
The evaluation results show the impact of the sensor noise
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TABLE 4. Average estimation 3D position error.

Estimation Dataset size N = 105  |Dataset size N = 106
error (cm) exact noisy NR |exact|{noisy| NR
16mean 5.55 6.27 5.87 |[1.81|3.20| 2.31
precision 8.45 9.32 9.08 |[6.32|7.65| 7.03
8 mean 6.73 7.08 6.87 |3.11|4.50| 3.57
precision 9.34 10.54 | 10.02 |7.83|8.64| 8.26
5 mean 8.50 9.09 8.77 |5.36|7.12| 5.89
precision 10.21 12.32 | 11.56 |8.92(10.34] 9.63
4 mean saturation|saturationfsaturation| 6.38 [ 9.12 | 7.15
precision saturation|saturationjsaturation|10.12{12.39| 12.03

in Table 4. This implies the need for algorithms to minimize
the effect of noise on estimation results.

We develop a noise reduction (NR) algorithm by effi-
ciently using the rotation angles estimated by the proposed
CNN network, sensor measured rotation angles, and exact
values. This creates a new orientation dataset less influenced
by noise for the training phase. Meanwhile, the measured
rotation angles with noise are used for the testing phase.
In this algorithm, 6Opeasureq denotes the rotation angles
6(a, B, y) ascertained via the mobile device’s sensor system,
while Oegiimated refers to the rotation angles estimated through
the Position and Orientation estimation Estimation approach.
The term Oexact is used to represent the exact yaw, pitch
and yaw angles. The algorithm calculates the minimum error
among e¢;, i = 1,2,3, by comparing differences between
the estimated and exact rotation angles, the measured and
exact rotation angles, as well as the average of the measured
and estimated rotation angles with the exact values. When
i represents the index of the smallest value among ej, e,
and e3, the new rotation angle 6; is updated to 6. This
process facilitates the generation of a refined dataset for
orientation angles for training CNN model. According to
the analysis during training, 62.75% of the new rotation
angles were angles measured by the device sensor, while the
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FIGURE 10. The performance of the orientation aided positioning with different APs distribution.

average angles as well as the estimated angles were 23.62%
and 13.63%, respectively. Thus, it can be inferred that the
use of the noise reduction algorithm helps when training
a model without the effect of noisy outlier data or highly
inaccurate estimation, helping to improve the accuracy of
the positioning for the testing phase.

The results for the estimation error for the testing phase
are shown in the Table 4. The use of the NR represents
a substantial enhancement of localisation accuracy even in
the presence of noise. Two further metrics are considered to
present the overall performance of different methods of this
paper: Average position error is calculated as the mean of
estimation errors for x, y, and z coordinates. The precision
of position error is defined as the positioning error at the
80 percentile of CDF, denoted as Precisionpgsition error =
Positioning error,, ggg cpp- The average position error and
precision according to the number of LED and the size of
the dataset is shown in Table 4.
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In fact, the reduction of number of LEDs leads to a larger
average error. Additionally, noise becomes a significant
factor when using phone sensors to measure orientation.
However, the noise reduction algorithm demonstrates effec-
tive performance, substantially decreasing the position error
in all cases. For N = 10° the CDFs for various APs
distributions are shown in Fig. 11. When analyzing the
dataset size of N = 10° with 16 APs on the ceiling,
the proposed CNN model achieves an average position
error of 1.81 cm in an exact case and 2.42 cm with noise.
In [18], using MLP and ANN with position and orientation
estimation datasets (N = 10°) as inputs, the minimal
errors in position estimation were recorded at 13.04 cm
and 10.53 cm, respectively. The proposed CNN illustrates a
significant improvement. As the number of LEDs reduces,
the average position error reaches a maximum of 7.25 cm
with NR, which is still an acceptable performance for many
scenarios.
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Algorithm 1 Computing the New Rotation Angles Datasets

01 = Omeasured

0, = eestimated

03 — (Omeasured +Oestimated)

e1 =| (Bestimated — Bexact) |

€2 =| (Omeasured — Fexact) |
e3 :| ((emeasured‘geestimated) _ eexact) |

AN T

7. i = argmin(ey, ez, €3)
8: 0 =06;

V. CONCLUSION

In this paper, a new CNN model has been introduced for
an accurate positioning for an OWC system to compensate
for the limitation of previous models that focused solely on
single-directional transceiver structures. The proposed model
is tailored for joint 3D position and orientation estimation.
We further refined the model to consider only position as
the label, with feature vectors comprising SNR vectors and
measured orientation data. This modification enabled the
CNN models to achieve an average position error of below
2 cm. We also incorporated noise into the orientation angles
typically observed in sensor measurements. We employed
a noise reduction algorithm to keep the average estimation
error around 2 cm. The impact of number of APs was
studied. It was demonstrated that even with 4 APs, average
errors as low as 7.25 cm can be achieved. Overall, these
results suggest a viable approach for achieving highly
accurate position estimation. Experimental evaluation of this
approach will be completed and presented in a later work.
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