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ABSTRACT Federated Domain Generalization (FDG) aims to train a global model that generalizes well
to new clients in a privacy-conscious manner, even when domain shifts are encountered. The increasing
concerns of knowledge generalization and data privacy also challenge the traditional gather-and-analyze
paradigm in networks. Recent investigations mainly focus on aggregation optimization and domain-invariant
representations. However, without directly considering the data augmentation and leveraging the knowledge
among existing domains, the domain-only data cannot guarantee the generalization ability of the FDG
model when testing on the unseen domain. To overcome the problem, this paper proposes a distributed data
augmentation method which combines Generative Adversarial Networks (GANs) and Federated Analytics
(FA) to enhance the generalization ability of the trained FDG model, called FA-FDG. First, FA-FDG
integrates GAN data generators from each Federated Learning (FL) client. Second, an evaluation index called
generalization ability of domain (GAD) is proposed in the FA server. Then, the targeted data augmentation is
implemented in each FL client with the GAD index and the integrated data generators. Extensive experiments
on several data sets have shown the effectiveness of FA-FDG. Specifically, the accuracy of the FDG model
improves up to 5.12% in classification problems, and the R-squared index of the FDG model advances up to
0.22 in the regression problem.

INDEX TERMS  Federated domain generalization, data augmentation, federated analytics, adversarial
learning, future networks.

I. INTRODUCTION

EDERATED Learning (FL) has lately arisen as a

privacy-preserving paradigm for distributed learning
while the data is deployed on different clients [1], [2].
Supported by edge computing and raw data protection tech-
niques, the FL steps forward as the federated paradigm to deal
with data-oriented missions collaboratively without sharing
the raw data. In this case, federated analytics (FA) is proposed
to reuse the FL infrastructure but without the learning part [3].
The novel FA paradigm no longer needs raw data in the
centre aggregation server. Instead, the selected clients do the

following steps before FL: 1) receive the data statistical com-
puting model from the server; 2) calculate insight-oriented
tasks based on its local data; 3) upload the abstracted results
back to the FA server; and 4) interact with the FL server to
finally improve the quality of FL models, as shown in green
steps of Figure 1. The FA server aggregates the results and
gives data discoveries to the FL server. The FL server will
deploy the FA results and the original learning model for FL
to each client. By doing this, we expect that the FL. model
eventually achieves a comparable performance just like the
traditional data-centralized model after multiple iterations
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(blue steps in Figure 1). FL focuses on training neural net-
works, while FA targets operating data analytics tasks (like
most often recognized song [3], statistics computing [4], local
video analytics [5], etc) to improve the performance of FL.

In most seminal FL studies like [2], [6], [7], and [8], the
test data set is a subset of the original data set. However,
a more practical problem is how to train a model on clients
with different data distributions so that this model performs
well on unseen data. Especially for future network orches-
trators, how to improve the model’s generalization ability for
unknown network resource configuration is significant. The
above-mentioned problem can be addressed by the Domain
Generalization (DG) technique [9], [10], [11], also with FL
as Federated Domain Generalization (FDG) [12], [13]. Most
DG approaches are designed in a centralized training manner,
which means the server can access all domain data to train
a Machine Learning (ML) model while trying to make the
trained model generalize well on unseen domains. However,
considering data privacy regulations like [14], the DG tech-
nique could combine with the FL as FDG.

Due to the distributed attribute, each domain is treated as a
FL client in FDG. After model aggregation in FL, the global
model will be tested on the unseen domain. Here ‘domains’
represent different contexts or sets of data with labels [9],
[11], while “data distribution” describes how the individual
data points are spread within a dataset. Domains encompass
the broader context of data application, and data distribution
is the characteristic of data within a specific domain. For
instance, from the network perspective, each virtual network
function (VNF) client may have different purposes with
different resource configurations [15]. Each type of VNF
collects individual network data as a domain. The domain
formed by one FL client data set is called a source domain,
there are multiple source domains in FDG. FDG can be seen
as a new branch of federated transfer learning (FTL) since
there exists knowledge migration among FL participants. The
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challenge of FDG lies in the domain shift both among the
training FL clients and from training to testing clients [12].

To solve the domain shift problem among training clients,
the best solution is to make each client have the data from
the rest of the clients in FL. The generalization performance
of the FL model also relies on the quantity and diversity of
the training data [9] in each FL client. However, raw data
cannot be directly exchanged by clients due to the privacy
problem. Inspired by FL which moves the model rather than
the raw data [16], in this paper, the motivation is training a
GAN in each FL client, then the server collects well-trained
generators and deploys this set of generators to every client
in FDG. GANs have been proven to play an important role
in the fields of privacy data augmentation [16], [17], [18].
Using GANSs, on the one hand, FL clients can generate their
synthetic data to increase the data quantity. On the other hand,
by gathering well-trained generators from FL clients to the
server which then deploys this set of generators to each FL
participant, every FL user can generate synthetic data from
other domains to improve its data diversity. These synthetic
data with latent data distribution also include insights from
generative Al models which may further enhance the gener-
alization ability. In this case, the distribution difference and
limited data among FL clients can be mitigated. Then the
trained FL model could have better performance when facing
the unseen test domain.

However, before generating data, generators cannot per-
form data augmentation without purpose at each FL client.
Too much data will bring privacy issues, excessive training
time and memory usage. On the contrary, it is necessary to
get insight into which domains in FDG may contribute more
to the generalization performance of the final FL. model. Then
do the targeted data augmentation in FL clients. FA can get
this insight from the generators. Intuitively, the data set with
higher variance [19] can have better generalization ability
because the model can learn more spread based on this data
set, which may contribute more when the test domains are
unseen. In this case, after gathering the generators in the
server, we give a FA algorithm based on a small amount of
generated data from different domains to get an indicator
called the generalization ability of domain (GAD). GAD
denotes the average KL divergence [20] by using one domain
to represent other domains. This insight ranks domains about
which domain may act well on the unseen test domain, under
the federated manner. The GAD then be deployed with the
set of generators to each FL client and guide the data aug-
mentation. From the results of FA, before FL, the generator
from domains that may have better generalization ability will
produce more data to give better FDG results.

In this paper, first, a novel distributed data augmentation
method is proposed, which integrates GANs data generators
from each FL client, and then deploys this set of genera-
tors to each FL user to achieve data augmentation for the
FDG. Secondly, before the data augmentation in each FL
client, an evaluation index called GAD is proposed with
FA. This index involves targeted data augmentation from
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data generators. GAD also avoids the decline of FDG model
accuracy caused by uniformly augmenting the data. We call
the proposed method as FA-FDG. Finally, the proposed FA-
FDG is tested through extensive datasets and experiments.
The aggregated FL. model generalizes better with our meth-
ods than the traditional FL. method without FA and data
augmentation. The classification accuracy improves, and the
regression error decreases when the aggregated FL model is
tested on unseen domains.

A. CONTRIBUTION
The primary contributions of this article are given as follows.

1) MODELING

To achieve targeted data augmentation in FDG, this work first
gives the FA-FDG architecture which includes 1) generators
ensemble from GANs and GAD estimation in the FA server;
2) data augmentation in each FL client with the GAD result;
3) FL and testing the global model on the unseen domain.

2) ALGORITHMS

1) A Generator Ensemble Algorithm. This algorithm collects
the well-trained GAN generators and deploys them to each
FL client. In this way, the skewness and heterogeneity of FL.
clients can be reduced through the synthetic data from other
domains.

2) A GAD Estimation Algorithm. In the FA server, the
GAD insight ranks domains about which domain may act
well on the unseen test domain. The GAD will guide the
GANs data augmentation and make the generator from the
domain with higher generalization ability produce more data
in FL clients, thus improving the generalization performance
of the FL global model.

3) A Data Augmentation Algorithm for FDG. After FA,
the FL server will package together the original FL training
model, the GAD result and the ensemble of generators (which
is received from the FA server), then send the above three
items to each client for FL. Each local user will enhance
the domain data by the received generators under the guide
of the GAD list. This distributed data augmentation method
with generative Al not only improves the data quantity but
also increases the data diversity in FL clients. This allows for
privacy-preserving data sharing without directly exchanging
raw data, leading to more robust and balanced FL models.
When the test domain is unseen, the FL. model trained with
GANs augmented data has better performance.

3) SIMULATION EVALUATION

The proposed FA-FDG is evaluated on classification and
regression problems considering both image data and tabular
network data. FA-FDG realizes obtaining insights from dif-
ferent domains and performing targeted data augmentation.
The generated data enriches the domain data, and improves
the generalization accuracy of the trained FL model by up
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FIGURE 2. The FL framework with state-of-art platforms like
Flower [21], FATE [22], TensorFlow Federated [23] and PyTorch
PySyft [24].

to 5.12%, compared with benchmarks from centralized [25],
[26] to federated [2], [6], [27].

4) TEST BED DEPLOYMENT

The proposed algorithms are deployed on the Kubernetes
(K8s) [28]. We use the Link Layer Secure connectivity
for Micro-service platforms (L2S-M) operator for privacy-
preserving in FL. The network isolation creates secure
resource sharing. The authentication and data packet encryp-
tion at the network layer level protects the in-transit data.

B. PAPER STRUCTURE

The rest of the paper is organized as follows. Related work
is presented in Section II. The FA-FDG system is intro-
duced in Section III. The problem formulation and algorithms
are detailed in Section IV. Then, we give our test bed
details in Section V, followed by experiments and analysis
in Section VI. Finally, Section VII gives the conclusion and
future directions of this work.

Il. RELATED WORK

A. FEDERATED LEARNING AND ANALYTICS

FL and FA refer to a distributed approach in which mul-
tiple clients collaborate to solve data-oriented issues with
only the parameters sharing. In FL, each iteration has four
steps (Figure 2). To improve the performance of FL, some
model aggregation methods [29] are given like federated
average (Fed-Avg) [2], q-FedAvg [7] and FedProx [6].
Recently, FL has been considered an essential part of the
next generation (6G) of networks [30], [31]. In FA [3], [5],
[32], non-training data science is exploited. As a privacy-
preserving framework, FA calculates or derives data analytics
to extract insights from isolated entities. Wang et al. [33]
use Hoeffding’s inequality to estimate the federated clients’
skewness. An interactive heavy hitters discovery algorithm is
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proposed in [34] with central differential privacy. Zhang et al.
[35] analyzed useful global features before FL, thus reducing
the model training cost. Wang et al. [36] quantified the class
distribution heterogeneity and formulate the client selection
problem. The work [37] use FA to conduct statistical data
analysis on various edge nodes towards 6G networks.

In future networks, the test domain of a FL. model may
not always be visible, which requires the model to have
generalization performance on unseen domains. However,
works like [2] do not guarantee convergence when the data
in FL clients is highly heterogeneous. FA methods such as
heavy hitters discovery [34] and skewness analytics [36], [37]
only estimate frequent items and data heterogeneity, without
considering how to reduce the clients’ skewness and sensitive
information through FA and data augmentation. If the user
skewness is large and each FL client has a small number of
samples, the trained FL. model may have poor generalization
ability to the unseen test domain. Under this condition, after
finding some FL clients have skewness data [36], [37] by FA,
GAN is particularly useful in this scenario because GANs
can generate targeted synthetic data with guidance from FA
in some FL clients, these new data can be combined with
real data to augment datasets and reduce heterogeneity as
well as skewness. GANs can be also employed to generate
synthetic representations of data that preserve statistical prop-
erties but do not reveal sensitive information about individual
data points like most frequent items in [34]. This allows for
privacy-preserving data sharing without directly exchanging
raw data, leading to more robust and balanced FL mod-
els. When the test domain is unseen, the FL model trained
with GANs augmented data could have better performance.
Besides, instead of training a GAN model in a federated way
with high cost like [38] and [39], we directly send the trained
GAN generator models from FL clients to the FA server.

B. FEDERATED DOMAIN GENERALIZATION
DG tries to learn a model from one or several different
but related domains, and this model can generalize well on
unseen test domains [9], [10], [11]. Considering data privacy
and distributed ML methods, open issues in [9] and [10]
both mentioned FDG. FDG [40], [41], [42], [43] realize the
combination of federated paradigm and DG, the global model
aggregates the parameters from different clients. Specifically,
Chen et al. [40] propose a cross-client style transfer algorithm
and a shared image style bank is introduced. Bai et al. [41]
investigate the current DG algorithms adapted to FL, the
authors give a standardized definition of client domain het-
erogeneity. In the article [42], a boundary-oriented episodic
learning paradigm is designed to expose local learning to
domain distribution shifts. In [43], GAN is used and the dis-
tribution generator is shared among clients. The work in [44]
uses GANS to enrich attack data. A summary of FDG works
is presented in [12].

However, less work considers using GANs and FA to
realize distributed data augmentation for FDG. If each
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TABLE 1. Notations and definitions.

Notation  Definition

SJ, St source domain j, source domain ¢

Eo local GAN training epoch

Eq local model training epoch

Fs rounds of a complete FL

Gj,G; generator of domain j , generator of domain ¢
D discriminator of domain j

Xgi data generated by G; of source domain S*

Pgi a set of basis of the subspace ( Xg: after PCA)
d dimensionality of the subspace

d* optimal dimensionality of the subspaces

Ba principal angles between two d-dimensional subspaces
sil principal vectors from Pg;

z white noise

X data of domain ¢ for Federated Learning

vj data augmentation coefficient

Ngi the number of samples in source domain S*

client uploads too many model parameters (e.g., the fea-
ture extractor, classifier, and distribution generator in [43])
for aggregation, it will lead the communication overhead in
FL. If only one GAN is trained among domains, the high
computation complexity may lead to model performance
degradation [38], [39]. In this case, which domains will
have more generalization performance among other domains
should be considered by FA. Then, GAN is used to enhance
the data of domains with more generalization ability. To the
best of our knowledge, this work represents the first attempt
using FA results to guide distributed data augmentation by
GANSs from generative Al, exploring the FDG in both regres-
sion and classification problems.

lll. FA-FDG ARCHITECTURE DESIGN

A. GENERATORS ENSEMBLE IN THE FA SERVER

Here, we first introduce the FA-FDG architecture in Figure 3.
For ease of reading, the frequently used notations are sum-
marized in Table 1. In this paper, each client in FL represents
one domain. Suppose that there are S source domains § =
(87 }}g:l. First, we do the FA steps from Step 1 to Step 3 in
Figure 3, to find the GAD guidance before distributed
data augmentation. Instead of directly sharing the raw data,
in Step 1, each domain will train a GAN model based on
the local data. Ey denotes the local GAN epoch. Ey meets
the requirement that the generators from GANSs can be well-
trained and generate good enough data samples. In each
domain, the data generator can be obtained from the local
GAN. The produced data from the generator looks similar
to the original raw data, effectively reflecting some attributes
of the local domain.

Then in Step 2, the FA server collects the well-trained
generators from each domain. In the FA server, each generator
(G1, Ga, ..., Gs) produces some domain-specific samples
X1, Xg2, ..., X¢s) for the GAD insight analysis, as shown
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FL model training and aggregation.

in the FA server in Figure 3. In this paper, we calculate the
improved KL divergence between the generated samples to
evaluate the GAD. Due to the configuration of data sets and
experiments, here we only consider the condition of Indepen-
dent and Identically Distributed (IID) data generation which
means the domains have the same label, more complicated
non-IID generalization is left for future work. After obtaining
the FA results (the GAD list), the FA server will send the
ensemble of generators and the FA result to the FL server in
Step 3. The FL server will pack the FA results, the ensemble
of generators, and the FL model together, then deploy them to
each domain that participates in the FL, as depicted in the left
of Figure 3. The FA process concludes here. Each domain
will receive three parts: the analytical outcomes of the FA,
the ensemble of data-augmented generators and the initial
training model for FL. Steps 1 to 3 are executed only once.
Subsequently, the analytical outputs of the FA will support
the FL process like generating more data on domains with
higher GAD.

B. DISTRIBUTED DATA AUGMENTATION IN FDG

After receiving the GAD list, the FL. model, and the generator
ensemble, each client repeats Step 4 to Step 5 in Figure 3 until
the model converges. Before training the FL model, each FL
client initiates data augmentation using the GAD list. Expect
the local raw data, the GAD list guides generators to produce
data from other domains, augmenting local training data to
enhance the model generalization performance. According
to the GAD list from FA, for the domains which exhibit
strong generalization ability, we encourage their correspond-
ing generators to generate more samples. These additional
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data will then augment the local domain data. Conversely,
for the domain demonstrating weaker generalization ability,
we identify this domain as the ‘target domain’. The data
augmentation is unnecessary, the original data samples of
this domain should not be changed to preserve the domain
attribute.

Following the distributed data augmentation, each client
uses the enhanced data for model training in Step 4. Once the
local training epoch is completed, clients upload their local
weights to the FL server for model updates. Subsequently,
the FL server aggregates the weights and redistributes them to
each FL user, repeating this process in Step 4 and Step 5 until
the model converges. The final trained global model is used
for testing on unseen domains. In summary, the FA is from
Step 1 to Step 3. After getting the insights from FA as
well as distributed data augmentation, the FL server repeats
Step 4 and Step 5 to implement the FL.

IV. PROBLEM STATEMENT AND FA-FDG SCHEME

A. ENSEMBLE GENERATORS FROM GANS

First, we explain how to collect the generators from different
clients and then use the generated data to give the FA results.
In GANs training, two neural networks compete in a two-
player mini-max game to simultaneously train a generator G
and a discriminator D. The goal of the generator G(z; 0,) is
to learn a distribution pg4(z) over data x, by mapping input
noise zZ ~ p,(z) to real samples x. p,(z) is usually an easy-to-
sample distribution like the uniform distribution with (—1,1)
or Gaussian distribution with (0,1). Meanwhile, the discrim-
inator D(x, 6;) is trained to discriminate between the real
samples x and generated samples G(z). The value function
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can be described as:
m(;n mgx VD, G) = Ex~pyalog D(x)]
+ Egnp,llog (1 — D(G(2)))] (1)

In general, D strives to maximize the probability of assign-
ing the correct label to both training examples and samples
from G, simultaneously training G to make D cannot discrim-
inate between the raw data and the generated data. In this way,
D and G are alternatively optimized. The Jensen-Shannon
(JS) divergence is used to measure the difference between
Pdaax) and pg(x) [45]. Firstly we maximize the V(D, G)
to get the optimal discriminator by % = 0 and have

* Pdata®)

. s « .
G = Pama®) e Then minimize the V (D7, G), which can

be written as:

min V(D G) = min [KL(pgaal| 22 P5)
G G 2
Pdata + P
+ KL || =228 —log@)] ()

2

The condition for formula (2) to have an optimal solution is
Pdata = Pg = m with D, = % This means that the
generated data successfully cheats the discriminator.

Inspired by EFFGAN [46] and synthetic data from
GANSs [47], we propose a novel method in the FA server
that ensembles generators from local GANs, as shown in
Algorithm 1. Here m indicates sampling mini-batch of m
examples {x, ..., x(™} from data distribution pgu(x),
while mini-batch of m noise samples {z(l), ...,z(’")} are
selected from noise prior p(z). Each FL client can set proper
hyper-parameters (like learning rate and Ep) for the local
GAN to avoid overfitting.

Under the principle of moving the model rather than the
raw data, each local GAN first trains a generator which
confuses the discriminator. Then the FA server collects gen-
erators from different clients and ensembles them as XG.
To realize FA, the £ G separately generates the virtual data
of different domains at the FA server. In this way, the raw
data are reserved for each client, and the virtual data in the
FA server is similar to the raw data. Meanwhile, the FA server
can analyze the virtual data from each collected GAN to have
some useful insight into different domains in FA-FDG.

Here the GANSs training can choose some popular GANs
models like [48] or [49], based on the data type of FL
clients. Each FL client first trains a local GAN in parallel
with the same batch size and training epoch. The noise size
and GAN architectures are given in Experiment settings
and Parameter settings in Section VI. As long as the final
well-trained generators have been saved as .pkl files or the
parameters, the new trans-convolutional layers can be set to
generate new samples. In the experiments, the GAN genera-
tors for classification problems are trained by each class or
label, so every generator produces a specific class of image
data. For example in the MNIST domain of Digit-Five data
set [9], after GANSs training, 10 .pkl files are gathered as the
generator from MNIST domain, the data set PACS [50] is
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similarly where 7 generators are combined as one domain
like Sketch [51]. For the regression problem from the tabu-
lar network profiling data, we choose one column from the
original data set as the label to predict, then use the raw data
(9 columns) to train the CTGAN [49]. The generated data (9
columns) from CTGAN is used for data augmentation in FL
clients. The trained FL model will be tested on the raw data
of the test domain which has no access during training.

Algorithm 1 Ensemble GANSs in FA Server

1 Procedure 1: Ensemble generators from local GANS.
S GAN models and each client holds the same
hyper-parameters with the same function, i.e., Adam
optimizer with learning.

2 G <« {}

3 for each client j € [1,S] do

4 for each local GAN epoch Eg = 1,2, ...do

5 Update the discriminator’s (D;) parameters by

ascending its stochastic gradient:

Vo, = 0 {log Dj(x?) + log(1 —

Di(Gj(2")))}.

6 Update the local generator’s (G;) parameters

by descending its stochastic gradient:

Vo, = > log(1 — Di(Gi(z™))).

7 B end for
8 G < {Gj}
9 end for

10 Send XG to the FA server.

11 Procedure 2: Generate data from XG.

12 X <« {}

13 for each generator G;,j € [1,S]in G do

14 Generate virtual data X¢; of domain j X < {Xg;}
L end for

16 return: Data sets X = {Xg1, Xg2, ..., Xgs}

Unlike training GANs in a federated manner like [38]
and [39] with high communication overhead and expen-
sive one generator multiple discriminators mode [52], [53],
the proposed Ensemble GANs algorithm has some signif-
icant advantages: 1) The FA server directly collects the
well-trained generators from clients. Without exchanging the
discriminators or training the GAN model in a federated
aggregation way, this method relieves the high communi-
cation overhead and offline problems during the distributed
model training. 2) The FA process is considered before FL
in the FA server. After gathering the generators, virtual data
from different domains can be obtained. Then the FA server
can analyze data attributes and make some inferences from
different domains, like domain relationships. In the next
section, we will give a data augmentation reference (GAD)
after virtual data analysis by FA. When the £¥G and GAD
are downloaded by the FL clients, they can know which
domain in ¥ G has more generalization ability among the
FDG domains and should augment with more data before FL.
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Algorithm 2 GAD With FA

Input: Data sets generated by an ensemble of client
generators Xgi € {Xg1, Xg2, ..., Xgs}. The S
sets of basis of the subspaces for § different
source domains Pgi € {Pg1, Py, ..., Pgs}.

Output: A GAD indicator list with an descending

order.

1 function Domain generalization ability estimation.
2 forj=1,2,...,Sdo
3 GAD « {}
4 fori=1,2,...,5do
5 The singular value decomposition from (3)
to caculate the principal vectors in (4).
6 Find the optimal dimensionality d* for the
PCA subspaces in (9).
7 Cacluate the KL divergence in (5).
8 Give the GAD estimation for domain S/
in (7), GAD < GAD(S/).
9 return: GAD
10 fori=1,2,...,5—1do
11 forj=1,2,...,S—ido
12 if GADY) < GADY+Y then
13 | Swap {GADY, GADU*}
14 end for
15 return: List GAD

B. GENERALIZATION ABILITY OF DOMAIN (GAD)

1) FEDERATED ANALYTICS OF GAD

Since the data of the test domain is unseen, the knowledge of
the existing data sets that participate in FDG should be fully
utilized, and the potential relationship between the data sets
should also be fully mined. Among all the domains partici-
pating in FDG, it is significant to discover the domain with
better generalization performance than other domains. The
above-mentioned method requires analysing the relationship
between these domains. That is also the reason that we intro-
duce FA with GANs in FDG to break the data silo. Before FL,
if we can get insights from FA about the generalization ability
among domains, the data augmentation in each FL client
will become more focused. By analytics, the domain which
can provide more generalization ability should be enhanced
by more samples and act as the generalization domain. The
domain with less generalization ability should be considered
as the adaptation domain and preserve the original data char-
acteristics. Inspired by the Rank of Domain (RoD) matrix
in [20] for DA, here we introduce a Generalization ability of
Domain (GAD) indicator for FDG by FA. After gathering the
well-trained generators in the FA server, the generated data
from different domains can be obtained. Let Xgi € RNsi*P
and X € RYs*P denote the generated data from the source
domain S' and 8/ (i,j € {1,2, ..., S)).
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FA considers data analytics from two aspects, statisti-
cally and geometrically. High-dimensional data sets from
generators may cause computation complexity. In statistical
modeling, FA constructs low dimensional representations of
Xsi and Xg;. Here we use the principal component analysis
(PCA) which liner maps the original data set into the sub-
space. Then statistically, KL divergence is used between data
distributions when they are projected into the subspace.

The main ideas are described as follows. The detailed pro-
cess of GAD is summarized in Algorithm 2, where Pg:, Pg; €
RP*4 denote the two sets of basis of the subspaces for two
different source domains, D is the dimensionality of the
data and d is the dimensionality of the subspace. Given the
singular value decomposition:

PLPg =U TV’ (3)

Here we briefly construct geodesic kernels considering
manifold learning, Euclidean metrics are applied to Rieman-
nian manifold spaces [20], [54], [55], [56]. U; represents the
principal component mapping vector matrix from the space
Pg: to Pg; under this geodesic kernel. V represents the orig-
inal orthogonal basis of mapping Pg,-PS_/. The d-th principal
angles and vectors from Pgi and P, can be computed as

Ba = arccos yy4

Sld = (PSiUl),,d

s = PgV) 4 “)
where y; is the d-th diagonal element of the diagonal matrix
I'. The B; are principal angles between two sub-spaces,
and B; measures the degree of “overlap” between two sub-
spaces Pgi and Pg;. The (M)_4 returns the d-th column of the
matrix M.

Given a pair of source domains, computing GAD includes

3 steps: 1) determine the optimal dimensionality d* for the
PCA subspaces (will describe in the next part); 2) at each
dimension d < d*, approximate the data distributions of the
two domains with two one-dimensional Gaussians and then
compute the KL divergences between them in (5):

d*
PR 1 i j
Dku (87118 = — dZ_‘; KL(PS 1105) (5)

where Pgl and Qf; are two above-mentioned Gaussian distri-
butions which are projected by their d-th principle vectors
from PCA as Xg.s’d and ngs’d respectively. To facilitate

the notation, the Pfll and Qﬁj are simplified as P; and
Qg. We project data onto the principal vectors and com-
pare the similarity of the data from generators. Due to the
excellent properties of the Gaussian distribution, we directly
give the closed-form solution of the above (5) when Py ~
Nupy. op) and Qy ~ Nng,. 05)

D1 (5']1$%)
d* 2 2 2
1 1 o op, + (Up, — 1Q,)

= > Jllog 2y T TIN TR ) )
d—1 Op, %04
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3) The average KL divergence between one source domain
S’ to other source domains is defined as GAD of §/.

1S o
GAD(S) = 3 ZDKL(SIHSJ) @)

i=1

The innovation of GAD is summarized as follows: 1. GAD
is evaluated by data from GANs to break the data silo in
FL clients. By using a small number of synthetic data, the
relationship (GAD) among FL clients can be analyzed. That
is also the reason we call this process FA. 2. GAD represents
the average KL divergence by using one domain to represent
other domains, this insight shows which domains may repre-
sent other domains well, and also may act well on the unseen
test domain. Considering the previous work in domain adap-
tation like [19] and out-of-domain documents [57], domains
with high KL can have better transfer learning performance.
3. The GAD list will guide the GANs data augmentation
before FL. Improving generalization performance is not sim-
ply augmenting samples indiscriminately, because the test
domain is unseen. Instead, it should involve targeted augmen-
tation of samples from domains with strong generalization
abilities.

The rationality of using GAD can both be understood from
formula (6) and GAD visualization in Figure 12. In (6), the
larger oéd can lead high GAD value of S/, which means
the data distribution from domain § has a large variance
and wider distribution than other domains, like dark green
mn domain in Figure 12 (a). When facing the unseen DG
problem, this kind of domain can cover more unknown data
distributions whereas the red domain svhn in Figure 12 (a)
cannot. Learning from domains with higher GAD can get
more data distribution knowledge. The domain with lower
GAD is steady, not easy to generalize and more suitable to
act as the ‘target domain’. The domain with higher GAD
can generalize more easily and has higher variance, these
domains are better to be the ‘source domain’. The results
in [20], [43], [57], [58] and Table 6 in experiments also proved
this inference.

2) OPTIMAL DIMENSIONALITY DETERMINATION

After data sets are generated in FA, we should determine
the optimal dimensionality of the subspaces. The optimal
dimensionality d of the subspaces is automatically deter-
mined without using any labels. This task is accomplished
by a subspace disagreement measure (SDM).

First, PCA subspaces of data sets are calculated, i.e.,
PCAg;. Then, the data sets are combined into one data set
and computed the subspace PCAg1, g2, ¢s. Owing to dif-
ferent but related domains joining the DG, all these subspaces
should not be too far away from each other. Based on this
sight, the SDM in DG is defined based on principal angles:

N
L ()
SDM(d) = ¢ le sina (8)
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Algorithm 3 Data Augmentation for FDG

1. Aggregation FL Server executes:
prepare: XG, initialize: w < wy
for each global roundt = 1,2, ..., E> do
for each clienti=1,2,...,S in parallel do

A B W N =

w§ <~ w
wiT < ClientTraining(w!, X)

witl « 159 n,-wﬁ"’1 /I Model Aggregatoin

> nj

=

8 return: w2

2. Client Data Augmentation: // Run on each client i
which receives £ G from the server
10 for each generator Gj in G do

b

1 Generate vritural domain data X as (11)
X = {Xg1, Xg2, ..., Xgs}
12 | if the GAD(S?) is the last item in List GAD then
13 | X0 = (X - Xz} UX®D
14 else

15 L XD =X uXxX®

16 | Caculate the MMD distance of Xgi and Xg; in X
as (13)
17 | end for

18 return: X and MMD distance

19 3. Client Training: // Run on each client i

20 Receive w! from server

21 if t = 1 then

2 ‘ X® MMD < Client Data Augmentation
23 else

24 L Break

25 for each epoche =1,2,...,E; do

26 Update w! to minimize £ = L¢ + AR yma
(wg+l <~ wht—nVL)

27 end for

28 Upload w/™ to the FL server

where o d) denotes the d-th principal angle between the PCAg;
and PCAg1 g2, ,¢s,j€{1,2,...,S} Note that SDM(d) is
at most 1. A small value indicates that ozg),j e{1,2,...,5}
are small, and thus PCAg;, j € {1,2,...,S} are aligned at
the d-th dimension. When SDM(d) = 1, &7 = Z,j
{1,2,...,S}, the directions of these S subspaces are orthogo-
nal. Under this circumstance, domain relationship evaluation
will become difficult since variances captured in one sub-
space would not be able to transfer to the other subspace.
To determine the optimal dimensionality d, a greedy strategy
is adopted,

d* = min{d|SDM(d) = 1} )

Intuitively, d* should be as high as possible to preserve
variances in the source domains in order to explicit the ana-
lytics results, meanwhile, not be so high that the directions
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of the S subspaces start to be orthogonal. The FA of GAD is
summarized in Algorithm 2.

After getting the GAD list, the FA server sends this list
to the FL server. In the FL server, G, the GAD list, and the
initial model for FL are packed together and sent back to each
client. Then the FL participants can know the rank of GAD
between the domains and realize data augmentation based on
this FA results. For domains ranked higher, £ G generates
more samples to enhance the model generalization ability. For
domains ranked lower, we maintain the samples unchanged to
preserve adaptability.

C. Domain Generalization With Data Augmentation
After FA, the GAD insight will be issued and used to guide
the extent of data augmentation at each FL client. The per-
formance of ML models heavily relies on the quality and
quantity of training data, especially in FDG where the models
are expected to generalize well to unseen domains. Under the
guide of the GAD list, more samples should be generated for
the domains in front of the GAD list.

In each FL client i with local raw data X, the data
augmentation can be expressed mathematically as:

X =xDyx (10)
S S

X =D "vGi@) = > X (11
j=1 j=1

where G;(z) is the jth generator in X G, v; is the data augmen-
tation coefficient guided by GAD list. When GAD(S") is the
last item of the GAD list (the domain i represented by client
i has less generalization ability than other domains), we set
v; = 0. This means that the generalization ability of this local
domain data is already weak, thus, there is no need to generate
more data from this domain.

The intuition is that if we can learn a representation
which minimizes the distance between the source distri-
butions, then we can train a classifier on the source data
and apply it to the unseen domain. The goal is to learn
a feature space underlying all the seen source domains,
by minimizing the distribution variance among them. The
Maximum Mean Discrepancy (MMD) distance is chosen
as the solution here. MMD is a statistical metric used to
measure the discrepancy between probability distributions of
different domains. The goal of using MMD in FDG is to
minimize the distribution shift between domains and promote
domain alignment. By minimizing the MMD, FDG aims to
learn domain-invariant representations that capture shared
knowledge across domains while preserving domain-specific
characteristics, calculated as follows:

MMD(X,i, X))
2
1 <& 1 &
== D oXgit) — — D> d(Xgim)
H

568

N N
1
= N_2 z Z ¢(X5i.l) . ¢T(Xsi,[’)

St 1=11=1

| N NS
17 2 2 i) ¢ (xgiw)
ST m=1m'=1
’ NSi NS/

=1 m=1

where ¢ : R — H is a feature map, x5iy € Xgi, (I =
1,2,...,Ng), and xgjm € Xgi,(m = 1,2,...,Ng). Ngi
and Ng; are the number of samples in each domain. When
we write as the kernel format as K(Xgiz, Xgim) = @(Xgit) -
¢(xgjm), the MMD distance can be written as:

Ngi Ngi

MMD(Xgi, Xg)* = — > > K(Xgit, Xgir)
SiI=11=1

| Ng Ny
7 2 2 Kkgim Xgin)
S/ m=1m'=1

Ngi Ngj

2
— K(Xgit, Xgjm 13
NSiNS,-ZZ (Xgit» Xgin) (13)

=1 m=1

We define the regularization term R, on augmented data
as:

RimaXsi. ... Xgs) = > MMDXg, Xg)*  (14)
I<i,j<§

The targeted data augmentation of FDG is summarized in
Algorithm 3. An example of the R,;,;,,4 is shown in Figure 4.
Combing Algorithm 1 and Algorithm 3, the objective of data
augmentation for each FL client can be expressed as:

_ Lcan Ey
LcXD, @)+ ARyma Ei

where E( and E7 separately represent the local GAN epoch
and the local training epoch. E, in Algorithm 3 means the
global epoch of FL, which is the times of complete FL rounds,
finished by FL clients and the FL server. L;4y indicates the
loss of the local GAN. L¢ denotes the classification loss on
the enhanced data X®, R,,mq denotes the distances between
the source domains, A is the hyper-parameter.

15)

D. COMPLEXITY ANALYSIS

DG is a problem with high time complexity, and the training
model needs time to find the underlying domain invariance.
During the FA process, we estimate GAD by generating
a small number of samples from each domain. Since the
attributes of FDG, each source domain (S/,j € [1, S]) is in
charge of GANSs training, so the overall time complexity of
procedure 1 and procedure 2 in Algorithm 1 is O(SEy) +
O(S) = O(SEp). In Algorithm 2, the time complexity con-
sists of FA and the sorting algorithm, O(S%) + O(§?) =
O(S?). The time complexity of PCA is O(nD? + D3), n is
a small number of generated data just for FA.
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Batch sampling

.
Xgs

Regularization

Rypma = dist ( ) + dist ( , )+

Lokdist(l ., )

Loss = & ( ) * A Rinma

FIGURE 4. An example of data augmentation. Xs1 domain
(lavender) is the last item in the GAD list for client 1, other
domains have more generalization ability. Here, the dist()
method is set as MMD distance.

5G Project
Use Case
nstration {4

%

FIGURE 5. Smart Internet Lab Networking Test bed.

V. TEST BED DEPLOYMENT

A. KUBERNETES-BASED FEDERATED LEARNING
PLATFORM

Experiments were carried out at the Smart Internet Lab’s
Networking test bed (Figure 5) which consists of 1 main
node (i.e., core/cloud) referenced as Smart Internet Lab, and
3 edge nodes. These nodes are interconnected using fiber
and have a control plane in the main node. Implementing FL
systems across diverse decentralized clients poses challenges
due to their heterogeneity. Cloud technologies like containers
and Kubernetes (K8s) enhance computation elasticity and
efficiency in deploying distributed ML architectures [28].
We present a K8s-based FL implementation founded on the
work by Parra-Ullauri et al. [28], which is deployed in the
test bed. This K8s-based implementation, shown in Figure 6,
allows us to control the deployment and life-cycle manage-
ment of FL pipelines while ensuring network isolation and
enabling data packet encryption, guaranteeing privacy preser-
vation in cloud-native environments. Figure 7 describes the
logical experimental setup. The test bed for running all the
experiments is managed by a private OpenStack! instance.
The physical locations are scattered in different geo-locations

1Openstack: https://www.openstack.org/.
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to replicate a real FL cross-silo setup. A K8s cluster, con-
sisting of one controller node and three working nodes was
deployed. To reduce the need for resources, the controller
node also runs the FL server, as part of the domain belonging
to the shared central service (using the 10.244.0.0/24 net-
work). This node has 15vCPUs, 25GB of RAM and 100GB
of disk space. The worker nodes have 15vCPUs, 15GB of
RAM and 100GB of storage. Worker nodes 1, 2, 3 and
4 are individually part of a unique administrative domain,
that uses the 10.244.1.0/24, 10.244.2.0/24, 10.244.3.0/24,
and 10.244.4.0/24 respectively. Various FL clients can run
in the different worker nodes depending on the experiment
performed.

To build the FL pipeline, the Flower framework [21] was
used and deployed in a K8s cluster. Flower enables the
development of FL systems and allows the federation of
any workload while being agnostic to the underlying ML
framework (e.g., TensorFlow or PyTorch) and programming
language (e.g., Python or C++). Here we accelerate the
learning with our A30 GPU servers, both for centralized
and federated training. The seminal Fed-Avg [2] algorithm
is enhanced by the proposed FA-FDG in this paper, to test the
model’s generalization ability.

VI. EXPERIMENTS

A. DATA SETS AND EXPERIMENTS SETTINGS
DESCRIPTION

1) DATA SETS

To evaluate our FA-FDG method, three data sets are tested
in experiments from the aspect of the classification problem
and the regression problem. 1. Digit — Five [12]: This data
set is a collection of five popular digit data sets, MNIST
(mn), MNIST-M (mm), Synthetic Digits (syn), SVHN (svhn),
and USPS (usps). Each digit data set acts as a domain with
different styles of 0-9 digit images. There are five different
domains in this scenario with 10 classes. 2. PACS [50]: In
this data set, four different domains (photo (P), art paint-
ing (A), cartoon (C), sketch (S)) are contained. The task is
classification with seven classes. 3. VNF Profiling [15]: In
this data set, there are three different VNF types: SNORT
Inline VNF mode, SNORT Passive VNF mode, and a virtual
Firewall (vFW) VNF type, as three different domains. There
are eight features and one output. The input variables are CPU
utilization (CPUUTP), Memory utilization (MEMUTP), Net-
work latency (RTT), VNF maximum input rate (MIR) and
Packet loss (In_RX, Out_Tx). The output variables are one
of the VNF resource configurations like CPU cores (CPU),
Memory (MEM/MB) and Link Capacity (LC/Mbps). Our
goal is to train a model in a federated manner that can
generalize well on a new VNF type to predict accurate VNF
resource configurations, under the guidance of our FA results
with data augmentation.

2) EXPERIMENT SETTINGS
For all data sets, we perform ‘‘leave-one-domain-out” exper-
iments [58], where one domain is picked as the target domain,
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FIGURE 7. Experiment setup.

and we train the model on all remaining domains. Then the
trained classification or regression model is evaluated in the
chosen domain. Each source domain is treated as a FL client.
Following standard practice, we use 80% of available data
as training data and 20% as validation data. In experiments
the well-trained GAN models are firstly packed as .pkl files,
then these files are sent to the FA server as well as each FL
client. The GAN generators for classification problems are
trained by each class or label, so generators combine labels
of image data in one domain. For the regression problem from
the tabular network profiling data, we choose one column
(CPU, MEM or LC) from the original data set as the label
to predict. The raw data (9 columns) are used to train the
CTGAN. The generated data (9 columns) from CTGAN is
used for data augmentation in FL. The trained FL model will
be tested on the raw data of the test domain which has no
access during training. A is set as 0.001 in (15). For data set
Digit-Five and PACS, all the models are trained with NVIDIA
A30 GPUs from our server cluster with £y = 30, E1 = 20,
E» = 6, considering the previous work about setting E in FDG
and DG [9], [50], [58]. DCGAN [48] is chosen as the model
of generators for Digit-Five and PACS. For VNF profiling
data set, CTGAN [49] and YData Synthetic 2 are selected

2YData Synthetic: https://github.com/ydataai/ydata-synthetic.
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to generate tabular data and save corresponding CTGAN
models with Eg = 3000, E; = 20, E; = 100.

3) BENCHMARKS

For FA-FDG with distributed data augmentation, we choose
1.Fed — Avg [2]: which tries to train a shared model across
clients by minimizing the overall global loss that is a weighted
average of the individual clients’ losses. 2. Fed — Prox [6]:
introduces a proximal term that penalizes large changes in
weights, this method also helps convergence on highly het-
erogeneous data. 3. Fed — Yogi [27]: uses the YOGI adaptive
optimizer in a federated version, also tries to generalize
more framework for federated optimization. In addition,
it is good to mention that g-FedAvg [7] is not suitable
for generalization because the larger hyper-parameter ¢ is,
the worse-performing clients will dominate the overall loss.
In FDG, each domain has its own data characteristic, with
four or five clients, g-FedAvg will seriously affect the gener-
alization ability even with little g value. Here we don’t show
g-FedAvg but with more worthwhile methods like Fed-Avg,
Fed-Prox and Fed-Yogi. In Fed-Prox, the hyper-parameter p
is set as one in our experiments, ; shows the weight of the
proximal term used in the optimization. If © = 0, it makes
this strategy equivalent to Fed-Avg.

In addition, we also compare with centralized DG methods
to show the benefit of data augmentation. For centralized
DG, 1. MMD [25]: MMD aligns the distributions among
different domains with generated data. The goal is to learn
a representation that minimizes the distance between the
different domains. The hyper-parameter X inhibits the MMD
penalty to determine how strongly we would like to con-
fuse the domains. For the domains ranked ahead in the
GAD list, A should be reduced to improve generalization
ability and vice versa. 2. CORAL [26]: Correlation Align-
ment (CORAL) is an unsupervised method which minimizes
domain shift by aligning the second-order statistics of source
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TABLE 2. Hyper-parameters for digit-five data set.

Method mn mm svhn syn usps

MMD(\) [25] 1.0 0.5 0.5 1.0 1.0
CORAL(X) [26] 1.0 0.5 0.5 1.0 1.0
DANN(M) [59] 1.0 0.1 0.1 0.1 1.0

0.1, 0.3, 0.3, 0.1, 0.1,

RSC(A1, A2) [60
QLA M60L o 02 03 od

TABLE 3. Hyper-parameters for PACS data set.

Method A C P S
MMD () [25] 1.0 1.0 0.5 0.5
CORAL () [26] 0.5 0.1 1.0 0.01
DANN () [59] 0.5 1.0 0.1 0.1

RSC (A1, A2) [60] 0.1,03 03,01 0.1,01 0.1,0.1

domains’ distributions. A CORAL loss is added to mini-
mize the difference in learned feature co-variances across
domains, this is similar to minimizing MMD with a poly-
nomial kernel. The function of hyper-parameter A is nearly
the same as MMD. 3. DANN [59]: Domain-Adversarial
Training of Neural Networks (DANN) is a neural network
architecture designed to accomplish precise classification
of source data while learning invariance feature represen-
tations across multiple domains. The parameter A controls
the trade-off between the class classification and domain
classification when doing the feature learning. 4. RSC [60]:
Representation Self-Challenging (RSC) iteratively discards
the dominant features activated on the training data, and
forces the neural network to activate remaining features that
correlate with labels. Here are two hyper-parameters A; and
A2. A1 controls the representation to be discarded. The more
A1 is, the more other features are used to challenge the model.
Az guides the percentage of samples to apply RSC in each
batch during training. The values of hyper-parameters are
shown in Table 2 and Table 3. Table 6 and Table 7 give the
comparison of generalization results.

4) PARAMETER SETTINGS

First, each domain trains a domain generator model with the
same architecture. Here DCGAN [48] is chosen as the model
of generators for Digit-Five and PACS data sets. Domain
generators in Digit-Five have four convolutional-transpose
layers and output 32 x 32 images. For the PACS data set,
domain generators have five convolutional-transpose layers
and generate 64 x 64 images. The learning rate is 0.0002 with
30 epochs of each class in each domain and z = 100. The
discriminators have five convolutional layers. For CTGAN in
the VNF profiling data set, each VNF domain has the same
CTGAN architecture, we set six input variables and three
output variables. The epochs are set as 3000 to train CTGAN
models which can generate tabular data as close to the raw
data.
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G and D Loss During GAN Training
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FIGURE 8. The loss of DCGAN during training domain svhn.

Then, the well-trained generators are sent to the FA server
to obtain insights from the generated data. Considering the
data privacy issue, only one class generator with 10 generated
samples from each domain is used to estimate the GAD list
in the FA server. Here the d* is set as 200 in Digit-Five and
PACS data sets, and d* is set as 2 in VNF profiling data
sets. After having an estimation of the GAD, the domain
generators with the insight GAD list will be deployed to each
domain client. With the guidance of the GAD list, in each FL
client, generators can enhance the domain data to improve the
generalization ability of the final training model.

In centralized DG, we evaluate the accuracy fluctuations
after each epoch. Whereas in FDG, the test domain is unseen,
so we directly give the accuracy of the aggregated FL model
on the test domain. For Digit-Five and PACS data sets, in cen-
tralized DG, the total maximum number of epochs is 120.
In FDG, the local epoch is set as 20 and the number of
global aggregations is 6. For FA-FDG, the training round is
increased by the same proportion as the samples where E; =
20, E; = 7. Considering the VNF profiling data sets, the local
epoch is set as E1 = 20 and the FL round is E5 = 100. For
centralized DG, we choose ResNet-18 with the guidance of
DomainBed [58] and DeepDG [9], and the SGD optimizer is
used in centralized training. For FDG, based on the concept
of the unseen domain, we choose Flower [21] and use server-
side evaluation. One domain is set as the test unseen domain
on the server side for evaluation purposes. The model is
trained by other domains in a federated manner. We test the
newly aggregated model after each FL round E,. For the
Digit-Five data set, we choose a simple two-layer CNN to
train and test in FDG. For PACS, we train ResNet-18 because
of the image size. In addition, data from the DomainNet [51]
data set are used to train the GAN models in PACS as an
auxiliary. For VNF profiling data sets, a 4-layer multilayer
perceptron (MLP) acts as the training model of FDG. The
optimizer is Adam in FDG. The latter experiment results
will show that the FA-FDG can improve the generalization
accuracy. Even with simple neural network architecture, the
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FIGURE 9. Training data and the generated data from generators of different domains.

proposed FA-FDG can improve the model performance close
to the centralized results.

B. RESULTS AND ANALYSIS
1) TRAINING GANS FROM LOCAL DOMAINS
Figure 8 gives the training loss of local DCGAN in the
domain svhn. Here we set the local training GANs epoch as
30. It is clear in Figure 8 that the discriminator is not over-
fitting, and the diversity of the generated samples increases,
avoiding the GAN mode collapse. To avoid overfitting, in our
DG cases, the GANs training does not have to make the
GAN model generate the same data as the raw local data,
but generate some data similar to the raw data. GANs in DG
are not over-focused on replicating specific features present
in the training data. Figure 9 shows the DCGAN result on
Digit-Five data sets, and the results on the PACS data set
are nearly the same, here we only illustrate the generated
image results of Digit-Five. Five domains (mn, mm, syn,
svhn, and usps) separately train and save their own GAN
models. Figure 9 gives some generated data (Figure 9 (e),
(), (g), (h) ) from the well-trained generators in each domain.
From Figure 9, we can see that although the generated images
may have slight differences compared to the original data
like mm (Figure 9 (b), (f)) and syn (Figure 9 (d), (h)). The
generated data is still close to the raw data (mn (Figure 9
(a), (e)), usps (Figure 9 (c), (g))). Training with the original
data and the generated data together can improve the final
model’s generalization ability to some extent. Due to the data
privacy requirements of FL, we can adopt the idea of keeping
the model dynamic while the data remains static. Collecting
GAN generator models to enhance and expand the training
data. This approach not only prevents the leakage of the
raw data but also enriches the training data set, so the final
trained model should have competitive performance on the
test unseen domain.

For the VNF tabular data set, Figure 10 demonstrates the
difference in feature probability distributions between the raw
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FIGURE 10. Generated data distribution of SNORT-Inline VNF
type.

data (red) and generated data (green). The x-axis represents
the real values of the feature, and the y-axis represents the
probability distribution of the feature or the proportional dis-
tribution of the label. Referring to CTGAN [49], the features
are set as continuous variables like MEMUTP, and the labels
that we need to predict are set as discrete variables like CPU
and MEM. The red line is the probability density function
curve of one feature from the real data, the green line is
the probability density function curve of the same feature
from the generated data. Here we only illustrate some feature
distributions of Inline VNF, and the results for the rest two
VNF types are similar to this figure. The value to predict is
the needed CPU, MEM, or LC for a new VNF configuration.
For each VNF domain, a CTGAN model is trained separately,
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FIGURE 11. Correlation difference between the real data and
generated data.

and the generated model files are uploaded to the FA server.
It is clear in Figure 10 that the data distribution generated by
CTGAN closely approximates the raw data distribution.

Figure 11 also displays the association matrices for the
real VNF data set and the generated VNF data set. Pearson’s
correlation coefficient is used to show the difference between
features. The first two figures in Figure 11 present feature cor-
relations in the raw data and generated data. The second-row
figure gives the difference. The generated data by CTGAN
looks similar to the raw VNF data. However, the deviation
between the generated data and the real data (difference in
Figure 11) will not affect the final FDG result. Unlike domain
adaptation, the generated data does not need to be the exactly
same as the raw data because here the main focus is the gen-
eralization problem and the test domain is unseen, the local
GAN:Ss training also avoids overfitting the raw data. On the
contrary, we need to utilize this kind of ‘deviation’ to improve
the generalization ability. To some extent, DG tries to make
the model work well on the unseen domain, using GANs can
be also seen as insights from the AI model, which expresses
the generalization insight by the generated data. This is also
one of the reasons that we include generative Al in FDG.
Our work is also an example of the network for Al and Al
for the network. On the network side, the network generates
data for the Al model to learn; on the Al side, it generates
augmented data for self-training to enhance the accuracy of
model predictions in the network. The augmentation of data
could improve the model’s generalization performance when
the model applies to a new VNF type and predicts the needed
resources. We believe future network orchestrators also need
self-data generation, self-enhancement model training and
generalize well on the unseen network scenarios, considering
the Al-network mutual enhancement.

2) FEDERATED ANALYTICS FROM THE GENERATED
DATA

After training the generator models in each domain, the FA
server collects these generators and produces samples for
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TABLE 4. GAD list value of domain data sets.

| Domain | mn \ mm | usps | syn | svhn |
| GaD | 4923 | 3313 | 2533 | 1446 | 1302 |
| Domain | S \ P | A | c | \
| GAD | 4057 | 3787 | 3408 | 1202 | \
| Domain | SNORT-Passive | SNORT-Inline | VFW | \ \
| GaD | 1.329 \ 1246 | 1082 | \ \

TABLE 5. Computation costs with/without GAN architecture in
FL, with the FDG model accuracy improve up to 3.7%.

Method Metrics FA(GAN) FL Overhead
Training Time - 15minl7s -
. CPU usage - 35.4% -
Traditional FL.
GPU usage - 6% -
RAM used - 4.589GB -
Training Time 10min2s 20min10s 1.98x
CPU usage 61.3% 41.9% 2.92x
FA(GAN)+FL
GPU usage 28% 8% 6.00x
RAM used 4.608GB 5.075GB 2.11x

analytics. Firstly, PCA is used to reduce the dimensionality of
the generated data in each domain. Then, the GAD value for
each domain in FA-FDG is calculated by formula (7). At last,
the GAD list is arranged in descending order. The GAD lists
obtained by FA are shown in Table 4. From the table, we can
get some insights about the generalization ability of domains.
For Digit-Five, the mn data set has the strongest generaliza-
tion ability, followed by mm, and the last is svhn. This is
within reason considering the real data distribution. Other
domains can be seen as derivatives of the standard mn data set,
and mn can be transformed into data sets with different styles.
The svhn data set has less generalization ability because of
the varied image styles and a large amount of interfering
digits. The same idea applies to the PACS data set where other
domains can be considered as variations of the real-world P
data set, and the S images contain more abstract information.
Then P and S data sets have stronger generalization ability
compared to A and C data sets. In the VNF profiling data
set, the previous work [15] explains that Snort-Passive VNF
has similar functions as vEFW VNE, but Snort-Passive VNF
uses several detection rules to detect malicious network traffic
activities. This configuration makes the Snort-Passive VNF
have better generalization performance than the simple-setup
vFW VNFE

Figure 12 visualizes the GAD results from Table 4. The
results are based on the generated data from domains in Digit-
Five and PACS. GAD can be seen as an insight after using
FA, and Figure 12 (a) (b) mainly wants to show this insight
more intuitively. GAD list can represent the generalization
ability order of domains in Table 4: mn > mm > usps >
syn > svhn. S> P > A > C. In Figure 12, the x-axis represents
the data after PCA dimensionality reduction, and the y-axis
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represents the probability density of the reduced data. Differ-
ent colours represent different domains. From Figure 12 (a),
it is obvious that the probability distributions covered by the
mn (green), mm (blue), and usps (lime) data sets are wider.
These results lead to a higher probability in the cumulative
distribution function when giving random input variables,
indicating a stronger generalization ability. On the contrary,
the syn (orange) and svhn (red) data sets have lower proba-
bility distributions and do not contain rich data components.
This distribution causes weaker generalization compared to
mn. Figure 12 (b) displays the probability density distribution
of the PACS data set. We can see that the P data set has a
higher cumulative distribution function value when compared
with other data sets. The blue area in Figure 12 (b) shows
better generalization ability, the S domain is special because
it includes simple line binary images. The rationality of using
GAD can both be understood from formula (6) and Figure 12.
In formula (6), the larger O’éd can lead high GAD value of §/,
which means the data distribution from domain S/ has a large
variance and wider distribution than other domains, like dark
green mn domain in Figure 12 (a). When facing the unseen
generalization problem, this kind of domain can cover more
unknown data distributions whereas the red domain svhn in
Figure 12 (a) cannot. Suppose we train a model only from the
svhn domain, but the unseen domain distributes from 2 to 3 in
Figure 12 (a). In that case, the generalization result will be
really bad because not enough data distribution was learned
from only the svhn red part, svhn is too stable to generalize.
This is the reason we use GAD to measure the stability of
a domain. For domains with high GAD values, we enhance
the data to improve the overall generalization performance.
For the domain with the lowest GAD value, we retain the
original data to prevent the generated data from harming
the generalization performance. The GAD list can also give
guidance about hyper-parameter choosing as explained in
Benchmarks.

3) FDG RESULTS WITH DATA AUGMENTATION

After data augmentation with the GAD list in each FL
client, metrics are used to evaluate the FLL model. In clas-
sification problems, the accuracy of the FL model on the
unseen test domain is recorded after each complete FL round.
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In regression problems, we use the error-based evaluation
metrics for comparing the FDG models. Three indices are
Mean Average Error (MAE), Root Mean Squared Error
(RMSE), and R-squared values. MAE and RMSE are used
to conclude the best model approach. The smaller the value
of these error metrics, the higher the accuracy of predictions.
R-squared, is used to show how well the data fit the regression
model. The closer the R-squared value is to 1, the fit result is
better. Considering the GAD list in Table 4, in Digit-Five,
FA-FDG sets the well-trained generators of mn, mm, and
usps as data augmentation generators. These generators are
distributed to each training domain which will have new data
from mn, mm, and usps. The amount of newly generated data
in each training domain is mn > mm > usps. However, when
a domain is selected as the test unseen domain, the generator
of this domain will not be distributed, and all this domain data
is only used for testing. For example, when the mn data set
is unseen, only the generator of mm and usps are deployed
to the original syn, svhn, usps and mm domains. In PACS,
FA-FDG uses the generators from P and S to realize data
augmentation, and the S generator provides a bit more data
than the P generator. When the unseen domain is the S, only
the P generator is given to A, P, and C.

Figure 13 gives the FDG model accuracy and RMSE,
separately on Digit-Five classification and VNF profiling
regression. The label ‘FA-FDG_mn’ in Figure 13 (a) indi-
cates that the mn acts as the unseen test domain, then mm,
usps, syn, and svhn participate in FL as four individual
clients, with GANs data augmentation under the guidance of
GAD. The generated mm data and a small amount of usps
data exist in four FL clients under the label ‘FA-FDG_mn’.
The experiment shows that the ‘FA-FDG_mn’ has better FDG
accuracy on the test unseen mn data set than the ‘FDG_mn’.
The ‘FDG_mn’ label in Figure 13 (a) means no GAN archi-
tecture with synthetic data added, the mm, usps, syn, and svhn
directly do the FL and test the model on the mn (the green
square line). The leftover ‘FA-FDG_xx’ and ‘FDG_xx’ can
be explained the same as above. In Figure 13 (b), VNF Snort
Inline acts as the unseen domain, ‘FA-FDG_LC’ means that
we use Snort Passive VNF domain and vFW domain as FL
clients, the generated Snort Passive data is added to two FL
clients. The enriched data will decrease the FL. model RMSE
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TABLE 6. The average classification accuracy on digit-five data set.

Digital-Five
Paradigm Method Backbone mn mm usps svhn syn Avg.
MMD [25]  Resnetl8  97.84+0.02  69.77+0.11 94264024 68.32+0.16 81.96+0.16 8237
CORAL [26]  Resnetl8  97.774+0.02  69.85+£0.10 94.48+0.08 68.35+0.18 81.07+0.13 8230
Centralized ~ DANN [59]  Resnetl8  96.0140.03  67.75£0.03  93.18+0.05 70.11+0.09  80.60+£0.04 81.53
RSC[60]  Resnetl8  97.71+£0.02  67.20+0.14  94.79+£0.08 68524023 79.5240.13  81.55
Ours Resnetl8  98.10£0.04  69.89+0.16 94244020 68.96+0.12 81.54+0.04 8255
Fed-Avg [2] CNN 90.61 66.08 92.54 56.29 82.63 77.63
Fed-Prox [6] CNN 89.99 63.24 93.47 54.70 82.26 76.73
Federated i
Fed-Yogi [271  CNN 80.87 61.14 82.72 48.96 7275 69.29
FA-FDG CNN 95.73 68.74 93.11 55.04 82.91 79.11
on the test unseen Snort Inline domain. LC is the resource Generalization w/wo GAD
configuration of Snort Inline VNF that we need to predict. 1.01
The label ‘FDG_LC’ in Figure 13 (b) has no generated data
during the FL. The leftover CPU and MEM also be pre- 0.8
dicted. It is clear in Figure 13 (b) that the data augmentation ’ / —

. . RS N e e e e
approach (FA-FDG_xx) has lower RMSE when predicting /‘;__*__x*'__"’*‘_-—x-——»—-x——x
new VNF resources. In addition, the FA-FDG in Table 8 also 30.6 fl'(/ P L
. . . © [] o+ —— T — -

le” TS =
indicates that the FL clients already have the data from GANs, § < [T I =t v
whereas Fed-Avg and Fed-Prox are only different aggregation g ;I /o =8= wo-GAD_mn
. . 4 * =>(= w-GAD
methods without synthetic data. The RMSE, MAE and R- 0.4 ) 7 = xD_GA,;TnTm
squared in Table 8 show the performance improvement of '/ : w-GRDLsps
. . wo-GAD_usps
the regression FL. model with the proposed FA-FDG on the 0.21 W-GAD_syn
unseen domain. - wosko.sm
Considering the computation cost, DG or FDG is con- — Wo-GAD_svhn
sidered as high computation cost applications, like NVIDIA 2 24 6 3 10

V100 GPU [61], RTX20280ti [43] and NVIDIA A100GPUs
in [50]. Table 5 gives the computation cost result with/without
the GAN training, from the aspect of CPU usage, GPU usage,
training time (GAN or FL) and used RAM. The computation
cost is tested under the mn as the unseen domain, the mm,
usps, syn, and svhn act as four FL clients. After 10 global
aggregations in FL, the model is tested on the mn data set.
The first row of Table 5 is the traditional FL. with no GAN
architecture, only training with the raw domain data as a
benchmark. The second row with the ‘FA(GAN)’ column
of Table 5 however, first training GANs to get the good
generators from mm, usps and syn. Then the augmented data
are concatenated as tensors to each FL domain data, based
on the GAD list. Finally, FL runs with the four clients as the
content of the ‘FA (GAN)+FL’ row with the ‘FL’ column in
Table 5. Traditional FL gets the FDG accuracy of 93.1%, and
‘FA(GAN)+FL’ have a 96.8% accuracy. The results indicate
that the system’s computational cost has increased, but the
FDG accuracy has improved by 3.7%.

Here we also give the FDG model accuracy on the Digit-
Five data set after data augmentation with/without GAD,
as shown in Figure 14. The label ‘w-GAD_mn’ means that
mn is set as the test unseen domain, and the rest domains
participate in FL after GAD data augmentation. Following
each global aggregation E, on the FL server, the FDG model
is tested on the unseen mn domain. Whereas ‘wo-GAD_mn’
means the rest four domains except mn have uniform data
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Global epoch E2

FIGURE 14. The FDG model accuracy on Digit-Five, after data
augmentation with/without GAD.

augmentation, with the same amount of generated mm, usps,
syn and svhn data in each FL client. Then these four domains
do FL and test the aggregated model on the mn. The left-
over ‘w-GAD_xx’ and ‘wo-GAD_xx’ methods are the same
process. It is clear in Figure 14 that the GAD targeted data
augmentation improves the FDG model accuracy more than
uniform data enhancement. This also suggests that enhanc-
ing generalization performance not only simply increases
samples, especially when the test domain is unseen. Rather,
it should focus on augmenting samples from domains that
exhibit strong generalization abilities.

Table 6 and Table 7 show the classification accuracy of
the model under leave-one-domain-out testing. In Table 6,
when the mn data set is selected as the test unseen domain,
this data set is not involved in training, but the remaining
domain data sets are used to train the model in a centralized
or federated manner. The trained model is tested on the mn
data set, as shown in the ‘mn’ column of Table 6. The same
test approach is on the PACS data set. From the test results
in Table 6 and 7, the proposed FA-FDG method improves the
average classification accuracy in centralized and federated
training mode. The reason for the performance improvement
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TABLE 7. The average classification accuracy on PACS data set.

PACS
Paradigm Method Backbone A C P N Avg.
MMD [25]  Resnetl8 81302025 73.424043  92.93+030 79.2340.84 81.72
CORAL [26]  Resnetl8  80.3240.28  73.2540.58  92.99+0.24  80.07+0.51  81.66
Centralized ~ DANN [59]  Resnetl8  82.71+0.19 75514034 95514006 72.9240.41  81.66
RSC [60] Resnetl8  80.86£0.93  73.9340.56  95.69+0.30  75.62+0.15 81.53
Ours Resnetl8 82244006 75.85+0.60 93.93+021  80.66+0.67 83.17
Fed-Avg [2]  Resnetl8 77.38 72.90 91.85 76.47 79.65
Fed-Prox [6]  Resnetl8 76.85 73.01 90.75 74.05 78.67
Federated .
Fed-Yogi [27]  Resnet18 73.28 70.74 91.09 71.23 76.59
FA-FDG Resnet18 77.19 73.78 93.69 74.26 79.73
TABLE 8. Evaluation metrics for generalized configuration of VNF resources.
| Method | Fed-Avg Fed-Prox FA-FDG
VNF Types | Metics | CPU MEM LC | CPU MEM LC | CPU MEM LC
RMSE | 0211 0.141 0207 | 0219 0.124 0.155 | 0.193 0.096 0.120
SNORT Inline MAE 0.187 0.125 0.116 | 0228 0.081 0.134 | 0.128 0.066  0.081
R-squared | 0.408 0.203 0204 | 0.361 0298 0301 | 0.517 0.424 0.429
RMSE | 0.102 0.078 0.8 | 0095 0.071 0.088 | 0.113 0077 0.081
SNORT Passive MAE 0.088 0.063 0.077 | 0.087 0.069 0.060 | 0.086 0.068 0.067
R-squared | 0.781  0.626  0.660 | 0.753  0.689 0.695 | 0.769 0.679  0.677
RMSE | 0220 0.087 0.117 | 0.184 0.086 0.156 | 0.174 0.092  0.095
VEW MAE 0.196 0075 0.092 | 0.161 0.079 0.142 | 0.162 0.077 0.079
R-squared | 0353 0499 0529 | 0427 0588 0446 | 0498 0.461  0.666
TABLE 9. Evaluation metrics of VNFs. can be very time-consuming, whereas FL distributes data
across different clients, only transmitting model parameters
| Method | Fed-Avg . . . .
for aggregation. This decentralized approach can achieve
VNF Types ‘ Metrics ‘ CPU MEM LC competitive results with simple models in a shorter time.
In FDG, the unseen test domain is placed on the server side.
RMSE | 0.152 0.112  0.127 Aft ’ h dof t' thp del is directly tested
SNORT Inline MAE 0.147  0.083  0.120 tehreack roun dO aggrff’a ton, themlo féSFLlreC y ei.e
Rsquared | 0526 0464 0329 on the unknown domain. Among the selecte aggregation
strategies (Fed-Avg, Fed-Prox, Fed-Yogi), we also find that
RMSE | 0.086 0.078 0.111 Fed-Yogi and Fed-Prox give sub-optimal prediction results.
SNORT Passive MAE | 0075 0061  0.091 This is because the momentum hyper-parameter of the Yogi
R-squared | 0.758  0.530  0.548 optimizer (momentum, second moment) needs fine-tuning,
RMSE | 0.184 0075 0.063 and the proximal term of Fed-Prox also requires adjustment
VEW MAE 0.163  0.046 0.057 based on the data and model.
R-squared | 0.554 0.618  0.781 In VNF profiling scenarios, Figure 15 demonstrates the

is that we augment the data from domains with strong gener-
alization ability in a targeted manner.

Meanwhile, the FL results in Table 6 indicate that even
though sometimes the trained model for FDG is simple,
the performance of FL can still get close to the centralized
training accuracy by optimizing the data structure through
insights from FA. This experiment is also a good example
of how FA can improve the performance of FL. Considering
the training time, federated CNN costs less time than the
centralized ResNet-18 model. Sometimes centralized training
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setup with a Snort VNF instance [15]. This figure gives the
connection between the profiled VNF, the traffic generator
tool and server end-point machines (iPerf client and iPerf
server). iPerf yields a series of input traffic records for each
VNF, which depends on the specific VNF types. Then iPerf
records different profiling data sets for Snort Inline mode,
Snort Passive mode, and vEW.

Table 8 shows the results of FDG considering the regres-
sion problem. The leave-one-domain-out strategy is still used,
with two VNFs as FL clients with the augmented tabular
data, then the trained model is tested on the rest unseen
VNF. In Table 9, all three types of VNF participate in FL,
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FIGURE 15. VNF setup.

the aggregated model is tested on the corresponding VNF
without FA-FDG. In Table 8, models generated by different
FL aggregation methods are tested on the target VNF type.
Considering the Table 4, we only train the data generators of
Snort Passive and Snort Inline modes. For example, for Inline
VNEF, only Snort Passive VNF and vFW VNF participate in
FL. After several rounds of iterations, the aggregated model
is tested on Inline VNF data. The same testing method is used
for the other two VNFs.

From the CPU columns and LC columns of different
FL aggregation methods in Table 8, the proposed FA-FDG
method outperforms the Fed-Avg and Fed-Prox in the gen-
eralized prediction of CPU and LC. FA-FDG also achieved
competitive results in generalization to predict MEM. For the
row of SNORT Passive, the generalization of SNORT Passive
VNF does not reach optimal results. This is because VFW
and SNORT Passive are similar in function [15], and vFW
data is not enhanced according to the GAD list in Table 4.
Only data augmentation of the SNORT Inline mode does
not significantly improve the model’s generalization perfor-
mance when testing on the Snort Passive mode. Additionally,
by comparing the results of Fed-Avg in Table 8 and Table 9,
it can be observed that the model jointly trained by three
VNF types in Table 9 performs slightly better than the model
trained by the other two VNF types for generalization in
Table 8. This phenomenon also indicates that the richness
of data indirectly affects the performance of FDG model.
When the data distribution of the unseen domain is close
to the training domains, the generalization results may be
better. The selection of federated users with rich data is also
a promising research area in terms of FDG.

VIl. CONCLUSION

Future network optimizers require self-generation of data,
self-training of models and automatic performance improve-
ment. FL and generative Al will play an important role in
the next generation of networks to enhance the generalization
ability of Al models when facing unseen scenarios. In this
article, a new distributed data augmentation method called
FA-FDG is proposed. First, FA-FDG collects data generators
from local GANs. Then, a domain relationship evaluation
called GAD was designed by FA. In the end, generators
with the GAD list are deployed to the FL clients to realize
targeted data augmentation. The experimental results showed
that our method was able to efficiently get the data insight
and improve the generalization ability of the FL model.
The proposed FA-FDG also gives an option of optimizing
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test-domain validation set (oracle) in [58] because we can
generate some ‘raw data’ from the target domain to find some
latent combination of hyper-parameters of models. How-
ever, some limitations of this work in FDG still need to be
improved.

1) The right selection of the GANs for FA is impor-
tant. CGAN [62], InfoGAN [63] and generative diffusion
model [64] can be expanded. More privacy data augmentation
methods for FL could be explored [65], [66].

2) CausIRL [67] regularization can be extended in MMD
and CORAL in federated deep domain generalization.

3) More data from some network infrastructures may col-
lected as time series data, TimeGAN [68] could be explored
more in FDG for future networks. More complicated work is
ongoing.
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