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Abstract—The scope of the Sixth-Generation Self-Organized
Networks (6G-SON) advances its predecessor’s capability towards
agility, flexibility, and adaptability. On-demand overlay network-
ing technologies have shown a prominent maturity while coping
with the rising complexity and scale of enterprise, service provider,
and data centre networks. In the recent past, the Software-Defined
Networking paradigm has offered Model Driven Programmability
resulting in minimizing the network management complexity
through automation and orchestration. However, leveraging Ma-
chine Learning-driven network optimization, a.k.a. Knowledge-
Defined Networking (KDN), has still been a domain of interest for
the Network Softwarization research community. In this article,
we propose Intelligent Routing as a Service (iRaaS) architecture
as an application layer cognitive routing framework for KDNs.
iRaaS offers routing logic customization (i.e., customizing metric
function, path-discovery algorithm, etc.) and provides an option to
include heuristic parameters from trained models as a part of the
metric calculation. iRaaS sits on the application plane above the
knowledge plane in a KDN stack, thus providing platform- and
vendor-agnostic coupling with existing network infrastructures.
This article covers the scope of iRaaS by using reliability as
a heuristic for standard path-discovery algorithms e.g., Shortest
Path First (SPF) and Diffusion Update algorithm (DUAL) along
with the architectural specification. We validate our approach
through a Proof-of-Concept deployment.

Index Terms—SDN, KDN, Routing-as-a-Service, Network Pro-
grammability & Automation, Routing API.

I. INTRODUCTION

As computer networks become increasingly complex, man-
ual network optimizations become less feasible. As a result,
many organizations have turned to network automation, which
offers improved efficiency and reduced human error. Network
automation is used to configure, provision, manage, and test
devices and systems, improving effectiveness and redundancy,
and meeting compliance standards. With the active rollout of
the 5G ecosystem, Softwarization, Virtualization, Cloudifica-
tion (RFC 7868), and Interoperability have been the promi-
nent adaptations by the stakeholders. The 5G Infrastructure
Public Private Partnership (5G PPP) architectural working
group identifies two new stakeholders in the domain, namely,
Virtualization Infrastructure Service Provider (VISP) and Data-
Centre Service Provider (DCSP). Additionally, Cloud-native
architecture has become a de-facto standard for contemporary
Network Functions Virtualization (NFV) deployment. It pro-
vides agile, lightweight, and manageable solutions along with
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a seamless blend of DevOps principles and practices. This
results in consumer enterprises opting for features like Zero
Touch Provisioning (ZTP), which offloads a significant amount
of network administration burden to the service provider end,
where the networks are centrally managed and orchestrated
with predefined policies. To accommodate this transition, cen-
tralized optimization algorithms (Routing, Quality-of-Service
(QoS), etc.), infrastructure automation tools (Ansible, Puppet,
Chef, etc.), high-availability protocols (first-hop redundancy
protocol (FHRP), Stateful Switchover (SSO), etc.), and ML-
based network-state prediction models (e.g., Time-Series anal-
ysis, Traffic-classification, route- prediction, etc.) play a key
role.

The developments as mentioned above clearly demand the
underlying telecommunication infrastructure to be extremely
flexible and self-aware. Although proposed in IMT-2020, the
Ultra-Reliable and Low Latency Communications (URLLC)
verticals are yet to be achieved completely. Due to spectrum
limitations, the data plane latency cannot be suppressed any
further. Therefore, research has turned to optimising the con-
trol plane using Routing Optimization, which aims to reduce
latency due to the optimal path-finding process. Neverthe-
less, RO enablers such as rapid converging routing protocols,
optimal route-redistribution, route reliability estimation, and
Link-State prediction bring forth scalability and flexibility
challenges when considering deploying multi-vendor, multi-
protocol, elastic, and dynamic networks. By design, classical
routing protocols (e.g. OSPF, EIGRP, ISIS) do not support
optimization by centralized computing models, and there exists
no routing protocol that natively supports a Software Define
Network (SDN) and/or Knowledge Defined Networking (KDN)
model.

Further challenges are presented when considering using
SDN in dynamic environments such as Mobile Ad hoc Net-
works (MANETS) to support mission-critical use cases, e.g.
deployment of networks in disaster zones. In such environ-
ments, reliable networks are crucial, while high mobility and
link dynamics have a major impact on network performance
and convergence.

In this paper, we address the aforementioned reliability,
scalability and flexibility challenges of such cases of Self-
Organized Networks (SON). We present an intent-based, data
plane-agnostic and intelligent Routing-as-a-Service platform



that:

o Allows the deployment of customized routing logic and
enables the life-cycle management and use of ML models
for optimizing network reliability.

e Provides a centralized service-based architecture oversee-
ing the entire network, diminishing the time-consuming
control plane packet exchange, hence reducing control
plane-induced latency.

« Captures the declarative requirements of the platform user
and the end-to-end network topology abstracted by the
underlying SDN/KDN and legacy controller-less infras-
tructure.

o Uses robust telemetry to capture the state of the end-to-
end network.

o Adopts state-of-the-art standards and open-source solu-
tions, validating our solution’s sustainability and exten-
sibility.

The remainder of this paper is the following, section II gives

a background of the context, section III describes the high-
level architecture of iRaaS, section IV provides details of the
iRaaS system design with sequence diagram and a bespoke
telemetry architecture named ShellMon, section V validates
the iRaaS architecture with a proof of concept testbed setup
related results, Finally, Section VI concludes this article with
a summary and future scope aimed for this work.

II. BACKGROUND

In MANETS, routing protocols can be classified into three
basic categories: proactive, reactive, and hybrid routing proto-
cols. These routing protocols update the routing table infor-
mation periodically or in response to changes in the network
topology. MANET routing suffers from scalability, bandwidth
constraints, availability, and security. Traditional Internet Pro-
tocol (IP) routing does not consider radio link characteristics.
Cisco has introduced the concept of Radio Aware Routing
(RAR) to optimize IP routing over diverse radio networks to
give users real-time access to critical information while on the
move [1]. The latest RAR protocol, Dynamic Link Exchange
Protocol (DLEP), has been standardized in IETF (RFC-8175).
Cisco has worked towards routing optimization in MANET
[2]. OSPFv3 improves routing efficiency and reduces overhead
traffic in MANET environments so that network clusters can
scale to support more users.

In the same manner, Enhanced Interior Gateway Routing
Protocol (EIGRP), formerly known as a Cisco-proprietary, has
introduced a new routing protocol that is characterized as a
distance-vector routing protocol using the Diffusing Update Al-
gorithm (DUAL) [3]. EIGRP has been designed for operation in
large networks, supports classless routing, allows to exchange
of network information with a variable network mask, supports
the usage of authentication for message transfer, and very fast
network convergence.

Nevertheless, the significant increase in the size and com-
plexity of computer networks results in slower convergence

times and decreased network performance for traditional
hardware-based routing. One of the main reasons for that is
that these routing protocols are inherently distributed in nature;
thus, they rely on the underlying communication systems to ex-
change information. The communication overhead to complete
the distributed algorithms of such routing protocols creates a
bottleneck.

To address these problems, the Software-Defined Network-
ing (SDN) paradigm decouples the control plane (CP) and
moves it to a logically centralized location, keeping the Data
Plane (DP) distributed [4]. In SDN architecture, network de-
vices only forward traffic, whereas all the control functionalities
execute centrally at the CP. The CP sees the underlying network
from a bird’s-eye-view similar to the Link State Routing (LSR)
model but not replicating them to individual routers, which
diminishes the communication bottleneck.

Routing algorithms typically operate in two main phases:
building a topology and calculating the shortest paths. They rely
on neighbouring routers to gather network reachability infor-
mation, either through distance vector or Link State methods.
When the network topology changes, these protocols pause to
recalculate routes, a process called Convergence, which delays
packet forwarding. The convergence time increases with the
network size. In contrast, SDN simplifies this by allowing a
centralized controller to overview the entire network, reducing
both communication and computational complexity. This setup
accelerates routing decisions by minimizing control packet
exchanges and performing calculations at the controller.

So far, various network models and protocols have been
developed including Next Generation SDN (NG-SDN) from
Open Networking Foundation (ONF), Cisco- Viptella SDWAN,
SD-Access, VMWare NSX, 5G-PPP software networks, Disag-
gregated platforms like ONIE, ONL, SAI, SONiC form Open
Compute Project (OCP). With a more flexible, programmable,
and manageable networking model, two of the prominent use
cases of SDN-Routing have surfaced in recent times, namely
Segment Routing and QoS Routing. The former leverages
Multi-Protocol Label Switching (MPLS)-based communication
at the underlay and replaces Label Discovery Protocol (LDP)
and Resource Reservation Protocols (RSVP) in CP. Quality
of Service (QoS) Routing steers traffic to an optimal path
preserving various communication constraints. Furthermore, as
shown in [5] several SDN routing solutions integrate ML-based
optimisations.

From the perspective of Internet routing, benefits of Routing-
as-a-Service have been presented in [6] explaining how it
can resolve the conflict of path selection for satisfying the
QoS requirements of end-to-end network users while allowing
Autonomous System administrators (e.g. ISPs) to control traffic
flows over their infrastructure fully.

Incorporating SDN, a RaaS platform in [7] allows the
platform user to select routing algorithms used as network func-
tions to compose a customized routing service. Nevertheless,



this solution relies on existing routing protocols.

A Software-defined Wide Area Network (SD-WAN) plat-
form is presented in [8] calculating optimal paths using CPLEX
over Open Network Operating System (ONOS)-controlled
routers with possible extension to ML-based optimal path
calculation. Nevertheless, it does not provide a way for cus-
tomizing the metric function used for calculating the optimal
path and does not offer a telemetry architecture that any
potential ML models will require.

Finally, application layer routing is particularly beneficial
for heterogeneous SDNs, where the network infrastructure is
diverse and programmatically controlled. In such environments,
application layer routing leverages the centralized intelligence
of SDN controllers to make dynamic, application-aware deci-
sions. This approach enables the network to adapt in real-time
to changing application demands and network conditions, opti-
mizing for factors like bandwidth, latency, and security require-
ments specific to each application. For heterogeneous SDNss,
which may span across different domains and incorporate a
variety of physical and virtual network functions, application
layer routing ensures that traffic is efficiently and intelligently
routed, taking advantage of the programmable nature of SDNs
to enhance performance, scalability, and resilience. By aligning
network behaviour with application requirements, it facilitates
a more responsive and optimized network environment tailor-
made for the diverse needs of modern digital applications.

III. HIGH-LEVEL SYSTEM ARCHITECTURE

Based on the analysis in the previous section, we envision
a system that extends the standard SDN implementation and
provides routing in an “as-a-service” fashion. This implies that
the routing service will be provided as an application remotely
accessible by end-users and administrators and deployed in a
softwarized fashion.

Starting by the definition of the domain, we imply a system
which is a “component subsystem” of a wider system where
the internal design and/or operations of the system are not
fully exposed outside the domain. This could, for example, be
an administrative domain (e.g., an Internet Service Provider
(ISP)). We later envision that there will be a management
plane responsible for the intelligent intent-based routing across
the different domains. This architecture can be seen in Figure
1. This figure also introduced our key functional blocks that
provided the envisioned capability described in this paper. As
per our envisaged functionality, we propose to implement a cen-
tralized application-layer routing model that accompanies and
extends traditional SDN and non-SDN controllers, enhancing
their performance, scalability and resilience of the system.

Our envisaged iRaaS application sits within a Cross-Domain
Network Manager (CDNM) responsible for orchestrating the
different services deployed there. The Cross-Domain Route
Management (CDRM) takes the routing decisions and com-
municates them downstream to the administrative domain con-
trolled by an Intra-Domain Network Manager (IDNM). The

domain comprises a hybrid SDN network spanning across
multiple controllers (i.e., SDN and Non-SDN). We refer to
the combined control plane of SDN and Non-SDN controllers
within an administrative domain as Shim-Layer, as it abstracts
the platform specificity of the underlying data plane from
the planes above. We break down our application layer into
two different entities, i.e., the iRaaS Client and the iRaaS
Server, to enhance load balancing and enable higher scalability.
Moreover, a telemetry application is envisioned that collects
real-time KPIs from the different domains and sends them to
the RaaS server to enable intelligent decisions. The following
sections describe in detail the aforementioned system entities.

A. iRaaS Client

iRaaS client receives Route Intent from external admins
through an API proxy, which enables an administrator (human
or program) to interact through a single point of contact. In
addition to selecting common routing attributes, e.g., routing
protocol and its associated parameters, path manipulation logic,
etc. iRaaS offers an admin to customize routing logic. A custom
routing logic can be known as the Shortest Path Algorithm
(e.g., SPF, DBF, DUAL, etc.) or a bespoke one encoded in
compliance with the iRaaS Server API. Additionally, it offers
the ability to customize the cost function (e.g., an admin
might use SPF as routing logic for implementing LSR in
a hierarchical topology with EIGRP-like composite metric).
This level of flexibility of iRaaS contributes to its novelty and
uniqueness. The iRaaS client is also responsible for building
an aggregated graph of the underlying topologies of both SDN
and non-SDN available controllers. The iRaaS Client sends the
Route Intent and aggregated graph to the iRaaS Server.

The iRaaS architecture supports hybrid SDN at the access
plane. The admin informs the Client about the respective
controllers’ management interface address while requesting
through the API Proxy. The client establishes management
access with all controllers at the access network leveraging
the CaaS service and respective drivers (SDN/Non-SDN) and
fetches the controller-wise downstream topologies through
standard management protocol, e.g., NETCONF [9], REST-
CONEF [10], etc.). Finally, the northbound interfaces between
the iRaaS Client and the Shim layer may use an exterior
gateway transport for connectivity.

B. iRaaS Server

The server receives the Route Intents and graphs from the
client through a standardised interface. The server integrates
the graphs received and the cost of the link costs calculated by
the cost function specified and (near) real-time telemetry of the
metric KPIs. The iRaaS Server calculates the optimal path(s)
as per the routing logic consulting with an MLOps pipeline and
responds back to the iRaaS Client, which then configures the
access network devices through the downstream controllers.
The MLOps pipeline can be a standard ML pipeline where
various ML models can be tested, validated, and trained on
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Fig. 1. The proposed iRaaS System Architecture. The system consists of multiple domains and a cross-domain management plane that is responsible for the

orchestration and routing across each domain.

existing historical telemetry data and, when deployed in the
system, can provide intelligent decisions and optimal routing
paths. An example of such a module using telemetry data to
predict a Sharpe Ratio-based path-reliability by performing a
time-series analysis of metrics data over a rolling time window
can be found in [11].

C. Telemetry Framework

The telemetry framework resides in conjunction with the
administrative domains and the IDNM and provides a platform
and vendor-agnostic multi-modal implementation that collects
data in a standardized fashion. The telemetry framework ex-
poses a number of RESTful interfaces and publish-subscribe
messaging buses responsible for collecting telemetry data and
storing them in the database available in the CDRM. In the
following section, we go into more detail on the implemen-
tation of the telemetry framework describing the different
communication modes supported.

IV. SYSTEM DESIGN AND PROVIDED FUNCTIONALITY

Following the above high-level architecture, in this section,
we describe in more detail how iRaaS is provided by our system
and describe all function blocks that build up our platform. As
briefly discussed earlier, our proposition supports both tradi-
tional SDN implementations and monolithic implementations
that communicate without available agents. Our system, as

described, is intended to provide a platform-agnostic, flexible,
and programmable path-calculation mechanism that, operating
at the application layer, enables the scalability and future-
proofing of modern routing solutions as well as the integration
with future network architectures such as SONs in the Sixth-
Generation (6G) networks.

A. Routing-as-a-Service

RaaS is a data plane-agnostic principle of flexible and
programmable path calculation mechanism served at the appli-
cation layer [6], [7]. In our system, we define the Routing Logic
as a pair of metric functions f,, et and shortest-path algorithm
fsp- Where, frewric(wia;|i € [1,n],i € N) is an arbitrary
multivariate scalar function with a finite dependent variable set
A = {a;}, called attributes, weighed by corresponding weigh-
ing factor w; € W. f,, takes a weighted simple graph (i.e.,
free of self-loops and parallel-edges) G(V, E), where V and FE
are the vertices (nodes) and edge sets of GG respectively, with a
pair of nodes v,,vq € V and returns optimal path(s) P g € 2F
such that path cost is minimal. Therefore, considering an Intent-
Based Networking (IBN) paradigm, a RaaS application must
accept the routing logic (fmetric(A, W), fsp(G(V, E))) as an
intent though an open-API, and returns the optimal path(s)
{Ps,q} as the response.

Figure 2 depicts the sequence diagram of a RaaS application
operating in Client-Server mode on a Hybrid-SDN topology.
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Fig. 2. Sequence diagram of RaaS Client-Server model for a Hybrid-SDN topology

As described in Section III, splitting the application into client
and server side results in load balancing and higher scalability.
Where the client-side operations are I/O-intensive due to intent-
API exposure and network controllers interfacing, the server-
side is more compute-intensive as it runs the graph algorithms.
The operation pipeline comprises the following phases:

1) Metric Building: In this phase, the attribute set A such
that |[A] = N is provided with their corresponding
weights W along with a metric function f,,esric. The
weighing factor w; € W of an attribute a; € A signifies
the priority of the attribute in the f,,csric definition.
therefore, the sum of all w; must be 1.

2) Topology Building: In this phase, the iRaaS client inter-
faces with the network controllers to fetch their underly-
ing topology. A network controller abstracts the platform-
level information of the network and returns a graph
representation of the topology. In a hybrid-SDN scenario,
the RaaS client interfaces with each instance of the SDN

3)

and Non-SDN controllers to fetch their underplaying
topologies into a set of graphs G = {G;(V;, E;)}.
In such case, we propose a normalisation method of
transforming G into a fused-graph G(V, F) by adding a
pseudo-node v, which is fully adjacent with a designated
node vg, € V; from each graph G;. An ideal designated
node is preferably but not necessarily to be at the centre
of its topology. This mimics the behaviour of a summary
point in traditional routing protocols. The cost of the
logical link between each vg, and v, is an explicitly
defined non-zero value. This is because the routing
between topologies across controllers under the same
administrative domain requires the inter-controller data
path to be involved, which is considered as an exterior
link. v, represents the exterior link, and the cost between
vp and vg, represents the cost of accessing it.

Policy Building: The iRaaS Client in this phase prepares
the routing logic by packing the normalised topology



G(V,E) and the metric function and sending it to the
iRaaS Server for processing.

4) Integrity Check: The iRaaS server checks the integrity
of the routing logic received from the iRaaS client and
passes it to the routing engine upon successful validation.

5) Path Calculation: The iRaaS servers calculates link-
costs by applying the fi,etric function on telemetry data
and returns the optimal path(s) as per the shortest path
algorithm.

B. Intelligent Routing Behaviours

The iRaaS Client and Server components provide the under-
lying framework for making intelligent routing decisions. In
this section, we describe the set of behaviours that are essential
for an intelligent routing model. In either case of using a heuris-
tic algorithm or an ML model, these behaviours are critical for
providing an optimal routing path across different domains.
Moreover, for the graphs aggregated in our application plane,
two algorithms are described that can minimise the footprint
of our application and provide a more robust implementation.

1) Topology Aggregation: The aforementioned develop-
ments rely on typologies either reactively or proactively and
maintain a local database for it. An iRaaS application must
leverage the network controllers’ north-bound interface to fetch
and aggregate individual topologies into a global topology map.
The aggregation process could be arbitrary, however, the graph
aggregation algorithm must consider the inter-controller con-
nectivity cost while taking the union of the candidate graphs.
In the previous subsection, we took a simplistic approach by
introducing a logical pivot-vertex v, per aggregation and a
designated vertex wvg, per candidate graph with a non-zero
constant cost between them representing the inter-controller
communication cost.

2) Cost Normalization: The aggregated graph generated
from the Topology Aggregation phase is an in-memory data
structure at the iRaaS application server. The telemetry system
monitors and maintains a database of network key perfor-
mance indicators (KPIs); the metric function uses a subset
of selected attributes from the KPIs to weight the aggregated
graph. Traditional routing protocols only consider link costs for
path-finding. However, in a softwarised network infrastructure
where network functions are not necessarily physical, computa-
tional costs are also significant in calculating end-to-end costs.
Therefore, a composite metric that considers both link and
computational cost into a normalised cost is required, resulting
in a more accurate routing decision. That said, normalising
computational cost with link cost requires an isomorphic trans-
formation of the aggregated graph. Since the computation load
appears as a weighted self-loop, hence, it makes the graph
a regular graph rather than a simple one. A simple graph is
a prerequisite for running any shortest-path algorithm on it.
Authors in [12] present such a normalization technique named
Stochastic Temporal Edge Normalisation (STEN).

3) Redundant Path Discovery: To ensure rapid convergence,
the path-finding algorithm f,, must not only discover the best
path but a set of alternate or redundant paths. This may resem-
ble the Feasible Successor approach of DUAL which allows
rapid path switchover in case of a primary path failure without
involving any diffusion updates in the topology. However,
DUAL’s loop-prevention mechanism may not find any Feasible
Successor despite having available alternate paths if none of the
non-successor neighbours pass the Feasibility Criteria. In such
a case, EIGRP puts DUAL into an active state and initiates
querying neighbours for alternate path discovery. This issue
occurs because EIGRP is a distance vector routing protocol. In
RaaS, the global topology-building process follows the link-
state approach. Therefore with a global view of the topology,
an explicit loop-prevention mechanism is unnecessary and
hence, fs, can safely discover and maintain alternate paths
to reactively switch between them when the primary one fails.

4) Reliability-Based Metric and Reactive Route Ranking:
As the KPIs fluctuate over time with the network dynam-
ics, it may invoke f,, unnecessarily many times, resulting
in inefficient runtime behaviour such as route-flapping and
high computational complexity. We propose two approaches
to optimise the runtime footprint for RaaS applications.

The first one is Reactive Route Ranking where f, processes
the aggregated graph in two phases. In Phase-1, it calculates
all possible paths between all pairs of vertices. Defining a cut-
off diameter and initializing the link costs with seed values
speed up the process further. As the path discovery between
each pair is sequentially independent, therefore they can run
simultaneously. The result is a forest of Shortest Path Trees
(SPT) where each instance is rooted by the destination vertex
vg with all branches representing a unique path to the source
v as the identical leaf for all branches. In Phase-2, a Raas
application may calculate the path cost of each branch for all
SPTs and rank the paths of each SPT. The two-phase approach
limits re-convergence to only topology change scenarios. If the
topology grows then only new connections are updated in the
SPTs, and if it shrinks, then vanishing links are updated with
an infinite cost.

Second, we propose the use of Reliability as a metric.
Reliability is statistically calculated using Sharpe Ratio [13]
from a rolling window of f,,ciric. RaaS application uses the
expected Reliability from a Recurrent Neural Network (RNN)
to make routing decisions. Therefore, iRaaS avoids fluctuating
unreliable routes and emphasizes more on reliable paths rather
than the shortest, least-costly and fastest paths.

In summary, the above two optimization steps ensure mini-
mum invocation of re-convergence with Reactive Route Rank-
ing and prioritize reliable routes. Authors in [11] have ex-
plained the above techniques in detail.

C. Telemetry Framework and its Communication Modes

This section describes the telemetry framework architecture,
which carries the monitoring data from the data to the applica-
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TABLE I
OPERATIONAL SPECIFICATION OF ShellMon

Attributes Type Usage
Mode I: Request-Response
(RESTful)

Mode 2: Publish-Subscribe
(AMQP)

Mode I: Agent Based
Mode 2: Agent Less
JSON

Mode of Transport Pull based telemetry collection

Push based telemetry collection

Target device with monolithic karnel
Target device allows agent installation
Standard data format, Tow parsing footprint

Mode of Collection

Serialisation Format

tion plane. The architecture of this system can be seen in Figure
3. We propose a modular, multi-modal telemetry API named
ShellMon for the RaaS framework. Unlike vendor, platform
and version-dependent telemetry protocols such as SNMP [14],
NetFlow [15], ShellMon provides platform and vendor agnostic
multi-modal telemetry with a common standard data format.
Table I summarises the operational specifications of ShellMon.

ShellMon server maintains a host file containing the clients’
information (e.g., hostname, port number, access credentials,
the content type of the payload and connection mode). The
Fetcher and subscriber modules use request-response and
publish-subscribe modes, respectively. The telemetry is col-
lected and stored in a Master database shared with the iRaaS
application. The remainder of this section describes the various

modes of communication that Shel/lMon offers.

1) Transport Mode 1: RESTfull Request-Response: In this
mode, the collection mechanism operates in a RESTful fashion.
ShellMon server sends poll requests in regular intervals, which
triggers the clients to invoke device-level local KPI collection.
Clients timestamp the KPI samples and send them back to
the server. That said, this mode relies on HTTP’s keep-alive
mechanism to monitor the liveliness of the clients.

2) Transport Mode 2: Publish-Subscribe : This mode is
suitable for large-scale client-base, where the number of ports
available on the server side is constrained. The agent comprises
identical modules as of the RESTful mode. However, instead
of an API end-point, it publishes KPIs from a local pub-
lisher. ShellMon uses an Advanced Message Queuing Protocol
(AMQP) [16] message broker for the transport.

3) Collection Mode 1: Agent-Less Telemetry: This mode is
suitable for network devices running monolithic kernels such
as Cisco IOS and Juniper JunOS, which do not allow the
installation of external agents. The NetMon middleware com-
municates with the network devices through asynchronous SSH
sessions to collect telemetry information using a multi-vendor
SSH library called Napalm [ref-netmiko]. The Accumulator
module of the NetMon agent collects monitoring data samples
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Fig. 4. iRaaS Deployment Diagram

from Napalm into a key-value store named node_util. The
Collector module tags it with source_id and timestamp. Finally,
the Sender module exposes an API endpoint for the monitoring
data to be polled. NetMon uses a request-response mechanism
for polling, i.e., a poll request from the ShellMon server initiates
the collection cycle; therefore, the agent does not require any
local queue.

4) Collection Mode 2: Agent-Based Telemetry: In this mode,
an agent runs on top of the network device kernel. The
Accumulator, Collector and Sender module behaves the same
as the Agent-Less mode.

V. TEST-BED SETUP AND PROOF-OF-CONCEPT

Figure 4 depicts the deployment diagram of the RaaS testbed
along with the technology stack used. The application, control
and data planes are segregated by three Virtual Machines
(VMs) for runtime isolating. The data plane comprises a
Mininet [17] and a GNS3 for simulating network topologies.
Mininet supports Open-V-Switches (OVS) natively, we used
a containerized version of OVS to deploy in GNS3. We use

OpenDaylight (ODL) at the control plane to interface with
OVS and the RaaS application using OpenFlow v1.3 and
RESTCONTF respectively. To carry out control plane operations,
we use the following Opendaylight features; odl-12swicth mod-
ule controls the south-bound interface using OpenFlow, odl-
restconf controls the north-bound interface using RESTCONF,
odl-mdsal provides Model-Driven Service Abstraction Layer
to parse YANG data-models, odl-ofplugin provides a standard
interface between the control and data plane, and odl-dlux
provides ODL GUIL

The application plane hosts the iRaaS application and a
Cisco OpenFlow Manager (OFM) VM. OFM inspects the
topology from the ODL controller and provides a GUI-based
flow management tool. The Client module of the iRaaS app re-
ceives intent from the administrator that includes the controller
access information and routing logic. The Client interfaces
with the Adapter module to fetch topology from the data
plane following the methods specified in figure 2. Further, it
sends a route_request to the Server Module which computes
the optimal paths and replies with a route_response. In this
setup, we have developed the iRaaS app using Flask micro-
framework for API development and the NetworkX library for
graph computation.

Figure 5 depicts the flow of topology processing from the
Mininet data plane to the RaaS application through the Open-
Daylight control plane. The shown example illustrates a partial
mesh topology of six Open-V-Switch instances each connecting
two hosts and communicating with a remote SDN controller
over OpenFlow v1.3. iRaaS adapter fetches the topology from
the OpenDaylight controller and the iRaaS client builds a graph
data structure using the NetworkX library as shown in the
figure. In this test, we choose all-pair Dijkstra’s algorithm to
find all routes between each pair of OpenFlow switches as
shown at the top of the figure.

The above test results validate the proof of concept of the
proposed architecture. However, the same is also capable of
running customized routing algorithms by altering configura-
tion at the iRaaS server. That said, the paper [11] shows rapid
convergence in Knowledge-Defined Networks comparing the
scalability against SPF and DUAL.

VI. CONCLUSION AND FUTURE SCOPE

This paper presents a system-level architecture of Intelligent
Routing as a Service (iRaaS), a sequence diagram explaining
the data between various iRaaS components and a robust
telemetry architecture for collecting monitoring data from the
underlying network infrastructure. A proof of concept setup
also validates the operational capabilities of the proposed
architecture with a deployment diagram detailing the assembly
of various open-source components constituting the test bed
used for experiments.

We aim to advance the iRaaS concept with a robust cognitive
plane comprising additional machine learning-based operations
algorithms such as traffic classification and state prediction.
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