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Abstract

Upon the advent of the emerging metaverse and its related applications in Augmented Reality

(AR), the current bit-oriented network struggles to support real-time changes for the vast amount of

associated information, hindering its development. Thus, a critical revolution in the Sixth Generation

(6G) networks is envisioned through the joint exploitation of information context and its importance to

the task, leading to a communication paradigm shift towards semantic and effectiveness levels. However,

current research has not yet proposed any explicit and systematic communication framework for AR

applications that incorporate these two levels. To fill this research gap, this paper presents a task-

oriented and semantics-aware communication framework for augmented reality (TSAR) to enhance

communication efficiency and effectiveness in 6G. Specifically, we first analyse the traditional wireless

AR point cloud communication framework and then summarize our proposed semantic information along

with the end-to-end wireless communication. We then detail the design blocks of the TSAR framework,

covering both semantic and effectiveness levels. Finally, numerous experiments have been conducted

to demonstrate that, compared to the traditional point cloud communication framework, our proposed

TSAR significantly reduces wireless AR application transmission latency by 95.6%, while improving

communication effectiveness in geometry and color aspects by up to 82.4% and 20.4%, respectively.
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I. INTRODUCTION

The metaverse, as an expansion of the digital universe, has the potential to significantly

influence people’s lives, affecting their entertainment experiences and social behaviors. Spe-

cific applications such as Augmented Reality (AR), Virtual Reality (VR), and other immersive

technologies within the metaverse have demonstrated remarkable potential in various areas,

including virtual conferences, online education, and real-time interactive games, capturing the

attention of both industry and academia [1]. These applications, also referred as eXtended Reality

(XR), need to process rich and complex data, such as animated avatars, point cloud, and model

mesh, to create immersive experiences for clients [2]. However, the extensive transmission of

information and high bandwidth requirements within the XR pose significant challenges for its

wider applications, particularly in avatar-related applications that necessitate real-time client

communication and interaction. The existing communication networks fails to achieve such

high bandwidth requirement and thus can not adequately support XR applications, necessitating

the development of 6G technology to enhance its applications for further advancement [3, 4].

Specifically, to ensure a good Quality of Experience (QoE) in AR applications, a transmission

latency of less than 20 ms is required, which is 20 times less than the transmission latency

tolerated in video communication applications [5]. Due to the nature of numerous sensing data

in AR applications, more packets need to be transmitted in such a short time, which consequently

increases the demand for bandwidth. This growing concern about the transmission latency and

bandwidth in AR application services highlights the need for further research in communication

technology to ensure a real-time immersive experiences for clients in AR-related applications.

To address the high bandwidth requirements diploma in wireless communication in AR appli-

cations, the concept of semantic communication has been proposed [6]. This approach aims to

facilitate communication at the semantic level by exploring only the content of traditional text

and speech data or the information freshness. Initial research on semantic communication for

text [7], speech [8], and image data [9] mainly focused on identifying the semantic content of

traditional data. Other semantic communication research on sensor and control data emphasize

on using information freshness, such as Age of Information (AoI) [10], as a semantic metric

to estimate timeliness and evaluate the importance of the information. Note that these AoI-

related semantic communication is unable to adequately capture the importance of specific
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information with inherent importance in the emerging AR dataset. This underscores the need

to develop new strategies and techniques that effectively incorporate semantic communication

in AR, considering not only information timeliness but also the relevance and sufficiency of

the data content for a given application. In [11], a generic task-oriented and semantics-aware

communication framework taking into account the designs at the semantic and effectiveness

levels is envisioned for various tasks with diverse data types. However, an explicit and concrete

task-oriented and semantics-aware communication framework has not been designed for AR

application so far.

Current XR-related application research typically requires users to utilize Head-Mounted

Displays (HMD) [12]. These applications generally focus on avatar-centric services, where the

use of avatar animation in replacement of real human figures can decrease HMD computing

requirements, reduce transmission data, and protect user privacy [13]. This avatar representation

method has been implemented in social media platforms, such as TikTok and Instagram, where

avatar characters is used for augmented reality video effects. Interestingly, using avatars instead of

human has shown no significant differences in social behavior transmission and can even attract

users to complete tasks more quickly in gaming situations [14]. For instance, fitness coaches

can employ virtual avatars for AR conferencing to guide training. Games, like Pokémon Go, use

avatars in mixed reality to encourage gamer interaction [15]. Avatar-based communication has

been considered in [16], where the point cloud of avatars, structures, and models are transmitted

between transmitter and receiver. Task-related effectiveness level performance metrics, including

point-to-point [17], peak signal-to-noise ratio for the luminance component [18], mean per joint

position error [19] have been considered to assess the telepresence task [20], point cloud video

displaying task [21], and avatar pose recovery task [22], respectively. However, these AR-related

applications have not fully addressed the issue of the effectiveness of avatar transmission, and

bandwidth requirements for such applications still remain high. Users continue to experience

suboptimal and lagging AR experiences in areas with moderate signal strength, indicating that

the current AR communication framework has limitations, particularly in identifying a better

avatar representation method for more effective communication, which need to be addressed.

Several studies have recently begun to explore the representation of avatars in wired com-

munication. Different data types have been designed to represent avatars, which results in

diverse avatar reconstruction required at the client side and limited transmission effectiveness
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evaluation capabilities for AR. For instance, skeleton elements have been proposed as a means

to represent avatars, where motion capture devices are used to record skeletal positions. The

recorded avatar movements are then replayed in wired Head-Mounted Displays (HMDs), and

the differences in skeleton position between transmitter and receiver are measured to evaluate

wired AR communication [23]. However, how to best extract semantic information that reflects

the importance and context of information related to the avatar-centric display task is still unclear

in a wireless communication AR application. The presence of redundant messaging can lead to

an increase in transmission packets, resulting in decreased efficiency of wireless communication

and ultimately impacting the user’s viewing experience.

Inspired by the 3D keypoints extraction method presented in [24], we propose a task-oriented

and semantics-aware communication framework in AR (TSAR) for avatar-centric end-to-end AR

communication. In contrast to traditional point cloud AR communication frameworks that rely

solely on point cloud input, our proposed TSAR extracts and transmits only essential semantic

information. To the best of our knowledge, our contributions can be summarized as follows:

1) We propose a task-oriented and semantics-aware communication framework in augmented

reality (TSAR) for interactive avatar-centric displaying applications with an integration

of the semantic and effectiveness levels design, which includes semantic information

extraction, task-oriented semantics-aware wireless communication, avatar pose recovery

and rendering.

2) We apply an avatar-based semantic ranking (AbSR) algorithm to abstract features from

the avatar skeleton graph using shared base knowledge and measure the importance of

different semantic information. By utilizing Channel State Information (CSI) feedback,

the AbSR can improve the avatar transmission quality in the wireless AR communication.

3) We have conducted a series of experiments comparing our proposed TSAR framework

with the traditional point cloud communication framework. Our results indicate that our

proposed TSAR framework outperforms the traditional point cloud communication frame-

work in terms of color quality, geometry quality, and transmission latency for avatar-centric

displaying task, with improvements of up to 20.4%, 82.4% and 95.6% respectively.

The rest of the paper is organized as follows: In section II, we present the system model and

problem formation, covering both the traditional point cloud and the TSAR frameworks. Section
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Fig. 1: Traditional point cloud communication framework

III details the design principles for semantic level. Section IV details the design principles for

effectiveness level. Section V demonstrates the avatar movement and experimental performance

evaluation. Finally, Section VI concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMATION

In this section, we first describe the existing traditional point cloud communication framework

for AR applications. Then, we present our wireless communication channel model implemented

in both the point cloud communication framework and the TSAR. We further introduce our

proposed TSAR in detail, which considers not only the bit-level but also the semantic and

effectiveness levels. Finally, we present the problem formation and the objective function.

A. Traditional Point Cloud Communication Framework

As shown in Fig. 1, the procedures for traditional point cloud communication in AR applica-

tions typically consist of point cloud collection, downsampling, upsampling, and rendering.

1) Point Cloud Collection: We focus on interactive avatar-centric displaying and gaming AR

applications, which are promising applications in the metaverse [13]. These AR applications

require transmitting avatar animations and other stationary background models to the client side

for displaying on an HMD in the area with dimensions length L, height H , and width W .

To guarantee a smooth viewing experience of the AR scenery at the client side, high-resolution
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point cloud of both the moving avatar and stationary background models need to be captured and

transmitted to the client side. Current Unity3D platform have numerous plugins for generating

sensor data in real time, such as FM POINTS, which is a comprehensive point cloud visualization

plugin that can transform the whole AR scenery or any 3D models into real-time point cloud.

The information for each point ávi can be represented as

ávi “ p
áli, áciq “ plx, ly, lz, cr, cg, cbq, (1)

where the áli and áci represent the three-dimensional location and RGB color of point, respectively.

The generated point cloud Ppc of the whole AR scenery consist of thousands of points vi, which

can be represented as

Ppc “ ráv1, áv2, ¨ ¨ ¨ , ávNpcs
T, (2)

where Npc denotes the total number of generated point cloud of AR scenery. Typically, each 3D

object needs to be represented by over 1,500 thousand point cloud in each frame to achieve a

satisfactory viewing experience for clients [25].

2) Point Cloud Downsampling and Upsampling: In the traditional point cloud wireless com-

munication framework, the transmission of a large number of point cloud can lead to data

congestion at the wireless channel, causing intolerable delays and thus hinders AR application

development [26]. To minimize transmission delays, current research explores the use of compres-

sion algorithms in point cloud transmission [27]. By introducing an downsample algorithm at the

transmitter and an upsample algorithm at the receiver, the transmission latency can be reduced

through transmitting only the compressed point cloud. The farthest point sampling algorithm

[28] is ultilized as the downsample method, which enables the selection of representative points

from the original point cloud while maintaining the overall features of the 3D objects. This

algorithm reduces the number of points to be transmitted, thus improving the efficiency of the

communication system. The process of farthest point downsampling Dp¨q, can be expressed as

Pdpc “ ráv1, áv2, ¨ ¨ ¨ , ávNds
T

“ DpPpcq, (3)

where Pdpc represents the downsampled point cloud data awaiting transmission, and Nd is

the total number of downsampled point cloud data. Then, the client’s view experience can

be enhanced by employing an upsampling algorithm for high-resolution point cloud recovery.

Due to the instability of the wireless channel, the receiver faces the challenge of converting
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a sparse, irregular, and non-uniform point cloud into a dense, complete, and uniform one. To

address this challenging issue [29], the linear interpolation algorithm [30] is introduced for the

point cloud upsampling process. This algorithm involves estimating the positions of the missing

points based on the positions of their neighbors, effectively generating a denser point cloud

that closely resembles the original point cloud structure. The point cloud upsampling process,

denoted as Up¨q, can be expressed as

Pupc “ ráv1, áv2, ¨ ¨ ¨ , ávNus
T

“ UpP
1

dpcq, (4)

where Pupc is the reconstructed point cloud after upsampling, Nu represents the total number

of upsampled point cloud, and P
1

dpc is the received point cloud data after transmitting Pdpc

over wireless channels. The upsampling process aims to accurately reconstruct the original point

cloud, ensuring that the client-side viewing experience is maintained at a high quality despite

the data compression and transmission through an unstable wireless channel.

3) Point Cloud Rendering: The point cloud rendering process begins when all the Nu point

clouds for the AR scenery are received and upsampled. This process prepares the point cloud

data for the Unity3D platform and facilitates high-resolution rendering. The rendering process

needs to create a comprehensive 360˝ view of the avatar, along with immersive background

scenery, which involves point cloud preparation and procedures:

(1) Point cloud preparation: Point cloud preparation involves formatting points from the received

point cloud data. Each point contains information such as three-dimensional location and

RGB color value, which determines the point’s position and visual depiction within the

virtual environment.

(2) Point cloud processing: The procedure of point cloud processing includes mesh recon-

struction along with positioning. It commences with the transformation of these discrete

points into a compatible mesh format for the Unity3D platform. Subsequently, the Shader,

a uniquely designed program, is employed during the rendering process to regulate the

gradients of illumination, obscurity, and chromaticity within the virtual environment. The

final step of this process involves implementing the positioning phase to optimize the visu-

alization, encompassing translation, rotation, and scaling elements. Concurrently, the Level

of Detail (LoD) strategy is invoked in the whole processing process, which dynamically

modulates the complexity of a 3D model representation contingent upon its spatial relation
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to the clients. It renders fewer points when clients are distant and, conversely, more points

as they step closer, thereby providing a better viewing experience.

B. Wireless Channel Model

The wireless communication model is characterized by a Rayleigh fading channel, impacted

by additive white Gaussian noise and utilizing an Orthogonal Frequency-division Multiplexing

(OFDM) scheme. The OFDM approach divides the wireless channel into multiple parallel

subchannels. Each subchannel experiences varying levels of noise, leading to different Signal-

to-Noise Ratios (SNRs).

The wireless communication process begins with source encoding, transforming the awaiting

transmit data into the bitstream. Following this, a standard channel encoding is implemented to

inject redundancy into the data to be transmitted, safeguarding data integrity and enabling the

correction of potential errors during transmission. Traditional communication coding methods,

such as turbo coding and low-density parity-check coding, can be utilized in the channel coding

process [31]. The encoded bits generated by channel encoding are then carried forward as bn.

Following channel encoding, we implement Binary Phase-shift Keying (BPSK), a widely used

modulation technique. BPSK alters the phase of a carrier signal based on the encoded bits bn,

resulting in modulated signals denoted as sn. Finally, we take into account the multi-path channel

within the OFDM, represented as áHc. In the wireless channel, each modulated bit sn is allocated

to a subchannel, denoted as hn, and is then ready for transmission over that subchannel. This

approach allows for the simultaneous transmission of multiple modulated bits over different

subchannels, the channel gains in wireless multi-path channel is represented as

áHc “ rh1, h2, ¨ ¨ ¨ , hNcs
T, (5)

where Nc stands for the total number of subchannels in Hc, and hn signifies the channel gain

of the nth subchannel.

Considering the characteristics of each subchannel, the cumulative SNR of the communication

process within channel áHc is expressed as

SNR “

řNc
n“1 }hn ¨ sn}

2

řNc
n“1 σ

2
n

, (6)
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where, σ2
n represents the noise within the nth subchannel. The received bits after the wireless

channel, marked as s
1

n, are articulated by the subsequent equation, which can be expressed as

s
1

n “ sn b hn ` σ2
n, (7)

where the b refers to circular convolution, an operation that correlates the input signal with a

finite impulse response. Subsequently, the received data s
1

n undergoes traditional channel decoder

and source decoder at the receiver to recover the original data.

C. Novel Task-oriented and Semantics-aware Framework

In this section, we provide a detailed description of our proposed TSAR framework, that not

only compare with the traditional point cloud communication framework but also incorporates

several task-oriented strategies, including effectiveness level optimization methodology. The

TSAR framework leverages shared base knowledge and utilizes a task-oriented context at the

semantic level, to exploit more efficient and effective communication for AR application. As

illustrated in Fig. 2 in the next page, the modules in TSAR include semantic information

extraction, task-oriented semantics-aware wireless communication, avatar pose recovery and

rendering.

Fig. 2: Task-oriented and semantics-aware communication framework
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1) Semantic Information Extraction: Unlike traditional point cloud communication frame-

work, which primarily relies on raw point cloud data for AR scenery representation and trans-

mission, our proposed TSAR framework provides a more sophisticated approach to extract a

rich depth of semantic and effectiveness levels data from the raw point cloud. The process

begins with the downsampled point cloud sensing data, Pdpc, as the input. This point cloud data

encapsulates all the AR scenery, which are broadly divided into two categories: the moving

avatar model Aa and the stationary model As. Only the avatar’s moving position is considered

essential information and needs to be refreshed at every frame. Thus, the output of this semantic

information extraction process is the skeletons information of the moving avatar, áI tsar
i , which can

be represented as
áI tsar
i “ p

áli, áriq “ plx, ly, lz, rx, ry, rz, rwq, i P r0, Nas, (8)

where Na represents the total number of skeletons in the avatar, áli represents the three-dimensional

location and ári represents the quaternion rotation of the ith skeleton in the avatar model.

Apart from quaternion rotation, current research also employs euler angles to represent ro-

tations in AR scenery. In comparison to quaternion, euler angles offer a simpler and more

information-efficient method to represent rotation and calculate root node position when a

fixed root node point is available. This approach needs less information to reconstruct the

avatar’s pose compared to quaternion, resulting in less data packets and potentially more efficient

communication [32]. The transformation from rotation to euler angles can be expressed as
»

—

—

—

—

–

ep

er

ey

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

arctan 2pryrz`rwrxq

1´2pr2x `r2y q

arcsin p2 prwry ´ rxrzqq

arctan 2prxry`rwrzq

1´2pr2y `r2z q

fi

ffi

ffi

ffi

ffi

fl

˚
180

π
. (9)

where the ep, ey, and er are defined as the pitch, roll, and yaw in euler angles to represent

rotations around the three primary axes with an associated root point. The semantic information

of the AR application, denoted as Dtsar, represents all the skeleton information áI tsar
i of the avatar

model generated through a semantic information extraction process from the downsampled point

cloud Pdpc, which can be expressed as

Dtsar “ r
áI tsar

1 , áI tsar
2 , ¨ ¨ ¨ , áI tsar

Na
s

T
“ SpPdpc, θsq, (10)
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where Sp¨q represents the semantic information extraction process, and θs encompasses all

the experimental and neural network parameters. This equation represents the entire semantic

information extraction process, which maps the downsampled point cloud data Pdpc to a more

meaningful semantic representation Dtsar for further transmitting over wireless channels.

2) Task-oriented Semantics-aware Wireless Communication: Building upon the extracted se-

mantic information, we develop an avatar-based semantic ranking algorithm to integrate task-

oriented semantic information ranking into end-to-end wireless communication to exploit the

importance of semantic information to an avatar-based AR displaying task. The algorithm cor-

relates the importance evaluation of semantic information and task relevance with channel state

information feedback, thereby prioritizing more important semantic information for optimal

transmission over more reliable subchannels. More specifically, each skeleton is represented

as a node in the avatar skeleton graph G as shown in the Fig. 4, and the skeleton ranking is

determined by a calculated weight in the skeleton graph, which indicates the level of importance

in the later avatar pose recovery. The weights of all semantic information Dtsar are denoted as
áWtsar and can be formulated as

áWtsar “ rωI1 , ωI2 ..., ωINa
s

T
“ WpDtsar,Gq, (11)

where wIi represents the weight of the semantic information of the ith skeleton in avatar

skeleton graph, these node weights essentially represent the importance of the semantic in-

formation to the avatar representation, with higher weights indicating greater importance of

the skeleton information for avatar pose recovery. By correlating these weights representing

the importance of semantic information with Channel State Information (CSI) feedback during

wireless communication, the effectiveness of the avatar transmission in AR application could be

optimized. Specifically, the semantically important information is mapped and transmitted over

more reliable subchannels. Current research in the OFDM has demonstrated that CSI can be

accurately estimated at the transmitter side using suitable algorithms and feedback mechanisms

[33]. Consequently, the subchannel gains hn at the receiver side are assumed to be added in the

CSI feedback, enabling the transmitter to be aware of the accurate all the subchannel state in the

OFDM. According to Eq. (6), the subchannel with a higher SNR will have a better subchannel

state and thus achieve a more reliable transmission for semantic information. Therefore, an

ascending sorting is employed to establish a mapping function Mp¨q between the semantic
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information and various subchannels. This mapping relies on the weights calculated for the

semantic information and the CSI. Higher weights, indicating greater importance of the semantic

information in the avatar pose recovery, are assigned to more reliable subchannels. The mapping

function is expressed as

Mp
áWtsar,G,áHcq “ t

áI tsar
i , hju, i P r1, Nas, j P r1, Ncs, (12)

where the map t
áI tsar
i , hju refers to transmit the semantic information áI tsar

i at the subchannel hj .

Based on the channel mapping results, each semantic information is transmitted through different

subchannels in the OFDM subchannels.

3) Avatar Pose Recovery and rendering: In contrast to traditional point cloud wireless com-

munication framework, the TSAR framework approaches avatar pose recovery differently with

the transmission of the base knowledge at the beginning of AR application. As illustrated in Fig.

2, the data could be used for base knowledge B* encompasses different types of information,

which include avatar skeleton graph G, avatar initial position lo, avatar model Aa, stationary

background model As, stationary initial position ls, and their respective appearance meshes, Ma

and Ms. Whenever a new 3D object appears in the AR scenery, the base knowledge at both

transmitter and receiver need to be updated synchronously.

In this way, the TSAR framework considers the avatar as a whole entity and recover the

avatar’s pose using a limited set of skeleton points instead of treating individual points as the

smallest recovery unit. The avatar pose recovery process Rp¨q can be expressed as

Âa “ RpD
1

tsar,Btsarq, (13)

where Btsar represents the base knowledge of TSAR, and Âa denotes the avatar model Aa with

appearance Ma after pose recovery with semantic information D
1

tsar.

The AR displaying process is quite straightforward by presenting the reconstructed avatar

Âa and the stationary background model So in the AR scenery. The process of avatar pose

recovery in the TSAR framework is intricately designed and hinges on associating each piece of

skeleton information áI tsar
i with the avatar model Aa on the Unity3D platform. In traditional point

cloud communication frameworks, the entire point cloud data must be refreshed for each frame,

which can be a computationally expensive and time-consuming process. In contrast, the TSAR

framework only requires the updating of the skeleton information associated with the avatar’s

movements, and update the avatar’s pose based on these information.
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D. Problem Formation

In summary, the overall framework aims to achieve task-oriented semantics-aware communica-

tion with efficient data transmission for better avatar representation in wireless AR applications.

The primary objective of the framework is to maximize the client-side AR viewing experience

based on the transmitted semantic information. The objective function can be represented as

P : min
tθs,

ˆá
Ii,hj

˙

u

lim
TÑ`8

1

T

T
ÿ

t“0

Na
ÿ

i“0

´

áI tsar
i,t ´

áI tsar1

i,t

¯

¨ ωIi ,

s.t. i P r1, Nas, j P r1, Ncs,

(14)

where áI tsar
i,t represents the semantic information of the ith skeleton at time t, and áI tsar1

i,t is the

received semantic information after the wireless channel. The weights ωIi reflect the importance

of each skeleton node i in representing the avatar graph. This equation formulates the problem

of minimizing the error in avatar representation during transmission.

III. SEMANTIC LEVEL DESIGN

In this section, we will discuss the semantic extraction and recovery blocks, including semantic

information extraction with deep learning, base knowledge selection, avatar pose recovery, and

evaluation metric.

A. Semantic Extraction with Deep Learning

Inspired by the KeypointNet proposed in [24], we propose a semantics-aware network called

SANet to extract the skeleton keypoint information of a moving avatar from the whole point

cloud of AR scenery. The extraction is an integral step towards creating a more interactive and

Fig. 3: Semantic Information Extraction Network
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TABLE I: SANet parameters and training setup

Parameter Value

Cell

Semantic network In (2048,3), out (25,1)

Feature conv (In feature=2048, out feature=1440)

1st Conv2d (In feature=256, out feature=256)

2nd Conv2d (In feature=256, out feature=128)

Output layer (In feature=128, out feature=25)

Simulation

Learning rate 10´4

Optimizer Adam

Episode 900

Activation function ReLU

immersive augmented reality experience. The SANet operates by using downsampled point cloud

data Pdpc as input, which represents the 3D coordinates of both the stationary models and the

moving avatar. This data is then processed by the SANet to extract accurate avatar skeleton

information, crucial for reproducing the avatar’s movements in the virtual environment. The

design objective of the SANet is to minimize the Euclidean distance (L2) between the predicted

semantic information, denoted as SpDdpcq, and the labeled semantic information of the skeleton

location, represented as Dl
tsar. The interplay between these variables is captured as

Loss “ argmin L2
pθs q

`

SpPdpcq,D
l
tsar

˘

. (15)

where θs represents all the neural networks and experiment parameters in the SANet, which

is defined in Table I and Fig. 3. Training the SANet involves optimizing these parameters to

minimize the loss, thus enhancing the accuracy of semantic information extraction.

To determine the most suitable backbone for the designed SANet, we train the SANet with

various backbone networks, including ResNet, RsCNN, PointNet, SpiderCNN, PointConv, and

DGCNN [34]. Similar to [24], we use the mean Average Precision (mAP) as the performance

evaluation metric to assess the semantic information extraction accuracy of the predicted keypoint

probabilities in relation to the ground truth semantic information labels.



15

B. Base Knowledge Selection

To better explore the most suitable base knowledge, we propose basic TSAR framework

(TSAR) and euler angle based TSAR framework (E-TSAR) that considers different shared base

knowledge and semantic information definition1.

TSAR: For the basic TSAR framework, semantic information for each skeleton is defined as

the data pertaining to position and quaternion rotation as in Eq. (8). The shared base knowledge,

denoted as Btsar, comprises the stationary background model, stationary model initial position

moving avatar model, and their corresponding appearance meshes, which is denoted as

Btsar “ tAo,As,Mo,Ms,
álsu. (16)

E-TSAR: As an extension of TSAR, the semantic information in each skeleton Ii is defined

as the euler angle rotation in E-TSAR, according to Eq. (9), which could be defined as

áIetsar
i “ páeiq “ per, ey, epq, i P r0, Nas, (17)

where the shared base knowledge Betsar encompasses the avatar skeleton graph, avatar initial

position, stationary background model, stationary model initial position, moving avatar model,

and their appearance meshes, defined as

Betsar “ tMa,Ms,Aa,As,
ála, áls,Gu. (18)

C. Avatar Pose Recovery

The avatar pose recovery involves using the skeleton graph G in the base knowledge and the

received semantic information to reconstruct the avatar pose. The entire avatar pose recovery

process is shown in Algorithm 1. Specifically, a recursive algorithm is employed to traverse and

assign all skeleton information to the avatar model Aa with initialized parameters. However, due

to differences in the definition of the semantic information and the shared base knowledge, the

avatar poses recovery process has variations between the TSAR and E-TSAR framework.

On the one hand, the basic TSAR framework employs a simple avatar pose recovery method,

assigning the avatar model with value based on the skeleton point identity using the received

1Semantic information, as presented in Fig. 2, consists of the skeleton information that need to be transmitted in every frame.

Conversely, base knowledge encompasses information used primarily in the first frame.
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position vector and quaternion rotation. On the other hand, the E-TSAR framework, which only

transmits the euler angle of each skeleton point as semantic information, requires calculating

each skeleton position with respect to its root point in the skeleton graph before assigning the

skeleton information to the avatar model. The E-TSAR framework reconstructs the avatar pose

by first determining the relationships between the skeleton points in the avatar skeleton graph

G. It then computes the position of each skeleton point by considering its euler angle and the

position of its root point within the G, the relative distance vector ∆álpi,i´1q between the ith

skeleton node and the previous pi ´ 1qth node can be represented as

∆álpi,i´1q “ p∆x,∆y,∆zq “ áei ˆ
áli´1, (19)

where ei represents the eular angle of the ith skeleton node, p∆x,∆y,∆zq represents the distance

between two skeleton node towards the x, y, and z coordinates, and the actual position of the

ith skeleton node will be calculated by combining ∆álpi,i´1q and áli´1, which can be expressed as

áli “
áli´1 ` ∆álpi,i´1q, (20)

where the root node position ál0 is equal to the avatar initial position ála in the base knowledge,

and áli represents the position of the ith skeleton node in the avatar, with its three components

representing the x, y, and z coordinates respectively.

D. Evaluation Metric

The semantic level of our proposed TSAR aims to enhance the communication effectiveness

to achieve accurate avatar moving of the AR application, specifically, the skeleton information

accuracy between the transmitter and the receiver. The optimization seeks to minimize the

Euclidean distance of the semantic information transmitted at the transmitter and received at

receiver. Thus, the MPJPE is used to estimate and evaluate the avatar pose error in geometry

aspect between the transmitter and receiver, including the x-axis, y-axis, and z-axis values, which

can be expressed as

MPJPE “
1

Na

Na
ÿ

i“1

b

|
áli ´

ál1

i|
2
, (21)

where the áli and ál1

i represent the three dimensional position value of skeleton at the transmitter

and the receiver respectively.
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Algorithm 1 Avatar Pose Recovery

1: Initialization: Received base knowledge B*, received data D
1

tsar

2: Get skeleton graph G, avatar initial position ála avatar model Ma, and avatar appearance

mesh Aa from B*

3: Count the skeleton number Na “ CspGq

4: Count the received semantic information Nr “ CrpD
1

tsarq

5: if pG R B* & li P D
1

tsarq then

6: for each i in Nr do

7: Attach áI tsar
i to model Aa (Avatar pose recovery for the TSAR)

8: end for

9: else

10: for each i in Na do

11: update áli according to Eq. (20) and Eq. (19)

12: Attach áIetsar
i to model Aa (Avatar pose recovery for the E-TSAR)

13: end for

14: end if

15: Generate avatar Âa with appearance mesh Ma and model initial position la according to

Eq. (13).

Output: Avatar Âa with reconstructed pose

IV. EFFECTIVENESS LEVEL DESIGN

In this section, we will demonstrate the design principles of TSAR optimization at the

effectiveness level based on the above defined semantic information. In the following, we present

task-oriented semantics-aware wireless communication and its evaluation metric.

A. Task-oriented Semantics-aware Wireless Communication

To further enhance the effectiveness of avatar communication in AR applications, we propose

an avatar-based semantic ranking algorithm to calculate an importance weight value among all the

extracted semantic information, which plays a more advantageous role in avatar representation.

More specifically, we calculate the importance of the skeleton nodes in the skeleton graph G



18

using a ranking method based on the PageRank algorithm proposed by Google [35], the detailed

process of AbSR algorithm is proposed in Algorithm 2, and the weight is calculated as

ωIi “
NJ

p1 ´ αq
`

NJ
ÿ

j“0

´

|∆álpi,jq| ˆ ωJj

¯

. (22)

where ωIi represents the weight of the semantic information áIi in the ith skeleton node of

skeleton graph, and |∆álpi,jq| denotes the Euclidean distance between the ith and jth skeleton. Jj

denotes the node index which are connected to the ith node, ωJj is the weight value of the Jjth

skeleton, Nj represents the total number of nodes Jj in the skeleton graph, and α is a discount

factor ranging from 0 to 1. As suggested in [36], we set the discount factor to 0.7 in this paper.

A detailed diagram is shown in Fig. 4, which illustrates that skeletons with more connections

and longer distances from other connected skeletons are more critical. The underlying rationale

is that a node with more connections will have a greater impact on connected skeleton nodes if

it have bit error in wireless communication. Furthermore, nodes that are more isolated, indicated

by their greater distance from other skeletons, are likely to have a more substantial impact

on the avatar representation due to their distinctive appearance contributions, highlighting the

importance of these skeletons.

After calculating the critical node weight of skeleton graph, a descending sort algorithm is

applied to arrange the skeleton nodes in descending order of rank. Leveraging our proposed AbSR

algorithm, we consider the effectiveness level optimization during the wireless communication,

focusing on avatar semantic preservation. This shift advancing the semantic level design in

Section III, thus ensuring that crucial avatar semantic information is prioritized in our task-

based wireless communication approach. As shown in Eq. (12), this approach maps higher

weight semantic information to transmit in OFDM subchannels with better CSI. This is the so

called euler angle and channel-based TSAR framework (EC-TSAR), with details below.

EC-TSAR: Based on the E-TSAR, the CSI information is considered to implement the AbSR

and channel mapping in Algorithm 2 to improve communication effectiveness in AR application.

The semantic information is defined as the vector position and euler angle rotation of all skeletons

in the moving avatar as shown in Eq. (17), while the base knowledge encompasses the avatar

skeleton graph, shared background model, moving avatar model, and their appearance meshes,

as shown in Eq. (18).
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Fig. 4: Skeleton Graph Formation and Ranking

Algorithm 2 Avatar-based Semantic Ranking Algorithm
1: Initialization: Base Knowledge B*, Semantic

information Dtsar

2: Get G,Aa from B*,

3: Get ∆álpi,i´1q from Aa

4: Count skeleton number Na “ CspGq

5: repeat

6: k “ k ` 1

7: for each i in Na do

8: Update ωk
Ii

with ∆álpi,i´1q based on Eq. (22)

9: δ “ ||ωk
Ii

´ ωk´1
Ii

||

10: end for

11: until δ ă ε

12: Update t
áI tsar
i , hju according to Eq. (12)

Output: Channel Mapping t
áI tsar
i , hju

B. Evaluation Metric

Building upon semantic level optimization, the overall goal of the task in AR application is to

recover the avatar for better clients viewing experience. To achieve this, we use point cloud to
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evaluate the entire virtual scenery, which includes Point-to-Point (P2Point), Peak Signal-to-Noise

Ratio for the luminance component (PSNRy), and transmission latency:

P2Point: To evaluate the viewing experience of clients in AR applications, the P2Point metric

is employed to assess the AR scenery from a 360˝ viewing angles, comparing the geometry

difference between the point cloud data at transmitter Pt and the point cloud data at receiver

Pr. The P2Point error calculation can be expressed as

P2Point “ max
`

dpPt,Prq
rms , dpPr,Ptq

rms

˘

, (23)

where the function drms is the root mean square error between two point cloud.

PSNRy: The color difference plays a crucial role in avatar displaying task of AR applications,

as it can significantly impact the user viewing experience if there are discrepancies in the

colors transmitted. The PSNRy is used to evaluate the luminance component of the AR scenery

difference between the receiver and transmitter . The PSNRy is then calculated as

PSNRy “ 10 log10

¨

˚

˝

2552

1
Nt

ř

áviPPt

”

yávi
´ yávPr

near

ı2

˛

‹

‚

, (24)

where ávPr
near represents the nearest point to ávi from point cloud Pr, Nt represents the total number

of point cloud in the Pt, and yávi
represents the luminance elements of point ávi.

Transmission Latency: Transmission Latency is a critical metric in AR applications and plays

a crucial role in evaluating client QoE. The transmission latency of the AR application can be

divided into different components, including semantic information extraction time Ts, wireless

communication time Tw, avatar pose recovery and rendering time Tr. The combination of all

these times results in the transmission delay of the AR application, which can be expressed as

Transmission Latency “ Ts ` Tw ` Tr, (25)

by analyzing and optimizing each component of the transmission latency, we can justify and

indicate the efficiency of our proposed framework.

V. SIMULATION RESULTS

In this section, we evaluate the performance of our proposed TSAR framework and compare it

with the traditional point cloud communication framework as well as the enhanced frameworks

such as E-TSAR and EC-TSAR, as described in section III and IV. For assessing the performance
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TABLE II: Experiment Setup

Dance type Last time

Upper body dance 2min 10s

Slight shaking 50s

Full body dance 2min 5s

Simulation Value

Data type Point cloud

FPS 60

Avatar skeleton number 25

Stationary model skeleton number 15

Point cloud number 2,048

Attribute information 1 Point index

Attribute information 2 Position

Attribute information 3 Rotation (optional)

Attribute information 4 Color (optional)

of the semantic information extraction, we use several different avatar dance types as specified

in Table I, and we configure the hyperparameters for the SANet as listed in Table II. The SANet

initially undergoes a learning phase where it is trained until it converges to an optimal state.

Once the training phase is complete, the resulting trained neural network is implemented across

TSAR, E-TSAR, and EC-TSAR. The subsequent sections present the results of our proposed

frameworks. Section V-A offers insights into the avatar movement distribution and Section V-

B first provides data on the semantic information extraction accuracy achieved by the SANet,

and following that, we present experimental results examining various metrics to evaluate the

XR application and avatar transmission. These metrics include the MPJPE, the adjacent frame

MPJPE, transmission latency, P2Point, and PSNRy.

A. Avatar Skeleton Distribution

To obtain a comprehensive understanding of avatar movement in the AR environment, several

avatar dance types were conducted upon the Unity3D and Mixamo platform. Mixamo is a robust

3D character creation and animation tool offering a wide array of diverse and dynamic 3D

character animations suitable for a broad spectrum of movement analysis. Three distinct dance
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(a) Avatar movement range of adjacent frame. (b) Semantic information extraction accuracy.

Fig. 5: Avatar movement distribution and semantic information extraction accuracy

types from Mixamo were selected for our experiments: an upper-body dance, a slight shaking

dance, and a full-body dance. These dances cover a wide range of avatar movements, from

localized to full-body motions, and each dance has a specific duration, as detailed in Table II.

The transmitter used for these experiments operates at 60 Frames Per Second (FPS), ensuring

a smooth and continuous displaying of the avatar’s movements at the transmitter. The moving

avatar, with 25 skeletons, is placed on a stationary background stage model.

Fig. 5 (a) plots the data analysis of the experiments, which is carried out based on the skeleton

difference between the adjacent frames across the X, Y, and Z axes under different SNR sceneries.

Green points correspond to adjacent frame skeleton position differences under optimal wireless

channels, which reveals that the shifts in position from one frame to the next were typically

minimal. The adjacent difference ranges for the three axes are (0, 0.46), (0, 0.48), and (0, 0.48)

meters, respectively, suggesting that the maximum movement of the avatar’s skeleton usually

remains less than 0.5 meters per frame in the Unity3D platform. Furthermore, with the SNR

increases, the adjacent skeleton difference indicates that the received data might be distorted

under highly noisy conditions and the Rayleigh fading channel. This can result in significant

positional differences between adjacent frames, potentially surpassing the realistic movement

capabilities of the avatar and subsequently causing disjointed in the virtual environment.
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(a) Adjacent MPJPE of TSAR. (b) Adjacent MPJPE of E-TSAR. (c) Adjacent MPJPE of EC-TSAR.

Fig. 6: Adjacent MPJPE difference among TSAR, E-TSAR, and EC-TSAR

B. Performance Evaluation

1) Semantic information Extraction Performance: Figure 5 (b) plots the semantic extraction

precision of the SANet, anchored on a variety of backbone networks over equivalent training

epochs. Each network exhibits commendable proficiency, corroborating the viability of employing

such a deep learning mechanism to extract semantic information from point cloud data. The

degree of accuracy serves as a benchmark for the effectiveness of semantic extraction capabilities,

the accuracy of which is delineated as follows: SpiderCNN >PointConv >RsNet >RsCNN

>DGCNN. This pecking order underscores the pronounced superiority of the SpiderCNN-based

SANet, achieving an impressive accuracy surpassing 96% within the same epoch duration. As

outlined in Table II, the SpiderCNN boasts a unique structural design that performs better in

point cloud structure feature extraction. This advantage may become particularly obvious in

handling complex, high-dimensional data such as avatars and 3D model structures. This could

also illuminate the other backbone networks’ less efficient processing and learning capacities. It is

likely that other backbones struggle with adequately extracting and learning from the structure of

point cloud structure, which could consequently impact semantic information extraction accuracy.

These findings highlight the importance of not just the SANet, but also the backbone choice

while performing semantic information extraction over point cloud data.

2) Avatar Transmission Performance: Fig. 6 (a) plots the MPJPE of adjacent frames, alongside

the MPJPE error between the receiver and transmitter, under different wireless channel conditions

for the proposed TSAR. With the diminishing SNR, a visible degradation in AR displaying

fluency with uncontinued avatar movement of adjacent frames, marked by an increase in both
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the adjacent MPJPE and the MPJPE. This result reemphasize the insights drawn from Fig. 5 (a),

signifying that a lower SNR channel generates noise and blur in the received packets, thereby

increasing the MPJPE. Furthermore, with the SNR decrease below 10 dB, the MPJPE of adjacent

frames amplifies with the decreasing SNR and transcends the general avatar movement range

under optimal wireless channels explicated in section V-A. This demonstrates that concerning

the adjacent MPJPE, with the SNR decrease, it alludes to precipitous movements of the avatar’s

constituent parts, potentially inducing stutters when substantial positional discrepancies arise

between successive frames. Simultaneously, if the MPJPE escalates excessively, it could engender

distortions in the avatar, with skeletal elements manifesting in aberrant positions, such as a foot

emerging at the head. Both the uninfluenced and distortion of the avatar in the AR application

could damage the viewing experience on the client side [37].

Fig. 6 (b) plots the MPJPE of adjacent frames, alongside the MPJPE error between the

receiver and transmitter, under different wireless channel conditions for the proposed E-TSAR.

In contrast to the outcomes of our proposed TSAR shown in Fig. 6 (a), E-TSAR profoundly

decreased the MPJPE between the transmitter and the receiver with the SNR increase and

achieved a 40% decrease in MPJPE within the 0dB SNR scenery. Such observations denote

a smoother and more fluent avatar movement of the E-TSAR compared to the TSAR, given

the E-TSAR a reduced likelihood of confronting disconcerting avatar distortions compared to

TSAR. Additionally, unlike the basic TSAR results, where the MPJPE continues to increases

as the SNR decreases, the E-TSAR MPJPE does not increase after the SNR drops below 10

dB. This indicates that using the avatar model as base knowledge in semantic communication

helps the avatar maintain its undistorted appearance in the poor wireless channel scenarios. This

improvement in avatar representation can lead to an enhanced user experience and a higher QoE

for clients, thereby underscoring the effectiveness of employing the avatar model as a shared

base knowledge in the domain of wireless AR implementations.

Fig. 6 (c) plots the MPJPE of adjacent frames, alongside the MPJPE error between the receiver

and transmitter, under different wireless channel conditions for the proposed EC-TSAR. With a

result generally similar to E-TSAR’s shown in 6 (b), EC-TSAR achieves a significant decrease

when the SNR increase above 10 dB, generating a more fluent video with lower adjacent

frames MPJPE. This illustrates that with the assistance of the AbSR algorithm and adaptive

channel mapping, more important semantic information is effectively transmitted through wire-
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Fig. 7: Mean Per Joint Position Error.

less communication, ultimately aiding in avatar recovery on the client side. This highlights the

effectiveness of the AbSR algorithm and adaptive channel mapping in improving the efficacy

of avatar transmission, especially in higher SNR scenarios. Besides, similar to the E-TSAR, the

MPJPE does not continue to increase as the SNR decreases below 10 dB, which reemphasizes

the advantages of employing the avatar model as a shared base knowledge.

Fig. 7 plots the MPJPE performance results, which reveal the differences in the avatar skele-

ton’s position between the receiver and transmitter. A lower MPJPE indicates a better avatar

pose recovery ability in wireless communication, and the overall results of The MPJPE results

are ranked as TSAR ă EC-TSAR ă E-TSAR ă Point Cloud. Specifically, the TSAR framework

achieves the lowest MPJPE with the SNR increase above 6 dB, achieving about an 83% decrease

compared to the point cloud framework at 26 dB scenery. In contrast, the EC-TSAR framework

achieves lower MPJPE than the TSAR framework when the SNR continues to decrease below

6 dB. Besides, the point cloud framework struggles to generate key points within the 3D

scenery with the SNR decrease below 16 dB. This observation indicates that in the cloud point

communication framework, the avatars are displayed with distorted proportions, such as an arm’s

length longer than the avatar’s entire body, which can cause the SANet to fail in distinguishing

the skeleton key points accurately. Meanwhile, in the EC-TSAR, the avatar model used in the

shared base knowledge functions not to allow movements exceeding the avatar’s capabilities,

resulting in a better and undistorted AR avatar displayed on the client side compared with other

frameworks with the SNR continue to decrease below 6 dB.

Fig. 8 (a) plots the P2Point error, revealing the geometry differences of the AR scene between
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(a) Point to point. (b) Peak signal-to-noise ratio in the luminance (Y).

Fig. 8: Point to point and peak signal-to-noise ratio in the luminance(Y).

Fig. 9: Transmission Latency.

the transmitter and receiver. A lower P2Point value indicates a better viewing experience of the

geometry aspect on the client side, and the overall P2Point value is ranked as EC-TSAR ă

E-TSAR ă TSAR ă Point Cloud. With the SNR increases, the P2Point of all the frameworks

witnessed an increase, indicating all the frameworks are affected by the worse wireless channel

conditions. Besides, The EC-TSAR and E-TSAR frameworks both achieve a flat P2Point value

increase with the SNR decrease below 8 dB compared with TSAR and Point Cloud, indicating

that the avatar model transmitted in the base knowledge works to prevent the avatar displaying

distortion, and make avatar only generates some odd positions in both frameworks, while the

avatar displaying in the point cloud framework and TSAR already shows distortion.
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Fig. 8 (b) plots the PSNRy results, which reveal the color differences of the AR displaying

scenery between the transmitter and receiver. A higher PSNRy value represents a better viewing

experience on the client side, and the PSNRy results are ranked as EC-TSAR ą E-TSAR ą

TSAR ą Point Cloud. All the frameworks shown an increase with the SNR increase, indicating

the viewing experience is affected by the wireless channel conditions. Besides, all the TSAR,

E-TSAR, and EC-TSAR achieve a significant increase when the SNR increase above 14 dB,

while the point cloud communication framework has a relatively flat increase. This indicates

the avatar model used in the shared base knowledge makes the avatar transmitted as a whole

model, which helps to more effectively transmit the exact color of the avatar model in wireless

communication, whereas the color value in the traditional point cloud framework totally up to

the channel conditions and will exhibit distortions through wireless communication.

Fig. 9 plots the transmission latency of all frameworks as defined in Eq. (25). A lower latency

could contribute to a better QoE on the client side, which is ranked as E-TSAR ă EC-TSAR ă

TSAR ă Point Cloud. Compared to the point cloud communication framework, the TSAR, E-

TSAR, and EC-TSAR save a substantial amount of transmission time due to significantly fewer

packets transmitted. Although these frameworks introduce an additional semantic information

extraction step with the DL-based semantic information extractor, it only takes about one second

per 100 frames, constituting only a tiny portion of the total transmission time. Concerning pose

recovery and rendering, which are inherently linked to the data packets, the point cloud requires

rendering all the upsampled point cloud data based on 2,048 points. Conversely, the TSAR,

E-TSAR, and EC-TSAR merely require 25 skeletal points to update the pose of an already

rendered avatar, thereby significantly reducing time consumption on the client side. Moreover,

although both E-TSAR and EC-TSAR necessitate calculating the skeletal position according to

Eq. (19) and Eq. (20) before avatar pose recovery, while the TSAR can directly update the

avatar pose. The limited calculation time of 25 cycles renders the time consumption of this pose

recovery and rendering process relatively uniform among TSAR, E-TSAR, and EC-TSAR. This

substantial reduction in data transmission volume concurrently minimizes bandwidth usage spent

on wireless communication compared with the traditional point cloud framework.

VI. CONCLUSION

This paper has presented a novel task-oriented and semantics-aware communication framework

designed to enhance the effectiveness and efficiency of avatar-based communication in wireless
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AR applications. By introducing new semantic information in AR and representing relationships

between different types of semantic information using a graph, our proposed task-oriented and

semantics-aware communication framework extracted and transmitted only essential semantic

information in wireless AR communication, substantially reducing communication bandwidth

requirements. This selective transmission of important semantic information provided a more

effective approach to semantic information extraction compared to traditional communication

frameworks, ensuring minimal errors and lower bandwidth usage. Furthermore, we have extracted

effectiveness level features from the complete avatar skeleton graph using shared base knowledge

based on end-to-end wireless communication, distinguishing it from and enhancing general

semantic communication frameworks. This pioneering work opened research for further advance-

ments in wireless AR communication frameworks. Our future work will focus on improvements

by integrating other semantic features, such as model recognition and interaction, to further

improve effectiveness and efficiency in the avatar-centric wireless AR application.

REFERENCES

[1] H. Ning, H. Wang, Y. Lin, W. Wang, S. Dhelim, F. Farha, J. Ding, and M. Daneshmand, “A survey on

metaverse: the state-of-the-art, technologies, applications, and challenges,” arXiv preprint arXiv:2111.09673,

Nov. 2021.

[2] Y. Wang, Z. Su, N. Zhang, R. Xing, D. Liu, T. H. Luan, and X. Shen, “A survey on metaverse: Fundamentals,

security, and privacy,” IEEE Commun. Surveys Tuts., vol. 25, no. 1, pp. 319–352, Sept, 2022.

[3] F. Hu, Y. Deng, W. Saad, M. Bennis, and A. Aghvami, “Cellular-connected wireless virtual reality:

Requirements, challenges, and solutions,” IEEE Commun. Mag., vol. 58, no. 5, pp. 105–111, 2020.

[4] F. Hu, Y. Deng, H. Zhou, T. Jung, C.-B. Chae, and A. Aghvami, “A vision of an xr-aided teleoperation system

toward 5g/b5g,” IEEE Commun. Mag., vol. 59, no. 1, pp. 34–40, 2021.

[5] S. Van Damme, M. T. Vega, and F. De Turck, “Human-centric quality management of immersive multimedia

applications,” in Proc. IEEE Conf. Netw. Softwarization (NetSoft), June 2020, pp. 57–64.

[6] M. Kountouris and N. Pappas, “Semantics-empowered communication for networked intelligent systems,”

IEEE Commun. Mag., vol. 59, no. 6, pp. 96–102, June 2021.

[7] L. Yan, Z. Qin, R. Zhang, Y. Li, and G. Y. Li, “Resource allocation for text semantic communications,” IEEE

Wireless Commun. Lett., vol. 11, no. 7, pp. 1394–1398, Apr. 2022.

[8] Z. Weng, Z. Qin, and G. Y. Li, “Semantic communications for speech signals,” in Proc. IEEE Int. Conf.

Commun. (ICC). IEEE, June 2021, pp. 1–6.

[9] P. Jiang, C.-K. Wen, S. Jin, and G. Y. Li, “Wireless semantic communications for video conferencing,” ”

IEEE J. Sel. Areas Commun., vol. 41, no. 1, pp. 230–244, Nov. 2022.



29

[10] A. Maatouk, M. Assaad, and A. Ephremides, “The age of incorrect information: An enabler of semantics-

empowered communication,” IEEE Trans. Commun., Oct. 2022.

[11] H. Zhou, X. Liu, Y. Deng, N. Pappas, and A. Nallanathan, “Task-oriented and semantics-aware 6G networks,”

arXiv preprint arXiv:2210.09372, Oct. 2022.

[12] H. Du, D. Niyato, C. Miao, J. Kang, and D. I. Kim, “Optimal targeted advertising strategy for secure wireless

edge metaverse,” in Proc. IEEE Global Commun. Conf. (GLOBECOM). IEEE, 2022, pp. 4346–4351.

[13] C. B. Fernandez and P. Hui, “Life, the metaverse and everything: An overview of privacy, ethics, and

governance in metaverse,” in Proc. IEEE Int. Conf. Distrib. Comput. Syst. Workshops (ICDCSW). IEEE, July

2022, pp. 272–277.

[14] L. S. Pauw, D. A. Sauter, G. A. van Kleef, G. M. Lucas, J. Gratch, and A. H. Fischer, “The avatar will see

you now: Support from a virtual human provides socio-emotional benefits,” Comput. Human Behav., vol. 136,

p. 107368, May 2022.

[15] J. S. Lemmens and I. A. Weergang, “Caught them all: Gaming disorder, motivations for playing and spending

among core pok’emon go players,” Entertain. Comput., p. 100548, March 2023.

[16] L. A. da Silva Cruz, E. Dumi’c, E. Alexiou, J. Prazeres, R. Duarte, M. Pereira, A. Pinheiro, and T. Ebrahimi,

“Point cloud quality evaluation: Towards a definition for test conditions,” in Proc. IEEE Int. Conf. Quality of

Multimedia Experience (QoMEX). IEEE, June 2019, pp. 1–6.

[17] Q. Yang, Y. Liu, S. Chen, Y. Xu, and J. Sun, “No-reference point cloud quality assessment via domain

adaptation,” in Proc. IEEE/CVF Conf. Comput. Vision Pattern Recognit., 2022, pp. 21 179–21 188.

[18] D. Lazzarotto, M. Testolina, and T. Ebrahimi, “Influence of spatial rendering on the performance of point

cloud objective quality metrics,” in Proc. 10th European Workshop on Visual Information Processing (EUVIP).

IEEE, 2022, pp. 1–6.

[19] D. Pavllo, C. Feichtenhofer, D. Grangier, and M. Auli, “3d human pose estimation in video with temporal

convolutions and semi-supervised training,” in Proc. IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), June 2019, pp. 7753–7762.

[20] K. Yu, G. Gorbachev, U. Eck, F. Pankratz, N. Navab, and D. Roth, “Avatars for teleconsultation: Effects of

avatar embodiment techniques on user perception in 3d asymmetric telepresence,” IEEE Trans. Vis. Comput.

Graph., vol. 27, no. 11, pp. 4129–4139, 2021.

[21] Y. Xu, Q. Yang, L. Yang, and J.-N. Hwang, “Epes: Point cloud quality modeling using elastic potential energy

similarity,” IEEE Trans. Broadcasting, vol. 68, no. 1, pp. 33–42, 2021.

[22] J. Liu, N. Akhtar, and A. Mian, “Deep reconstruction of 3d human poses from video,” IEEE Trans. Artif.

Intell., pp. 1–1, March 2022.

[23] Y. Wu, Y. Wang, S. Jung, S. Hoermann, and R. W. Lindeman, “Towards an articulated avatar in vr: Improving

body and hand tracking using only depth cameras,” Entertain. Comput., vol. 31, p. 100303, 2019.

[24] Y. You, Y. Lou, C. Li, Z. Cheng, L. Li, L. Ma, C. Lu, and W. Wang, “Keypointnet: A large-scale 3d keypoint



30

dataset aggregated from numerous human annotations,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern

Recognition (CVPR), June 2020, pp. 13 647–13 656.

[25] Z.-L. Zhang, U. K. Dayalan, E. Ramadan, and T. J. Salo, “Towards a software-defined, fine-grained QoS

framework for 5g and beyond networks,” in Proc. ACM SIGCOMM Workshop Netw.-Appl. Integr. (NAI), Aug.

2021, pp. 7–13.

[26] Y. Huang, B. Bai, Y. Zhu, X. Qiao, X. Su, and P. Zhang, “Iscom: Interest-aware semantic communication

scheme for point cloud video streaming,” arXiv preprint arXiv:2210.06808, Oct. 2022.

[27] F. Nardo, D. Peressoni, P. Testolina, M. Giordani, and A. Zanella, “Point cloud compression for efficient

data broadcasting: A performance comparison,” in Proc. IEEE Wireless Communications and Networking

Conference (WCNC). IEEE, March 2022, pp. 2732–2737.

[28] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical feature learning on point sets in a

metric space,” Adv. Neural Inf. Process. Syst., vol. 30, Dec. 2017.

[29] A. Akhtar, Z. Li, G. Van der Auwera, L. Li, and J. Chen, “Pu-Dense: Sparse tensor-based point cloud geometry

upsampling,” IEEE Trans. Image Process., vol. 31, pp. 4133–4148, July 2022.

[30] Y. Chen, V. T. Hu, E. Gavves, T. Mensink, P. Mettes, P. Yang, and C. G. Snoek, “Pointmixup: Augmentation

for point clouds,” in Proc. Eur. Conf. Comput. Vis. (ECCV). Springer, June 2020, pp. 330–345.

[31] Z. B. K. Egilmez, L. Xiang, R. G. Maunder, and L. Hanzo, “Development, operation, and performance of 5G

polar codes,” IEEE Commun. Surv. Tutor., vol. 22, no. 1, pp. 96–122, 2019.

[32] L. Quintero, P. Papapetrou, J. E. Mu noz, J. De Mooij, and M. Gaebler, “Excite-o-meter: an open-source unity

plugin to analyze heart activity and movement trajectories in custom vr environments,” in 2022 IEEE Conf.

Virtual Reality 3D User Interfaces Abstracts Workshops (VRW). IEEE, 2022, pp. 46–47.

[33] S. S. Thoota and C. R. Murthy, “Massive MIMO-OFDM systems with low resolution adcs: Cram’er-rao bound,

sparse channel estimation, and soft symbol decoding,” IEEE Trans. Signal Process., vol. 70, pp. 4835–4850,

2022.

[34] S. Qiu, S. Anwar, and N. Barnes, “Dense-resolution network for point cloud classification and segmentation,”

in Proc. IEEE/CVF Winter Conf. on Applications of Computer Vision (WACV). IEEE, 2021, pp. 3813–3822.

[35] M. A. Joshi and P. Patel, “Google page rank algorithm and it’s updates,” in Proc. Int. Conf. Emerg. Trends

Sci. Eng. Manage.(ICETSEM), 2018.

[36] A. K. Srivastava, R. Garg, and P. Mishra, “Discussion on damping factor value in pagerank computation,” Int.

J. Intell. Syst. Appl., vol. 9, no. 9, p. 19, Sept. 2017.

[37] M. Fiedler, T. Hossfeld, and P. Tran-Gia, “A generic quantitative relationship between quality of experience

and quality of service,” IEEE Netw., vol. 24, no. 2, pp. 36–41, March 2010.


