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Graph embedding
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Adjacency spectral embedding
Input symmetric adjacency matrixA ComputeA ≈ X̂X̂⊤ with

X̂ = [X̂1, . . . , X̂n]⊤ ∈ Rn×D:

• compute truncated spectral decompositionA ≈ ÛŜV̂⊤

• let X̂ = ÛŜ1/2
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The manifold hypothesis

(Rubin-Delanchy, 2020)
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Latent position model

Suppose the nodes have true latent positions Z1, . . . , Zn ∈ Zn, whereZn ⊆ Rd is a
compact topological manifold, and are i.i.d. from a probability distribution Gn.

Let f : Zn ×Zn → [0, 1] be a symmetric positive-definite function, called a kernel.

Next, suppose the graph’s adjacency matrix satisfies

A(n)
ij

ind∼ Bernoulli {f(Zi, Zj)} ,

for i < j.
How is Zi related to X̂i?
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Random dot product graph (RDPG)
X̂i estimates Xi, where

A(n)
ij

ind∼ Bernoulli {⟨Xi, Xj⟩} , for i < j,

and ⟨·, ·⟩ denotes the (possibly indefinite) inner product, a model known as the
(generalised) random dot product graph (Rubin-Delanchy et al., 2017).

Claim: The Xi are a high-dimensional but somehow faithful transformation of Zi,

Xi = ϕ(Zi).
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Infinite-dimensional RDPG
The inner product can be used to represent any positive definite kernel f (although
typically in infinite dimension) using the associated Mercer feature map ϕ : Zn → RN,

⟨ϕ(x), ϕ(y)⟩ = f(x, y), for all x, y ∈ Zn,

defining Xi := ϕ(Zi). Therefore, the latent position model also defines an
infinite-dimensional RDPG.

Theorem
The map ϕ is a bi-Lipschitz homeomorphism. As a result, the Xi are supported on a
topological manifoldMn := ϕ(Zn) of the same dimension asZn.

(Whiteley et al., 2021)
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Motivating work

Seshadhri et al. (2020)
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Intuition
Under a random dot product graph,

A(n)
ij

ind∼ Bernoulli {⟨Xi, Xj⟩} ,

• the graph is sparse if most inner products are small

• inner products are small if either the Xi are small (low norm) or they are ’almost
orthogonal’

• but we can’t have arbitrarily many ’almost orthogonal’ vectors inRD

• so for low D and large n, the Xi must be small to achieve sparsity, making triangles
almost impossible
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Sparsity and triangle density
Under a random dot product graph with i.i.d. latent positions Xi, define the graph
sparsity factor, ρn, and triangle density,∆n, via

nρn = n
∫∫

⟨x, y⟩Fn(x)Fn(y), (expected degree)

n∆n =

(
n
3

)∫∫∫
⟨x, y⟩⟨y, z⟩⟨z, x⟩Fn(x)Fn(y)Fn(z),

(expected number of triangles)

where Fn is the distribution of X1, . . . , Xn.
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Question

Can a random dot product graph be sparse, i.e., ρn = o(1), with high triangle density, i.e.,
∆n = Ω(1)?

1. The answer is no if Xi are finite-dimensional (Seshadhri et al.), but:

2. The answer is yes if Xi are infinite-dimensional, yet supported on a low-dimensional
manifold.
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Proof approach

• Start with a compact topological manifoldZn, e.g. unit cube/sphere,

• build manifoldMn using a homeomorphismMn := ϕ(Zn) which is
non-distortive,

• this results inMn being a manifold of the same dimension asZn,

• then can push forward a probability distribution Gn onZn toMn using ϕ to get an
identical distribution Fn onMn

We do this for settings which give a random graph with calculable sparsity and
triangle density.
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Calculation of sparsity and triangle density
Let f : Zn ×Zn → [0, 1] be a positive-definite kernel which is Lipschitz continuous in
each variable, with eigenvalues λk with respect to Gn, and Mercer feature map ϕ.

Lemma ∫∫∫
f(x, y)f(y, z)f(z, x)Gn(x)Gn(y)Gn(z) =

∞∑
k=1

λ3
k .

For the random dot product graph with Fn = ϕ(Gn),

ρn =

∫∫
f(x, y)Gn(x)Gn(y), and ∆n = Θ

(
n2
) ∞∑

k=1

λ3
k .
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Results
In explicit examples, we can achieve ρn = O(1/n) (constant expected degree) and
∆n = Ω(1) with e.g. normal or uniform on-manifold distributions
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Triangles and community structure
It is known that certain forms of community structure do not result in triangles, i.e.

community structure ≠⇒ high triangle density.

There is a perception that the reverse implication is true. Our constructions achieve
high triangle density when no sensible notion of community structure is present, i.e.

high triangle density ≠⇒ community structure.
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Global vs local embedding
Representing a sparse graph, nρn = o(log n), on a low-dimensional manifold leaves
large parts of the manifold uncovered. Therefore, fully identifying the manifold is, in
general, impossible.

By ‘zooming in’ on a small neighbourhood of the graph, we can form an embedding
that represents a flat approximation of the manifold over that region.
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