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Abstract
Process management is considered as an essential approach to improve the performance of an enterprise. The
process of an engineering project is considered to be a formalised workflow accompanied by a set of decisions. With
decisions being made by taking account of information from various sources, the operation and management of modern
engineering projects has to deal with increasing amounts of dynamic and changing project information. Understanding
and interpreting this information for use in process management can generate challenges in practice. This might be
caused by constraints of time and resource, the distributed structure of the information and a lack of modelled domain
knowledge. To address these challenges, the research described in this paper focuses on techniques which support
the automation of the process management of engineering projects, from a data-driven perspective. The research
includes elements of process modelling, monitoring and evaluation of such projects, through a proposed automatic
process analysis system. The proposed system works with live and historical data. Within this paper, the design and
implementation of the system is described. The use of techniques such as autonomic computing, data mining and
knowledge management technologies are shown, and the system functionality is demonstrated through the use of a
dataset from an aerospace organisation.
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Introduction
The process of an engineering project should be a formalised
workflow accompanied by a set of decisions, which are made
by taking into account various pieces of information, such
as project objectives, required resources and the dynamics
of the working environment. Process management has
been considered as an essential approach to improving the
performance of an enterprise (Haddar et al. 2014). In recent
research, various process management models have been
proposed covering the fields of process modelling, process
reuse, complexity identification, process standardisation and
process optimisation (Schäfermeyer et al. 2012; Shen et al.
2006).

However it has become clear that the operation and
management of modern engineering projects need to deal
with increasing volumes of dynamic information (Eppler &
Mengis 2004). The related actions may involve receiving,
understanding and interacting with this information via
various project partners. It will also require the creation
of solutions to interpret, articulate, clarify and make
decisions based on this the dynamic information. Hence,
understanding this dynamic project information and reusing
the information for process management purposes generates
challenges in practice. The challenges can be caused by

• Constraints of time and resource;
• Distributed structure of information;
• Lack of modelled domain knowledge.

The details of these challenges are discussed below.

Constraints of time and resource: As manufacturing in
the globalised environment faces intensive competition,
the need to maintain a high level of profitability, reduce
operation/management cost and improve time/resource
efficiency become critical requirements for engineering
companies (Al-Najjar & Alsyouf 2004; Airbus 2002). To
support the related decision making tasks, the essential
information generated at each project stage needs to be
captured and assessed collectively. The detailed analysis of
this information on a detailed level could enable decision
makers to have a comprehensive understanding about project
process evolutions and characteristic changes, such as the
interactions between project actors, the dependency between
project components, and the performance changes regarding
different project stages.

However, such information typically is considerable,
especially from large-scale projects or projects with complex
processes. Thus, due to the conflict between the amount
of information and the limitation of time/human resource,
human-centered decision-making struggles to fully take
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account of all the necessary information. This also may mean
that the decision-making and related problem solving tasks,
may have an outcome bias in areas where the project actor
has specific knowledge and expertise, rather than the an
overall project perspective.

Distributed structure of information: From an organi-
sational perspective, the globalisation of product design,
manufacturing and services enables the partners of col-
laborative engineering projects to be located in various
regions/countries (Nieusma & Riley 2010; Abdalla 1999).
As a result, the operation and management of such engi-
neering projects are critically dependent upon distributed
communications, together with large amounts of digitalised
documents and dynamically generated workflows (Carey
et al. 2013; Xie et al. 2011). In practice, the management of
distributed data is still not straight forward or well supported.
There are a number of unsolved issues in system design,
data storage, data integration and transaction management
(Agrawal et al. 2010; Deelman & Chervenak 2008). There-
fore, the distributed project information, together with the
decentralised project structure, could significantly increase
the complexity of the project process and the difficulty
of the project operation/management. This could prevent
project actors from having awareness of potential problems
throughout the project lifecycle.

Lack of modelled domain knowledge: The shortage of
experienced labour has become a serious issue in various
industrial sectors, including aerospace, automotive and other
engineering sectors (Dychtwald et al. 2013; Lewin et al.
2009; Weber et al. 2007). The high rate of retirement and
turnover of experienced staff can fundamentally change the
structure of established departments, decrease their average
expertise level and operational efficiency. To avoid these
negative impacts, knowledge management (KM) has been
suggested as a solution (Lindner & Wald 2011; Rosemann
& vom Brocke 2015). However, using top-down methods to
model the knowledge in large organisations, even in small-to
medium-sized enterprises (SMEs) remains a challenge. This
is often due to the KM process itself being complicated and
time/resource consuming (Hislop 2013; Hörisch et al. 2014).

According to recent research, solving these three key
challenges are considered to be critical for improving
the capability of information management, knowledge
management, and workflow management for collaborative
engineering projects (Weber et al. 2007; Xie et al. 2011;
Scheer & Nüttgens 2000). It is these issues that drive the
research work described in this paper.

The purpose of the paper
In order to automate the process management of an engineer-
ing project, the following requirements are considered in this
paper,

• Modelling the operational process from the project
data and defining process normality;
• In real time monitor the process and ascertain the level

of process normality;
• Utilisation of the captured/modelled domain knowl-

edge to facilitate process management and its related
analytical tasks.

Based on these requirements, a system is proposed that
integrates three main functionalities process modelling,
process monitoring and process evaluation. The design and
implementation of the system and its related analytical
approaches apply autonomic computing, data mining and
knowledge management technologies.

To demonstrate the creation and the evaluation of the
proposed system, case studies from the Aerospace service
sector (Departments which provide in-service support) are
shown. In-Service departments for aircraft play a vital and
increasingly important role in delivering services such as
modifications and upgrades, maintenance and emergency
repairs to airline operators of all types. In addition, they have
the opportunity to collect feedback from the stakeholders
e.g., airline operators, contractors and specialist suppliers.
The information contained in the feedback can then be used
to improve aircraft design in the future.

As is typical of many collaborative engineering projects,
In-Service projects contain complex processes with asyn-
chronous and synchronous collaborations (Vianello et al.
2010). Their execution processes need to deal with var-
ious constraints in terms of time, budget and resource.
In the manufacturing environment, the process manage-
ment of In-Service projects still relies on human-centered
decision-making approaches. This decision-making requires
the understanding, modelling and representing of large
amount of project information. Consequently, the monitoring
and evaluation of multiple processes on a real-time basis is
a challenge for the In-Service departments. This challenge
becomes common issue in the process management of engi-
neering projects today. To demonstrate that the proposed
automatic process analysis system (APAS) can address such
a challenge, the research presented in this paper utilises
information and knowledge from 396 In-Service case stud-
ies, to research the design, implementation and generalisa-
tion of the system and the underpinning techniques utilised.

The remainder of this paper is organised as follows.
Section 2 reviews the related work in the fields of process
management, autonomic computing and data mining in
manufacturing. Section 3 introduces the proposed automatic
process analysis system, and the technical details of the
proposed approaches to be used in APAS, are described in
Section 4. The experimental results are evaluated in Section
5 and Section 6 provides the conclusions from the analysis.

Related Work

Process Management
Process management aims to improve the efficiency and
effectiveness of organising project activities, together with
facilitating the understanding of inter relationships among
the activities (Weske 2012). As an extension of workflow
management, it involves various information technologies,
specific knowledge and associated data, to support the
design, enactment, management and analysis of operational
processes (de Medeiros et al. 2008; Van Der Aalst 2013).

According to recent research, various process manage-
ment models have been developed and applied in different
sectors to solve their practical problems. Benner & Tushman
(2002) revealed that the activities of process management
have associations with the increase of innovations and the
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share of innovations. This demonstrates that process man-
agement can be used to enhance the technical innovations,
and broaden the existing knowledge of organisations. Pino
et al. (2008) indicated that the use of process management
in software engineering projects is an effective way to
improve the project management, documentation manage-
ment, requirements change management, process establish-
ment, configuration management and requirements elicita-
tion. de Mast et al. (2011) proposed a conceptual frame-
work of process management for healthcare projects, by
considering the micro processes, tasks and resources from
the project workflow, which is used to improve the process
efficiency, resource management and organisational perfor-
mances. Rao et al. (2012) introduced a model that integrates
ontologies and knowledge maps with process re-engineering
approaches, and it is used to improve the efficiency of busi-
ness processes. Lerner et al. (2010) proposed an approach
to handling exception patterns of modelled process, which
could capture the relationship between exception handling
tasks and the normative process.

Due to the dynamics in manufacturing environments, the
definition and technical specification of process management
are difficult to be consolidated and formalised. As a result,
the creation or selection of suitable process management
models remains a challenge (Ko 2009). It is also challenging
to apply the existing process management models within
manufacturing processes. At times the application of such
model is considered less important by project actors, e.g., a
model could be applied at the early stage of a project, and
then intentionally or unintentionally ignored at the following
stages (Michael Gnatz & Rausch 2004). To improve the
usability of process management models, researchers have
shown it is necessary to reduce the human intervention.
Hence, computer aided technologies need to be integrated.
In the automotive industry, ICT based support has been used
to support the process management and support the process
development (Müller et al. 2006). The technologies have
also been used to support process planning in collaborative
manufacturing and product lifecycle management (Ming
et al. 2008).

A number of gaps become clear from this review, namely
that there are only piecemeal attempts at solutions, that it is
important to reduce human intervention and that the time-
based aspects has been largely overlooked.

Autonomic Computing
Information systems in modern manufacturing have increas-
ingly sophisticated structures, as they need to include more
components, deal with distributed resources, process hetero-
geneous data, and support multiple users with varying levels
of access. These factors make the development, configuration
and management of such systems to become more difficult.
Researchers from IBM first revealed that the operational
and managerial mechanisms of complex information systems
have certain degrees of similarity with the human biological
system (Kephart & Chess 2003). For example, the biological
system such as autonomic nervous system, can manage
essential body functions autonomously, such as the monitor-
ing of heartbeat, maintenance of blood sugar levels and body
temperature, without any effort from the human. This type of
self-management features are considered particularly useful

for improving the autonomy of complex information systems
(Sterritt et al. 2005).

On the basis of this concept, autonomic computing
is designed as an automatic approach that simulates the
autonomic nervous system. This could be used to integrate
self-management functionalities into information systems,
i.e., to control the function of computation and system
operation related tasks without human intervention.

Autonomic computing systems are typically referred to as
any information system that involves autonomic computing.
In its self-management process, the system needs to sense
the temporal status of each internal component and the
condition changes of the external environment. It then takes
appropriate actions based on the sensed information. The
control loop in autonomic computing system covers the
aspects of self-configuration, self-optimisation, self-healing
and self-protection (Kephart & Chess 2003). In general, the
self-configuration means the system can automatically adjust
itself according to the pre-designed high-level guidance; the
self-optimisation means the system can constantly monitor
and adjust itself during the operation, continually improve
its performance and efficiency; the self-healing means the
system has the capability of handling the failures caused
by itself; and the self-protection means the system could
automatically anticipate and prevent attacks or failures
caused by external sources (IBM 2006).

To implement complex tasks, the autonomic computing
system integrates various types of components, including
software, hardware, services or combination of them. Each
system component is treated as a single autonomic element
that is designed to automatically perform certain behaviours.
The autonomic element contains a communication mecha-
nism that enables it to communicate with other elements in
the system. Based on different component combinations, the
system could have the capability to perform tasks in different
manufacturing environments. For a particular environment,
the key behaviours of the autonomic elements need to be
pre-defined according to the environment condition and user
requirements, and then organised into hierarchical structures.
The functionality of the system is therefore dependent upon
the internal behaviours of each autonomic element, and the
relationships between the autonomic elements (Huebscher &
McCann 2008; Sterritt et al. 2005).

Recently, various types of autonomic computing systems
have been proposed and applied in different fields. Kim
et al. (2011) proposed an autonomic model to manage
the application workflow in hybrid computing infrastructure.
Here the system and application states are minitored
and then the applications and resources are adapted to
respond to the changes of environment. Caton & Rana
(2012) stated that large-scale and multi-users information
management systems, such as cloud services, could utilise
autonomic management to improve their reliability and the
predictability of resource management. Fallon & O’Sullivan
(2013) integrated semantic technologies into an autonomic
model, and then applied the model to manage end-user
service quality. These ideas have been used in the creation
of the approaches used by the research reported in this paper.
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Data Mining in Manufacturing
In modern manufacturing, more and more information
management systems have started to integrate advanced
analytical approaches from data mining and machine
learning fields, in order to address the issues on information
understanding and reusing, and to fulfil the information
needs about process management and evaluation. Data
mining is an important tool to support the daily information
management tasks and discover the knowledge from
manufacturing databases (Choudhary et al. 2009). It is
also considered as the fundamental tool for developing
more advanced information management systems. For
example, it can be used to achieve the functions including
predictive maintenance, fault detection, quality control and
customer relationship management (Harding et al. 2006;
Köksal et al. 2011). Under the scope of data mining,
various analytical technologies have been proposed, such
as classification, clustering, pattern identification/extraction,
feature selection/modelling and visualisation. By using these
approaches, the raw data from engineering projects can
be automatically organised and analysed, enabling project
actors to gain a more comprehensive understandings of
project characteristics without excessive effort (Wang 2007).

Recent research demonstrated that data mining is playing
an important role in supporting information management
in manufacturing. Gröger et al. (2012) revealed that data
mining can be used to optimise the workflow-based business
process and generate decision rules/trees for process analysis
use. Shi et al. (2014a) proposed an approach integrating
data mining with domain knowledge, which automatically
identifies the temporal changes of an engineering project
process from workflow related data. Shi et al. (2014b)
also revealed that the patterns contained in the project
documentations are particularly useful for the planning of
similar projects. Meanwhile, the identified patterns can be
directly transferred into a knowledge base for future reuse.

Data generation of an engineering project is accompanied
with the project operation process; hence the information
contained in project data can be used to reconstruct the actual
project process. Data mining has been considered to have the
capability to discover the meaningful patterns from the data,
and also to identify the relations between the patterns.

On this basis, data mining has been selected as suitable to
be used as the ’virtual sensor’ and ’information provider’
in the autonomic process management system, which
could automatically identify and extract process-related
information from project data.

Automatic Process Analysis System (APAS)
In modern manufacturing, collaborative engineering projects
are concurrent, heterogeneous, and constrained. In general,
‘concurrent’ implies that, to fit the demands of changing
markets and consumers, the project teams need to simul-
taneously implement multiple tasks/projects on different
product/service lines; ‘heterogeneous’ implies that projects
could require different processes due to their different types,
priority settings and technical requirements; ‘constrained’
implies that the projects are performed under constraints,
e.g., the time pressures, the limitation of humans or other
types of resources.

To automate the process management for collaborative
engineering projects, two research challenges are identified,

• How to improve the manageability and understand-
ability of project information;

• How to reduce human intervention in data analysis and
decision-making related tasks.

To address these challenges, the proposed automatic
process analysis system (APAS) integrates data mining
technologies, natural language processing and knowledge
bases. Knowledge bases are used as the high level guidances
to perform analytical tasks. Project actors, e.g., engineers and
managers, are able to add new knowledge to the knowledge
bases at any time, or to edit the existing concepts in the
knowledge bases if needed. These behaviours could integrate
the dynamics of environments into the knowledge bases.

The system encompasses three main phases, i.e., the mod-
elling phase, the monitoring phase and the evaluation phase
(see Figure 1). These phases are executed in a predefined
order, each having specific functionalities. For example, the
modelling phase focuses on processing the captured project
data, identifying process features from the data and selecting
additional features from modelled knowledge bases; the
monitoring phase categorises modelled processes by using
clustering/classification methods, segment such processes
based on predefined time intervals and compares the simi-
larity between ongoing processes and segmented processes;
the evaluation phase measures the process normality, and
generates interactive visualisations for modelled processes.

The components included in these phases and the technical
details are introduced as follows.

Modelling Phase: as shown in Figure 2, the components
involved in this phase include data processing, knowledge
mapping, feature modelling and process modelling. At the
initial stage, the distributed project data is captured and
integrated from different sources, including those related to
communication, workflow and environment. The integrated
data is treated as the system input, and then processed
by the analytical modules, including meta-data analysis,
content analysis and semantic analysis. For the analysis,
certain types of knowledge bases, e.g., lexical ontologies,
are applied to support the semantic analysis module. This
module is used to identify and extract semantic features,
e.g., important terminologies or phrases, from content-
related data such as project descriptions, objectives or related
communications. In the knowledge mapping module, the
extracted information is used to select domain specific
knowledge bases to facilitate further analysis, such as feature
modelling and process modelling. The feature identification
module aims to identify process-related features from
the data, e.g., activity names, named entities, document
names, department information, client information, etc. In
the feature selection module, the identified process-related
features are filtered/weighted based on the selected domain
specific knowledge bases, and then the most important
features are passed to the next step, activity mapping. In the
activity mapping module, each identified activity is treated
as a high-level indication of process-related features, which
can be used to map/link related features together. In the
end, the sequencing module converts the features with their
timestamps into feature-based sequences (modelled process).
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Figure 1. The main phases of the system

Monitoring Phase: as shown in Figure 3, the components
involved in this phase include process visualisation and
process monitoring. In this phase, an interactive interface
for process visualisation is provided to the project actors,
enabling them to browse multiple modelled processes
simultaneously. Process monitoring contains two modules
clustering and classification, which are used to categorise
the modelled processes into groups. The clustering
module applies the unsupervised approach to categorise
the modelled processes into groups by measuring the
similarities/dissimilarities between the processes. In other
words, the processes in the same group need to have a
certain level of similarity with each other. This module
aims to assist the project actors through quick access to
projects with similar processes. The classification module
applies the supervised approach, by using a training set, to
discriminate the category a process belongs to. The training
set contains a collection of labelled processes, and each
label corresponds to a pre-defined category. The processes
together with their labels from the training set are used to
train the classifier in how to categorise unlabelled processes.
During the classification, a specific label will be assigned
to an unlabelled process, if the process has certain level
of similarity with the labelled processes. With this module,
when a new project takes place, it will be automatically
categorised into the appropriate category. This module aims
to help the project actors effectively compare the new/current
project process with other similar projects.

Evaluation Phase: as shown in Figure 4, the components
involved in this phase include process modelling, content
retrieval, process segmentation, normality measure and
process visualisation. In the initial stage, the data of ongoing
projects is processed by the process modelling module. The
content retrieval module then automatically retrieves similar
projects from the dataset based on the identified process
features. Based on the elapsed time of ongoing projects,
the processes of retrieved projects are segmented by the
process segmentation module. Next, the process normality
of ongoing projects is measured by considering the sequence
similarity between the ongoing project process and retrieved
project processes. The outputs from the analysis generated
by the normality measure module, enable project actors to
ascertain whether the ongoing project is not behaving in a
normal fashion.

In APAS, the analytical modules are designed to be
automated. To achieve their functionalities, data mining
and machine learning based approaches are required. The

technical details of these approaches are introduced in the
following section.

Automatic Approaches on Process
Management
To deal with different projects, a critical requirement is to
handle their heterogeneous data in a uniform way, ensuring
the information contained in such data can be represented
consistently. It then enables both computers and human to
use the same approach for understanding and evaluating the
process structures and project characteristics.

In APAS, a hybrid representation is proposed and used
to fulfil the requirement. The core consists of feature based
vectors and sequences, which are created by considering
two types of information, i.e., semantic and process-related.
Accordingly, five analytical approaches are used to achieve
the automatic creation of these vectors and sequences. These
approaches include feature identification, feature selection,
process sequencing, process similarity measure and a process
normality measure.

Feature Identification and Selection
Using pi to denote a project, pi = {M,C} denote its related
dataset, where M is the set of metadata, and C is the set
of content information. The metadata contains the bottom-
level description and attributes related information of the
project data itself, e.g., the file version, creator, issued by,
modified date, storage path, etc. The content information
contains descriptive information, semantic information and
knowledge related information about the project, e.g., the
defined objectives, encountered problems, applied solutions,
contained communications, issued documentations, involved
technical details, etc.

For a general knowledge baseKG, contains terminologies,
entities and general concepts related to the common
characteristics of projects. Let FG denote a set of semantic
features in KG, and fG,m denote a single feature, where
fG,m ∈ FG and FG = (KG ∩M) ∪ (KG ∩ C). The feature
vector of project pi is,

vi = [fG,1, fG,2, ..., fG,m]
T (1)

where m is the total number of semantic features identified
from the project data.

For a process-related knowledge base KP , contains
process-related concepts, activities, document types, and
their related dependencies and weightings. Let FP denote
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Figure 2. Modelling phase

Figure 3. Monitoring phase

Figure 4. Evaluation phase

a set of process-related features in KP , and fP,n denote a
single feature, where fP,n ∈ FP and FP = KP ∩ C. If a
process sequence containing multiple features, the index of a
single feature is determined by the timestamp of the feature.
For example, fP,i and fP,j are the features in one sequence,
tsP,i and tsP,j denote their timestamps respectively, and the
indexes of these features satisfy i < j, if the timestamps of
them satisfy tsP,i < tsP,j . According to these, the process
sequence of the project pi is represented as,

si =

|FP |∑
n=1

wn · fP,n (2)

where n is the index of feature fP,n; |FP | is the size of
feature set FP ; and wn is a weighting function, wn ∈ [0, 1].

Time-based Sequence/Vector Segmentation

In practice, a project process is usually dynamic over time,
thus adding a time dimension onto the data representation is
necessary. This time dimension will enable the investigation
of process evolution for both ongoing (i.e., uncompleted) and
completed projects, as well as the comparison of process
similarity between them. For this purpose, time-based
sequence/vector segmentation are proposed and applied to
convert a modelled process into multiple sub-processes
based on time intervals.

For a given timestamp ts, it can be used to indicate the
absolute time, e.g., x-th hour/day/step, or the relative time,
e.g., x% of the project timeline T . Let F ′P denote a process-
related feature set with ts, for its contained features, their
timestamps need to satisfy tsP,n < ts. According to this, the
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sub-sequence of project pi is represented as,

s′i =

|F ′
P |∑

n=1

(wn · fP,n)ts, ts ∈ τ

τ = {
|seg|∑
j=1

(j · T

|seg|
)}, j ∈ [1, |seg|]

(3)

where τ is the set of time intervals regarding the timeline,
and |seg| is the number of segmentations of the timeline.

Similarly, using F ′G denote a general feature set with ts,
for its contained features, the timestamps need to satisfy
tsG,n < ts. According to this, the sub-vector of project pi
is represented as,

v′i = [fG,1, fG,2, ..., fG,|F ′
G|]

T (4)

where |F ′G| is the size of feature set F ′G.
In this segmentation process, F ′P and F ′G are the

truncated sets being converted from the original sets FP

and FG. The contained features in these truncated sets are
determined/adjusted by the setting of ts. For example, if ts
is the last date of T , then F ′P = FP and F ′G = FG, which
means the segmented sequence and vector are equal to the
original ones; if ts is equal to 10% of the timeline T , F ′P and
F ′G will only contain the features which are generated within
the 10% of project progress.

Process Similarity Measure
The similarity measure of proposed data representation
considers semantic similarity and sequence similarity. In the
monitoring phase, project processes with certain levels of
combined similarity are categorised into the same group. The
similarity measure process is described as: giving a threshold
ε ∈ (0, 1), the processes of project pi and pj are considered
as similar, if and only if simsem(pi, pj) + simseq(pi, pj) ≥
ε.

To measure the semantic similarity, the Vector Space
Model (VSM) is applied. For a set of projects, all of the
contained semantic features from them are used to construct
a feature space. The similarity between any two projects
is then measured based on the angle between their related
feature vectors in the feature space. For the given feature
vectors vi and vj , the similarity is,

simsem(vi, vj) =
vi · vj
‖vi‖‖vj‖

(5)

where ‖vi‖ and ‖vj‖ are the L2 norm of vi and vj .
To measure the sequence similarity, the Levenshtein

Distance is applied (Shi et al. 2014a). Let |si| and |sj |
denote the sequence length, the similarity between them is
calculated by using,

simseq(si, sj) =

1− disLev(si,sj)
min(|si|,|sj |) , if disLev(si, sj) ≤

ϕ ·min(|si|, |sj |)
0, otherwise

(6)
where min(|si|, |sj |) is the minimum length of si and sj ; ϕ
is a threshold, ϕ ∈ (0, 1).

By considering both semantic similarity and sequence
similarity, the normalised similarity of projects pi and pj is

measured by,

sim(pi, pj) =

α · simsem(vi, vj) + β · simseq(si, sj)
(7)

where α, β are the adjustable weights, α, β ∈ [0, 1], α+ β =
1. These two variables are used to adjust the similarity
measure process. For example, if α = 0, the similarity
between two projects is only determined by their content;
if β = 0, the similarity between two projects is only
determined by their processes. An empirical setting of them
is α = β = 0.5, which equally considers the effects from
both content and processes.

Normality Measure
In the evaluation phase, process normality is used to evaluate
whether the project process is on the right track during its
operation (Shi et al. 2014a). In this paper, the normality
measure of modelled processes is implemented on two
levels, i.e., micro-level and macro-level.

Micro-level measure: for a given process-related feature,
there could be different prior and posterior adjacent features
in different project processes. The distribution of process-
related features is mainly determined by two factors,
feature property and project type. For the given feature,
its own property determines its occurrence probability;
the type of its related project determines its adjacent
features. For example, for a process-related feature, named
‘Issuing Repair Instruction’, of In-Service projects, the
prior features and posterior features, together with their
occurrence probabilities are shown in Table 1 and Table 2
respectively.

Review of the data in these tables shows that certain
feature combinations have higher occurrence probabilities,
such as ‘Request Repair Instruction’ and ‘Issuing Repair
Instruction’ (58.56%), ‘Receiving Damage Report’ and
‘Issuing Repair Instruction’ (14.38%), etc. However, some
feature combinations have lower or zero occurrence
probabilities, such as ‘Issue Technical Disposition’ and
‘Issuing Repair Instruction’ (2.74%), ‘Issue Approval Sheet’
and ‘Issuing Repair Instruction’ ('0%). In general, if
a project process mainly contains feature combinations
with high occurrence probabilities, the process could be
considered as normal; if the project process excessively
contains feature combinations with low or zero occurrence
probabilities, the process could be considered as less normal.

Table 1. List of prior features with probabilities

Prior Feature Feature Prob.

Request Repair Instruction 58.56%
Receive Damage Report Issue 14.38%
Request Approval Sheet Repair Instruction 9.70%
Request Damage Report 5.82%
Issue Technical Disposition 2.74%
... ...

In this micro-level measure, for a given dataset, the
possible adjacent features of each single feature need to be
identified, and the occurrence probabilities of the adjacent
features need to be calculated accordingly. For a single
feature fP,x and a datasetD, Pr(fP,x) represents the feature
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Table 2. List of posteriori features with probabilities

Feature Posteriori Feature Prob.

Send Repair Instruction 46.15%
Issue Request Damage Report 7.69%
Repair Instruction Issue Approval Sheet 13.19%

Receive Damage Report 12.09%
Issue Technical Disposition 3.37%
... ...

occurrence probability in the dataset, and Fx,D represents
a set of adjacent features of fP,x which are identified from
the dataset. For a project containing the feature combination
(fP,x, fP,x+1), its micro-level normality is measured by,

normic(fP,x, fP,x+1) =

{
Pr(fP,x+1), if fP,x+1 ∈ Fx,D

−1, otherwise
(8)

According to this equation, if a modelled process containing
(fP,x, fP,x+1), but the feature fP,x+1 never appears behind
fP,x in the given dataset, then the normality score of this
process will be decreased during the process evaluation.

Macro-level measure: the macro-level measure consid-
ers the entire project process, instead of the feature com-
binations. Fundamentally, giving a modelled process, this
approach aims to calculate the number of other processes
from the dataset that are similar to the given process.

Let si denote the entire sequence of a modelled process,
Si,D is the set of other similar sequences contained in
the dataset. The macro-level normality of the sequence is
measured by,

normac(si) =

|Si,D| ·
|Si,D|∑
j=1

simseq(si, sj)

0, if |Si,D|
|D| ≤ ϕ

(9)

where |Si,D| is the size of Si,D, i.e., the number of similar
sequences of si in dataset D; |D| is the total number of
sequences contained in the dataset. ϕ is a threshold, ϕ ∈
(0, 1], which is used to adjust the process of macro-level
measure. For example, when ϕ = 0.05, the sequence si will
be considered as normal, if and only if its similar sequences
take more than 5% proportion in the dataset.

Evaluation and Experiment
This section demonstrates the functionalities of APAS and
evaluates the analytical modules of the system through the
use of a dataset from an aerospace organisation. The data
set contained 396 In-Service projects that were implemented
between 2013 and 2014. The data of each project included
workflow, technical and communication related information.
All of the information items had identifiable timestamps.
The knowledge about general operation process and feature
weightings was captured from the subject matter experts
in the departments. It is then used as the knowledge bases
to support related analytical modules within APAS. The
evaluation comprised of three main parts, i) data processing
and feature modelling, ii) process modelling and monitoring,
and iii) process evaluation.

Data Processing and Feature Modelling
The data of In-Service projects included various file types
e.g., database related (.sql), image related (.jpg, .tiff, scanned
PDF files) and text related (.pdf, .doc, .txt). These types
of data are common across a lot of organisations and
industries. Some of the image files also contained textual
information e.g., scanned PDFs, drawings or images with
annotations. To utilise the information contained in such
files, optical character recognition was used to pre-process
some of the data. After this, all the textual data was processed
using natural language processing. The processing method
involved tokenisation, stop words removing and stemming,
which filtered out the terms with less importance, and re-
organised the data into a more structured format.

Semantic analysis with lexical ontologies is used to
extract semantic features from the pre-processed data. The
main reason of using lexical ontologies is to address the
polysemy and synonymy problems. In general, polysemy
means that one term could have different concepts, and
synonymy means that one concept could be described by
different terms. For example, ‘fuselage’ and ‘airframe’ have
the similar semantic meaning but in different forms. For
the information items containing ‘fuselage’ and ‘airframe’
respectively, they could be considered to have the identical
concept by the project actors straightaway. However, they
could be considered to have different concepts by the
system if only term-based analysis is applied. Eliminating
disambiguated word senses is recognised as the essential
way for improving the accuracy of content analysis (Agirre
& Edmonds 2007). For information management systems
in manufacturing, correctly distinguishing the semantic
meaning of project data is critical, as it can directly
affect the way of organising unstructured information,
discovering knowledge and sharing information between
people/departments (Xie et al. 2011).

After the initial processing, the project data is converted
into a set of semantic features. Table 3 shows the semantic
features being extracted from ‘ODR’ (Operator’s Damage
Report). As shown in the table, the semantic features are
the essential terms contained in the report content, and the
importance of feature is indicated by the feature occurrence.
The semantic features with their occurrences describe
the project details, service requirements and technical
requirements. For example, the features from the table could
describe the affected locations, i.e.,‘wing’, ‘top skin’, ‘rear
rib’, or service types, i.e., ‘cracking, ‘corrosion’.

Besides the semantic features, the process-related features
also need to be identified and extracted. Table 4 shows a
list of process-related features that are extracted from the
content and metadata of ODR. In the feature modelling
module, named entity recognition and information extraction
are applied to perform this task. Named entity recognition
could automatically identify named entities from the data,
and the identified entities include people, organisation, date,
location, etc. Information extraction is applied to detect the
relation/dependency between the identified entities. With the
assistance of pre-defined rule sets and knowledge bases,
information extraction also identifies the information with
more specific properties, including aircraft types, part names,
serial numbers, document reference numbers and contact
information.

Prepared using sagej.cls



9

Table 3. Semantic features of the ODR

Term Occurrence Term Occurrence

top 102 damage 37
skin 87 threshold 35
rear 81 location 34
rib 79 j1 32
hole 75 fh 31
crack 72 face 31
fastener 62 rh 30
issue 59 structure 27
wing 56 fit 25
fatigue 55 bay 25
flange 49 justification 25
stress 47 material 25
inspection 47 load 24
corrosion 43 ... ...

From a general information management point of view,
converting heterogeneous data into appropriate features
could facilitate content analysis and feature modelling. It
enables the system to integrate with different analytical
technologies, including content retrieval, content-based
clustering/classification and sequential pattern mining.
Moreover, the selection and utilisation of knowledge bases
will be performed more efficiently and effectively further
improving the automation and performance of the analytical
modules.

Process Modelling and Monitoring
Once the data processing and feature identification have been
completed, each project process is then represented by a set
of combined features, i.e., semantic features and process-
related features. The semantic features need to be converted
into feature vectors. Table 5 shows the feature vectors that
are generated from part of the dataset. In this table, each row
is the feature vector of one project process.

To generate the sequence, process-related features are
applied. Certain features may have higher importance than
the others, if they have higher correlations with the key
activities in the project process. The information contained
in these features is sufficient to represent the project process,
thus the process modelling module only needs to take into
account of certain features, instead of the entire feature set.
It also means that some features with less importance should
be removed deliberately. This could improve the robustness
and rationality of the process modelling module, as well
as eliminate the possible interferences caused by irrelevant
information. Based on the knowledge captured from the In-
Service departments, 15 types of process-related features are
considered, and some of them are shown in Table 6.

For any given dataset, the process modelling module
analyses its contained project information recursively, and
generates separate feature set for each project, whilst the
timestamp of each feature is identified. The considered
features (in Table 6) with timestamps are then used to create
the process sequences. Figure 5 shows a visualisation of
some modelled processes. In this visualisation, each row is a
modelled project process. Each Tx indicates a single feature,
and the features contained in a sequence are arranged in
chronological order. This visualisation helps project actors
review multiple modelled process simultaneously, which

enables them to efficiently gain the general understanding of
the process structure.

Moreover, Figure 6 shows another visualisation of the
modelled processes based on an interactive interface.
Comparing to the previous one, this visualisation shows the
explicit relationship between each feature and its timestamp.
It enables the project actors to have a drill-down view of
each modelled process on document or content level, which
aims to help them to understand the process inner structure
and the dependency of the features. For example, EMAIL
indicates the initialisation of a task; LINEITEM indicates
the type of action being required by the task implementation;
and ATTACHMENT indicates the actual documents or data
being generated during the task implementation. All the
features are then organised into groups based on their
timestamps, which can be zoomed in or zoomed out by using
the navigation tabs on the interface. Both listed visualisations
(Figure 5 and 6) are included in the process visualisation
module.

Process Evaluation
This evaluation aims to investigate the process evaluation
module through two scenarios, i.e., unsupervised process
evaluation and supervised process evaluation.

Unsupervised Process Evaluation
The process evaluation module contains automatic mecha-
nisms of sequence analysis and process normality identifica-
tion. In the unsupervised scenario, advanced domain knowl-
edge, labelled or pre-classified data are not necessary for
performing sequence analysis and normality identification.
The process normality of projects is measured based on the
sequence structure and the dataset structure. For the given
dataset, the sequence similarity of each project is calculated
by using the proposed approach, and then a similarity matrix
is generated accordingly (as shown in Table 7). The data
shown in the matrix is from Figure 5∗. To simplify it,
sequence similarity values less than 0.5 are filtered out.

In the matrix, projects P2 and P3 are considered the
most similar, with the highest similarity value 0.7185.
According to their sequence structures shown in Figure 5,
some common patterns can be identified in both of them.
For example, in the early project stage, pattern {T1, T9}
occurred; in the middle project stage, pattern {T1, T9, T13,
T15, T1} occurred; and in the late project stage, patterns {T9,
T11} and {T15, T13, T15, T9} occurred. By examining their
content-related information, both projects are related to an
identical aircraft model, same damage location and service
type. Moreover, projects P5, P6 and P8 are all considered
to be unique, as their similarity values are the lowest ones
in the matrix. According to their sequence structures, few
common patterns are contained in their processes when
comparing to the others. By examining their content-related
information, project P5 is the only one having ‘lightening’
related damage, therefore its process should be different from
others in natural. Project P6 is a new type of damage that
has never occurred in the past, a special service procedure
therefore needs to be designed for it, leading to its process
being different from the others. Project P8 has a different

∗Due to space limitation, only the first 10 entries are displayed in the matrix.
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Table 4. Identified process-related features of the ODR

‘feature name’: ‘project actors’: [ ‘activated date’: [
‘ODR’, P1, ‘2013-04-15’,

‘feature id’: P2, ‘2013-04-16’,
‘1’, ], ‘2013-04-22’,

‘feature property’: ‘departments’: [ ],
‘outgoing’, D1, ‘document refs’: [

‘file type’: [ D2, ‘7057597x/0x4’,
‘text’, ], ‘7057597x/0x9’,

‘image’, ‘location’: [ ‘7057597x/0x4’,
], L1, ‘7057597x/0x2’,
‘aircraft type’: L2, ],

‘A320-XX’, ], ... ...

Table 5. Sample of semantic feature vectors

skin lh multisite lightning rear upper rh panel surface rib ...

P1 0.087 0 0.113 0 0 0 0.087 0.087 0 0 ...
P2 0.066 0 0 0 0.087 0 0 0 0 0.066 ...
P3 0.080 0 0.105 0 0 0 0 0.080 0 0.080 ...
P4 0.066 0.087 0 0 0 0 0 0.066 0.066 0.066 ...
P5 0 0 0 0.210 0 0 0.080 0 0 0 ...
P6 0.075 0 0 0 0.098 0.098 0 0.075 0.075 0 ...
P7 0.075 0 0 0 0 0.098 0 0.075 0.075 0.075 ...
P8 0.070 0 0 0 0 0 0.070 0 0.070 0 ...
P9 0 0.123 0 0 0 0 0 0 0 0 ...
P10 0.087 0 0 0 0 0.113 0 0 0 0 ...

Figure 5. Sample of process sequences

damage location, i.e., its damage is on the ‘lower surface’
whereas the others are on the ‘top surface’, hence a different
process is required.

Comparing process normality for large number of
modelled processes by the use of such detailed information is
not always realistic, due to limited time and restricted access
to the information in practice. The macro-level normality
is considered to be a fast approach to comparing multiple
processes more efficiently. It takes into account of both

the similarity values and the quantity of similar projects.
The macro-level normality of a modelled process is in
proportion to the cumulative similarity of its related projects,
in conjunction with the number of its related projects.
For example, project P7 has 5 related projects, and its
cumulative similarity is equal to (0.546 + 0.662 + 0.585 +
0.508 + 0.585) = 2.886, thus its macro-level normality is
2.886× 5 = 14.430. In general, for two projects having the
identical cumulative similarity, the one with more similar
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Figure 6. An interactive interface for visualising the modelled processes

Table 6. List of process-related features

Feature

OM Outgoing Message
AW Answer
S&F Stress & Fatigue
ODR Operator’s Damage Report
IM Incoming Message
RDAS Repair/Design Approval Sheet
TD Technical Disposition
DRG Drawing
RI Repair Instruction
...

projects will be considered to have higher normality; for two
projects having the same number of similar projects, the one
with higher value of cumulative similarity will be considered
to have higher normality.

Supervised Process Evaluation
In the supervised scenario, the process evaluation module
assesses the characteristics of new projects by using some
labelled data. In practice, the departments may already
have the labelled/annotated data of completed projects. By
the use of past experience and modelled knowledge, more
labelled data can be created automatically using data mining
technologies. In this evaluation, six labels are assigned
to the projects in the dataset, according to the specific
rules summarised by knowledge experts of the departments.
Projects with an identical label means they are similar

to each other in terms of their contained process-related
features. Next, 10-fold cross-validation is applied to divide
the dataset into a training set (containing 90% data) and a test
set (containing 10% data). Afterwards, some classification
approaches, i.e., Naive Bayes, Artificial Neural Network
(ANN), Support Vector Machine (SVM) and Random Forest
(RF), are applied to classify the test set based on the training
set. The objectives of this evaluation include, i) testing if
the labelled projects can be used to evaluate new projects
(the label of test data are invisible to these classifiers,
thus the test data can be treated as ‘new projects’ in the
evaluation), ii) testing if the data representation proposed
in this paper has the capability to work with standard
classification approaches. The results of this evaluation are
shown in Table 8.

Overview

According to the results from the table, the classification
approaches, especially ANN and RF, have good performance
on classifying unlabelled project processes. This indicates
that new project processes can be automatically classified
based on the labelled processes with appropriate accuracy.
Meanwhile, the results also demonstrate that the proposed
data representation can work with standard classification
approaches with no issues. Moreover, the evaluation in the
unsupervised scenario confirms that the process with low
normality scores can be automatically identified by applying
the proposed approach. All these results show that the
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Table 7. Sequence similarity and normality

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

P1 0 0 0.619 0 0 0.546 0 0.523 0.557
P2 0 0.719 0 0 0 0.662 0 0 0.593
P3 0 0.719 0 0 0 0.585 0 0 0
P4 0.620 0 0 0 0 0.508 0 0 0
P5 0 0 0 0 0 0 0 0 0
P6 0 0 0 0 0 0 0 0 0
P7 0.546 0.662 0.585 0.508 0 0 0 0 0.585
P8 0 0 0 0 0 0 0 0 0
P9 0.523 0 0 0 0 0 0 0 0.557
P10 0.557 0.593 0 0 0 0 0.585 0 0.557
M-Nor. 8.980 5.919 2.606 2.254 0.000 0.000 11.425 0.000 2.160 9.168

Table 8. Results of process classification

Naive Bayes ANN SVM RF

Precision 0.792 0.933 0.859 0.915
Recall 0.794 0.932 0.841 0.916
F-measure 0.790 0.932 0.830 0.915

process evaluation module in the system has the capability
to evaluate the project processes.

Conclusions
The proposed system APAS in this paper aims to support
the automation of process management for collaborative
engineering projects. The main functionalities of the system
include process modelling, process monitoring and process
evaluation. To automate the system functionalities, related
analytical approaches have been proposed, including feature
modelling, process sequencing, process similarity measure
and process normality identification. Using the proposed
approaches, the system converts project data into processes
that can be modelled, in the form of feature vectors and
sequences. It is then possible to perform automatic analysis
on them. Thus the approach and the associated system
enables project actors to monitor and evaluate multiple
project processes simultaneously, whilst giving them unique
understanding on process evolutions, project characteristic
changes and environment dynamics.

The evaluation shows that the system with proposed
approaches have the capability to work with real engineering
data. It also shows that the proposed data representation
for engineering projects can be integrated with various
data mining technologies, implying that the functionality
of this process management system can be customised and
extended.

Further work includes the development of a knowledge
capture module. This module is required to be integrated
with the knowledge bases. The main functionalities include
the detection of common knowledge of historical projects,
and the reduction of human intervention for knowledge base
creation. In addition, the design of a formal knowledge
structure for aerospace In-Service is under consideration, and
the evaluation of such knowledge structure is also required.
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Scheer, August-Wilhelm, & Nüttgens, Markus. 2000. ARIS
architecture and reference models for business process
management. Springer.

Shen, Weiming, Wang, Lihui, & Hao, Qi. 2006. Agent-based
distributed manufacturing process planning and scheduling: a
state-of-the-art survey. Systems, Man, and Cybernetics, Part C:
Applications and Reviews, IEEE Transactions on, 36(4), 563–
577.

Shi, Lei, Gopsill, James, Newnes, Linda, & Culley, Steve. 2014a.
A Sequence-Based Approach to Analysing and Representing
Engineering Project Normality. Pages 967–973 of: Tools with
Artificial Intelligence (ICTAI), 2014 IEEE 26th International
Conference on.

Shi, Lei, Gopsill, JA, Snider, CM, Jones, SL, Newnes, Linda, &
Culley, SJ. 2014b. Towards Identifying Pattern in Engineering
Documents to Aid Project Planning. In: DS 77: Proceedings of
the DESIGN 2014 13th International Design Conference.

Prepared using sagej.cls



14 Journal Title XX(X)

Sterritt, Roy, Parashar, Manish, Tianfield, Huaglory, & Unland,
Rainer. 2005. A concise introduction to autonomic computing.
Advanced Engineering Informatics, 19(3), 181–187.

Van Der Aalst, Wil MP. 2013. Business process management: A
comprehensive survey. ISRN Software Engineering.

Vianello, Giovanna, Xie, Yifan, Ahmed-Kristensen, Saeema,
Culley, Stephen J, et al. . 2010. Handling of in-service support:
comparison of two case studies from complex industries. In:
DS 60: Proceedings of DESIGN 2010, the 11th International
Design Conference, Dubrovnik, Croatia.

Wang, Kesheng. 2007. Applying data mining to manufacturing: the
nature and implications. Journal of Intelligent Manufacturing,
18(4), 487–495.

Weber, Frithjof, Dauphin, Eva, Fuschini, Renata, Haarmann,
Julia, Katzung, Alexander, & Wunram, Michael. 2007.
Expertise transfer: A case study about knowledge retention at
Airbus. Proceedings of the 13th International Conference on
Concurrent Enterprising (ICE 2007), 329–338.

Weske, Mathias. 2012. Business process management: concepts,
languages, architectures. Springer Science & Business Media.

Xie, Yifan, Culley, Steve, & Weber, Frithjof. 2011. Applying con-
text to organize unstructured information in aerospace industry.
In: DS 68-6: Proceedings of the 18th International Conference
on Engineering Design (ICED 11), Impacting Society through
Engineering Design, Vol. 6: Design Information and Knowl-
edge, Lyngby/Copenhagen, Denmark.

Prepared using sagej.cls


