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Abstract - Engineering projects are often highly complex,
unique and safety critical, which can lead to the complex
engineering processes and activity. To ensure the success of
engineering projects, the projects often have to comply with
stringent regulations and company processes. In addition, the
increasing in-service lifespan of products hasled to an increase in
the number of re-design and maintenance projects. These are
often run concurrently in a highly time-constrained and high-
pressured environment, which has led to the monitoring of the
sequence of engineering activity becoming difficult. This is
because, the sequence of engineering activity is typically achieved
through the ability of the project managers to use their
knowledge, experience and constant contact with the engineers.
However, the viability of the current method to manually
generate and evaluate the activity plan is becoming an issue due
to the increasing number and distributed nature of these
projects.

As regulatory and/or company process demands, the data
relating to the project is often archived and thus, provides a
wealth of potentially useful information that could be utilised in
the management of current projects. Therefore, this research
investigates the potential value provided by the automatic
construction of past project activity sequences, and proposes
analytical methods to represent the normality of project activity
based on the extracted patterns from their sequences. The
evaluation applies industrial data, and shows that the results
generated by the proposed approach can accurately reflect the
similarity and nor mality of the projects.

Keywords - Project Normality Identification; Seguence
Construction; Sequence Analysis;

. INTRODUCTION

Engineering projects are often highly complex, upi@nd
safety critical, which can lead to the complex eegring
processes requiring various resources and brintiealgas on
decision making. To ensure the success of thegirpjeducts,
the related project has to comply with stringergutations
(examples include the regulations for airworthinemssd
maritime vessels) and company processes beforewtrk
could commence.

Additionally, the in-service lifespan of productavie been
increased leading to projects, e.g. design or maaice
projects, being run concurrently in highly time-stained and
pressured environment [1]. The emerging trend ajdict

maintenance tends to be absorbed by company dffehie
PSS which has further compounded this effect [2] T3us,
engineers are increasingly reacting to new devedopsnacross
various design and maintenance projects and tlotéa at the
loss of providing detailed project activity plans.

Therefore, to ensure the appropriate allocatioresdurces,
compliance with regulations and company procesaed, to
effectively monitor project progress, project magragypically
use their knowledge and experience of past proplotsgside
regular meetings with the engineers of the projettseir
knowledge and regular meetings provide insight® itite
sequence of engineering activity for each project anable
them to draw conclusions on the allocation of reses and
potential issues with compliance. However, as thmber of
these highly complex, unique and safety criticaljguts are
increasing, the viability of the current method r@mnually
generate and evaluate the engineering activitibeé®ming an
issue.

A number of studies within this context have algead
demonstrated the potential re-use value using pagect
knowledge to support current engineering projediq9g] [6].
Therefore, it is argued that the growing corpugast projects
could also be used to support the management okrdur
projects. However, the corpus of past projects d¢mn
considerably large. Therefore, it is likely thate thproject
managers would be unable to take full advantagethef
knowledge that has been stored through the maewaw of
the corpus, and it is argued that it is impracttoadlo so given
the time-constraints and priority of the projedtberefore, an
automated analysis of past project archives coane: fa greater
potential for providing useful information to projemanagers
and engineers. More specifically, the analysisadd used to
generate sequences of engineering project activited
patterns, and the traces of these activities artbrpa may
provide dynamic indicators of project characterssti e.g.
changes of project processes, resources allocatmiential
compliance issues, etc.

In order to explore the potential of using pastjgub
archives, this paper presents the automatic cantigtru of
sequences of engineering activity from a samplpuof 236
projects. From this, the edit distance based segusimilarity
measure has been proposed and used to identifgatypi
patterns and anomalies in engineering activity. pager then
continues by presenting an approach to generatimegrgliced

Service Systems (PSSs) whereby the cost of desigh asequences, and introducing the use of the pattand



anomalies from the time-sliced sequences to supyporality
analysis and manage potential issues with projegjrpss.

Il.  RELATED WORK

Many engineering companies archive high volumegast
projects with large amount of project related d&tae to time
constraints and resource limitation, the projecisien makers,
e.g., engineers and managers, are unable to rewietv
understand all the past projects, thus comprehelysitilising
the projects contained knowledge to support theicision
making for running projects is unrealistically difflt. The
remaining challenges include: (i) how to efficigntand
effectively discover the essential knowledge fraastpprojects,
and (ii) how to design the reuse methodology toimmse the
human interventions and time cost.

Recent research has shown that the applicationatd d

mining and machine learning is an effective waypfcessing
large amount of data based on specified requiresmenhtlst
needing limited human effort [7] [8]. By using cart
techniques, such as natural language processinggchantity
recognition, pattern recognition, data classifmati and
clustering, the essential information can be autmady
identified and organised, which enables decisiorkars to
browse, retrieve, and learn the featured projeaim flarge
collections of data. For example,
visualisation of project profiles including projeeictivity,
people activity and project evolution, could asdistision
makers to get an high-level overview of past prgjeld].
Meanwhile, the patterns regarding file operatiossntiment
and change of communication topics could facilitate
understanding on the detailed level of project pilag and
execution [9] [10] [11].

Time-related data is an important composition afjqut
data, and its contained information can be usdddicate the
changes of performance during the project executibm
extract useful patterns from time-related data, usagal
pattern mining is required, which is an automagipraach that
has been widely used in various fields, e.g., Umdraviour
detection, transaction data analysis, and DNA sirecanalysis
[12] [13] [14]. In order to apply sequential pattenining on
the analysis of engineering project data, two facteed to be

considered: (idata source as the data of real world projects

could be heterogeneous and distributed, selectpgoariate
data for the mining task is a challenge. In genehal selected
data needs to contain explicit timestamps, or gtamrelations
with the time dimension, thus communication recpreéports
and log files as the typical time-related data esenmonly
used by the sequential pattern mining. Moreoveséthtypes of
data can be easily obtained from most projects, tad
machine-readable formats enable the automatic mipiocess
carried out over large scale dataset [15] [16], @iddata

representationin order to perform the pattern mining, the data

needs to be represented in certain formats, i.eet @f items
and related timestamps. Items can have variousitiefis and

is often determined by the attributes of the datasd purposes

of the analysis. For example, the data of custopugchase
transactions could be represented by the purchgeeds and
time of the purchase actions [17].

In this research, the proposed approach focuseswvon
aspects, (i) creating a universal data representafor
engineering projects; (ii) analysing the normalitfy projects
based on the similarity between the data represemnsa

1.  PROPOSEDAPPROACH

Representing engineering projects in a structuoechdt is
a challenging task due to the variety of activitiest are often
performed. Such activities include, generating pobd
documentation, creating a technical report andopihg a
Computational Fluid Dynamics (CFD) simulation. Ihist
approach, the projects are characterised by theubof their
activities (i.e. the creation of documents, comroation
records and simulation models). This is applicalolethis
context as the companies often archive the outputheir
activities due to regulatory requirements. In addit the
majority of the output from the activities is dagit and
therefore contains time-related data such as deatedified,
approved and sign-off dates. This provides the dppiy for
sequences of activity to be produced.

Based on these factors, this paper takes a datandri
approach to analysing and representing enginegmoggcts.
The data required by this approach needs to corttan
descriptions of project, and essential informatout project

the generatiord anplanning, execution, problem solving, evaluatiod &éedback.

Hence in this instance, technical reports and comication
records are selected as the data for this research.

Figure 1 demonstrates the relations between thegtrand
its respective activity, actions and data. As carseen in this
figure, a project is treated as an information aor, which is
composed of a set of activities, such daaskK planning,
“information reque$t “problem solving and “evaluatiori (a
project needs to have at least one activity); emtivity could
have single or multiple action(s), e.ginformation request
may have actionssénding emailsand “receiving damage
reports’; the data records project related informationg atn
can be used to identify the activities/actions; mddale, the
data could be changed by the activities/actiongcti or
indirectly.

Project | Activity
- Description - Info. Request
- Objective - Planning

- Report - Sending

- Communication - Receiving

Fig. 1. Relations between the project components

A. Sequence Construction

Sequence construction is an automatic approachathet
to generate sequence of projects using time-reldd¢al For a



given dataset, the construction requires two poegsses, (i)
corpus generation; generating a corpus of actadtydn from
the dataset; (ii) activity/action identificatiordentifying and
extracting the contained activities and actionsmfr@ach
individual project.

B. Similarity Measure

The sequence construction process provides a temisis
representation of engineering activity and enablbe
computation of a similarity measure. The proposethod for
determining the similarity of sequences is basedhenedit

In the corpus generation process, natural |anguaq@5tance which is a typlcal method that has been Wideb'dJS

processing and semantic techniques are appliedctargively
analyse the entire dataset, and then a full liscarftained
activities/actions of the dataset is generated¢chvianiould then
be converted to a corpus. In the activity/actioentification
process, the same analysis techniques and theagetheorpus
are applied. For each project, a list of activifetons is
generated, and then sorted in chronological offeis is used
to construct the sequence of engineering activity dach
project.

Using D, p. and C, to represent the dataset, project and

corpus respectively, the® = {p,p,,....,p,} and D — C, .
Let y, denote an activity op,, theny, € p. andy, €C,,
Y ={y,.u,,-.y,}, where Y is the activity setof p . Let

Ty x denote an action ofy,, then =z, . €y, and

€0, X={a ,a!

i i H H
Ty n LN,I2‘N,...,IM‘N} , Where X is theaction

setof y, .

In this paper, actions are the atomic componehtth®
sequence. For different projects, weights can Ipdieapto the
various types of action. This enables certain astito be
emphasised or less considered according to theeqtroj
characteristics. Consequently, the sequence ofegirojs
defined as,

n

m
_ i
S, = Z w,;‘ z M,N

N=1M=1

@

where w, is the weight of the action:]"'wv ,and 0 < w, <1;

m is the total number of actions of one activitydan is the
total number of activities of the project.

Figure 2 below shows an example of some projectesaaes
that are generated from a real dataset. For siityplithe

displayed sequences have an identical length, whielqyual to
15. Each row in the figure represents one proggtsnce with
the project ID, and the entry of sequerice indicates the type

of the action.
T T4 m T13  T10 T14 . ™7 T
T4 . ™7 . 7 T T7

T4

2264013 T9  T1 T

2263813 1. 19 T1 (0N T4 T1 T9 [0

2232313 I T9 T1 T4 STI0N T4 (FI0N T1

2304813t I T9 T

.n

2329413f T9 T T9 T T

0| T4 T | TS

22552-13f T1 T10 T10

T4 M T

T2
Tz.n

0| T4 T1 T4 (HI0N T4 T1 T4 910

2226513 I T9 T

n.n

T10 | T4

T14 [ T10

22249-13f T1

22774-13F T1

Fig. 2. Example of project sequences

in various fields including bioinformatics [18], wisne

translation [19] and information extraction [20]diEdistance
involves three types of operation in its calculatidi.e.,

insertion, deletion and substitution), and theattise between
two sequences is defined as the minimum operationber of

converting one sequence to another.

The calculation of the edit distance betweerand s, can
be recursively defined as,

c(s;8,)+d(s,_ 58, )

J
d(s,,s;) = minjc(s,e) +d(s_,,s,) (2
+

J

c(e,s,)+d(s;s, )

where ¢ is cost function;d(e,e) = 0, and it means the edit
distance between identical sequences is zero.

For given sequences and S let |57_| and‘si‘ denote the

sequence length respectively, then the similartyvieen them
can be calculated using the following equation,

sim(Si,Sj) -
_M7 it k, < d(Sﬂ‘S;‘) <k, ~min(|57.|,‘57-‘) 3)
mln(|57_|,‘sjb . _
0, otherwise

where min(|si|,‘sj‘) is the minimum length of, and s ; k

and &, are thresholds, wheré <k <&k, -min(|sé|,‘sj‘) and

0<k, <1.The use ofk is to eliminate the bias caused by
sequence lengths with relatively larger variatidra. example,
when £, is 0.5, the sequence similarity ef and s will be

considered as 0O, if the edit distance between tisegreater
than the half-length of the shorter one.

Using the equation (2) and (3), the results of saqa
similarity measure from part of the example in FgR are
shown in Table I. It can be seen that even if twojgrts
contain common actions, their similarity can i@ considered
as 0, as long as the edit distance between thgme#er than

the thresholdk, , e.g., 22249 and 23048,

TABLE I. SEQUENCESIMILARITIES
22638 23048 22552 22249 22265
22638 - 0.35 0.29 0.21 0.43
23048 0.35 - 0.29 0 0.36
22552 0.29 0.29 - 0.29 0.21
22249 0.21 0 0.29 0.36
22265 0.43 0.36 0.21 0.36 -




C. Time-sliced Sequence

Projects could have different similarity valuesdiferent
stages. For example, two projects could have a s$iigiarity
at their early stage, and then the similarity cdaddome lower
or even zero at the later stage. To measure tdrigoral
similarity, the project sequences have been sliced into sul
sequences according to specified time intervalse Time
interval, calledstep interval is used to control the length of
sub-sequences.

For a givenstep interval the time-sliced sequences can be
presented as,

n m

si=2_ > @ )oter

N=1M=1

(4)

wheret = 0,1,...; T represents onstep intervalor collection
of intervals over the project timeline, where= {t.,i € N}.

Given a collection of sequence$, with a specifiedstep
interval number n, the construction process of time-sliced
sequences recursively uses equation (4), and tnedpscode
of the process is as follows (Table II):

TABLE II. PSEUDO-CODE OF GENERATING TIMESLICED SEQUENCES

Algorithm: generating time - sliced sequences

1 input S,n

2 length 0

3: foradls inS:

4. comment: find the mazximum sequence length
5: if |s, [> length -

6 length s, |

7 end if

8. endfor

9 return length

10: if length >n:

11: comment: determin the sub - sequence length
12: | interval [ length [/ n

12 endif

14: forall s in S:

15: s — @

16: s, — s +[0]* (length_ _—|s.|)
17: comment: slice the sequences
18: for j=1,...,n:

19: s/« 5[0 jx | interva ||

20: (s!).append(s)

21 end for

22: (S").append(s!)

22 endfor

24! return S

For example, ifn =5, the sequence will be sliced into 5
sub-sequences, and each one represents the invattieds

within its related time interval, e.g., three an80(20% of the

project progress). Figure 3 shows the results adafedl
sequences using the example shown in Figure 2.

T T4 STI0 T10

710 | T4

22640-13 T9 T T T T4 (710 T

22638-13 T T9 1 SWON T4 T T N T T9 W0 T4

2232313 T T9 T T4 BF0N T4 T9 T T4 [T0N T4 [T0N T T4

23048-13 T

it

T T4 T10 T

m

m 10| T14 5

22552-13 T T2 T10| T14 T14 | 710 T10

23294-13 T9 T T T T4 T T

22265-13. T

" ‘n.-I7

T

T9 T T4 [0 T T

T1 T4 (W0 T4

T T14

22774-13
Step -3

(20 % progress)

T10 | T14 710 T4 [TON T14

Step -6
(40 % progress)

70| T4 FH0N T14

Step -9
(60 % progress)

Fig. 3. Time-sliced sequences

The similarity between sub-sequences is calculasidg
equation (3). Table Ill, IV and V show the sequesitrilarity
results regarding step interval 1-3 (20% projecigpess), 1-6
(40% project progress) and 1-9 (60% project pragres
respectively.

TABLE Il STEPINTERVAL 1-3 (20%PROGRES$
22638 23048 22552 22249 22265
22638 - 1 0.33 0.33 0.50
23048 1 - 0.33 0.33 1
22552 0.33 0.33 - 0.33 0.33
22249 0.33 0.33 0.33 - 033
22265 0.50 1 0.33 0.33 -
TABLE IV. STEPINTERVAL 1-6 (40%PROGRES$
22638 23048 22552 22249 22265
22638 - 0.50 0.33 0 0.50
23048 0.50 - 0 0 0.67
22552 0.33 0 - 0.50 0.33
22249 0 0 0.50 - 0
22265 0.50 0.67 0.33 0 -
TABLE V. STEPINTERVAL 1-9 (60%PROGRES$
22638 23048 22552 22249 22265
22638 - 0.44 0.33 0 0.44
23048 0.44 - 0 0 0.67
22552 0.33 0 - 0.33 0.22
22249 0 0 0.33 - 022
22265 0.44 0.67 0.22 0.22 -

The results reveal the temporal sequence similagtween
projects at different stages, e.g., the similabiéween 22638
and 22265 equals 0.50 in both 20% and 40% progredsthen
decreased to 0.44 in 60% progress; the similarégween
22249 and 22265 equals 0.33 in 20% process, whiclredsed
to 0 in 40% progress, and then increased to 0.2B0W
progress. The main reason is the project process itn
included actions may need changes during the projec
execution in order to fulfil the changes of othactbrs such as
time, environment and resource. In general, theregdegf



similarity changes tends to decrease, and thenniegnore
stabilised along with the project’s progressing.

D. Normality Analysis

Sequence similarity is the key element to meashee t
project normality For example, a project has low similarity

with others could indicate its process is more ljiko be
unique, which means its normality degree should Bks low.
Generally, the normality degree is considered opprtion to
the similarity value. To analyse the normality, teiategies
are defined here: (i) if a project is similar taetmajority of
projects, its normality degree will be considerschagh; (ii) if
a project is similar to a known “normal” projeds normality
degree will be determined by the normality degréethe
known project, and the similarity between the twojgcts.

To evaluate the normality degree of multiple prtjea
network-based visualisation, callpcbject normality graphis
proposed. In this visualisation, a vertex presarpsoject, and
the edge between vertices indicates the similagtyveen them
is greater than 0. The size of a vertex is in prigo to its
degree value, which is equal to the number of disnected
vertices. The higher degree of a vertex indicates higher
volume of similar projects that the vertex indichtperoject
would have. The weight of an edge is in proportionthe
similarity value between its connected projectse Tigher
edge weight indicates the higher similarity valle tedge-
connected projects would have.

Using G = (V, E) denote a normality graph, whe¥e and
E is the set of vertex and edge. Letdenote the vertex of
project p,, and €, denote the edge of , then the normality

degree ofp, is defined as,

deg(v,)

nor(p,) = w, - deg(v, )+ w, - Z €

v, eV Jj=Le; (22

(®)

where w, and w, are adjustable weights, and ,w, >0,

w, +w, = 1. For example, ifw, = w, , the normality analysis
will equally consider the degree of the projectteerin the
graph and the cumulative weight of the vertex cotegedges.
Figure 4 shows an example of the visualisation.ngJsi
equation (5), whenw, = w,, P1 is a project with highest

normality degree, i.eqor(p,) = 1.5; P4 has higher normality
degree than P5, as it has a higher similarity Withthan P5,
i.e., nor(p,) = 0.9 and nor(p,) = 0.6; P2 and P3 have the
lowest normality degree, as they do not have amyilai
project connected, i.enor(p,) = nor(p,) = 0. According to

this example, the normality of individual projecarnc be
efficiently calculated by using the proposed apphoa

Sequence Similarity Degree

08 Pi P4 P5 | P1 2
/ P11 0802 | 2 0
P3 0

0.2 P4 08 1 O P4 1

P5 0.2 0 1 P5 1

Fig. 4. Example of normality visualisation

V.

In this experimental study, 236 in-service projectsn a
leading aerospace company have been used to gatesthe
potential of the proposed approach. The projec datludes
technical reports and communications records. Tloesgain
detailed information about the project, such asciiesons,
objectives, processes, problems, solutions anduatiahs. All
the actions and their timestamps can be identifizth the data
by using natural language processing and semawatinigues.

EXPERIMENTAL STUDY

The steps of this study include, (i) pre-analygesnerating
action corpus from the dataset, and action listath project;
(i) sequence construction: converting data to seqes using
the corpus and action lists, (iii) sequence sliciognverting
each sequence to 10 sub-sequences, and each linterva
represents 10% project progress, and (iv) normalitalysis
and representation: using the project normalityplgrao
visualise and analyse the normality of projects.

To evaluate the project normality using the gragtaph
densityandaverage degreare applied,

g
"=y
2:|B]
degmye: |V|

where|E| and |V| is the total number of edges and vertices of

graph G . Graph density measures the edge quantity of the
graph, which is used to identify the overall norityathanges

of the dataset. Average degree measures the number
connected vertices in the graph, and it is useidatify the
normality changes between the projects.

Table VI shows the changes of graph density andagee
degree of the projects over the progress from 190%0860. It
can be seen that the graph density and averageeddgcrease
rapidly at the early stage, and then become medglesfrom
the middle to end stage. The detailed visualisategarding
the changes is shown in Figure 5, 6 and 7.

TABLE VI. AVERAGE DEGREE AND GRAPH DENSITY IN DIFFERENT STEPS

10% 30% 50%  70%  90%
036 0.14 0.09 0.08 0.08
117.78 41.66 36.59 31.96 31.63

Graph Density
Ave. Degree




0%
o&o

Fig. 5. Project Normality Graph, progress=10%

Fig. 6. Project Normality Graph, progress=30%

Fig. 7. Project Normality Graph, progress=50%

In Figure 5, most projects have relatively high mality
degrees, i.e., the density of normality graph Wiil# progress
is 0.36, and the average degree of the dataset7§4 (see

Table VI). According to this, one project could &ienilar to
49.91% of total projects in the dataset. The reasomost
projects at their initial stage mainly aims to abtaformation,
thus the processes only involve limited types ¢ibas, such as
“information requedt “receiving damage report "X
“conforming damage locatior?,Yetc. The involved actions are
limited, means the process of projects at thisestaglld be less
various, so that the normality degrees could bb.hig

However, some projects may still have low normality
degree at the initial stage, which could be causgdthe
following reasons, (i) they are the projects thately or never
appeared in the past, thus their processes arly lthebe
different comparing with others, (ii) they are cdexpprojects
with relatively higher uncertainty on execution,ushtheir
processes might be specifically designed or opédhiat the
early stage; (iii) their execution processes might already
effected by some unexpected factors, e.g., ermoegjoipment
failures. By using the project normality graph, thermality
changes caused by the listed reasons can be #yplici
presented, thus the decision makers could be meale af the
changes and accordingly pay their attention todahméevant
projects.

In Figure 6, the normality degree of projects isrdased,
i.e., the density of normality graph is decreasedOfl4 (-
61.11%), and the average degree of the datasetisaked to
41.66 (-64.63%). After the initial stage, more typd actions
could be involved in the processes, e.gerforming stress
analysi§ and “creating stress analysis reptriVith different
orders and combinations, the newly involved acticasise
divergences on the structure of project sequereed, then
decrease the normality degree between the projects.

In Figure7, the normality degree of certain prgject
further decreased, i.e., the density of normalitaph is
decreased to 0.09 (-35.71%), and the average degrée
dataset is decreased to 36.59 (-12.17%). Howeverrénd of
decrease becomes more gradual from the middle .stage
According to Table VI, the normality degree is lagistable
from 50% project progress to the end, e.g., froogprss 50%
to 70%, the density of normality graph is decredsed1.11%,
and the average degree of the projects is decrégs2d.85%;
the density of normality graph remains the samaejadnd the
average degree of the projects is only decreased.@326,
from progress 70% to 90%. The rationale is thattmogjects
do not massively change their processes and adtiomsthe
middle stage, as the project plan has been sdieatarlier
stage, therefore the projects should be steadilgcuard
following the plan.

V. CONCLUSIONS

Engineering projects are often highly complex, usignd
safety critical, and performed within an environinémat is
becoming increasingly distributed with many morej@ct
running concurrently. This leads to increased ehnaiks on
project managers and engineers in being able w&ctefély
plan activity, allocate resources, and ensure ciamg and
monitor progress.

In order to provide effective indicators to suppoecision
makers to understand the normality of engineerimmepts,



this paper proposed an automatic approach to ecmmstr [7]
engineering activity sequences for projects anérdehe its
relative normality. The sequence of a project isstacted
using time-related project data, and the similaaitg normality  [8l
between projects can then be measured using thgiresace
representations. To perform temporal normality gsia) the
method of generating time-sliced sequence is pexhoshich
splits a single sequence to sub-sequences by asijugtable [°]
step intervals. Furthermore, a network-based \sat@bn is
introduced, which is an accurate and understandable to
analyse and represent the changes of project nityroaér the [10]
project progress. The experimental study uses lection of
industrial data, and the result shows the propagpdoach can
identify and represent the normality.

Further work is being undertaken to increase thellef
analysis and will include performing more micro lgses and

[11]

improving the performance of real-time normalitymitoring.
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