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nat is uncertainty?
Ny do we care about it?
nere are the uncertainties in volcanic forecasting?

nat does the future hold?



Current activity (11:00 GMT 5/12/23

40-50 activevolcanoes at any one
time

10-30 erupting

Red — erupting
Amber — warning / minor activity

Yellow — Heightened unrest




QUAKES LAST 6 HOURS (115) |
TIME MAG. DEPTH  ALERTAREA ° Fhs,
21:27:18 0.5 aM 5.9 km Svartsengi
21:25:09 0.5 am 7.1 km Reykjanesskagi
21:23:10 0.3 am 1.1 km island
21:22:51 0.5aMm 5.8 km Svartsengi
21:15:48 0.7aM  17.2km B
21:02:14 0.3 am 1.1 km Svartsengi
20:57:37 0.8 am 5.9 km Svartsengi
20:52:14 0.3 am 1.1 km island
20:43:51 1.3aM  1.1km Yo de
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Known

Aware

unknowns

Having knowledge Lack of knowledge

Unknown Unknown

Unaware

knowns unknowns




Known Known
knowns unknowns

Unknown
unknowns




Known Known

knowns unknowns

Things we are confident that we
already understand

Unknown

unknowns




Known Known
knowns unknowns

Things we are confident that we
already understand

e Things we know that we don’t
understand




Known Known
knowns unknowns

Things we are confident that we
already understand

e Things we know that we don’t
understand

Things we don’t realise that we already
know



Known Known
knowns unknowns ) .
Things we are confident that we

already understand
D ¢ Things we know that we don’t

understand

Things we don’t realise that we already
know

Things that we don’t know that we
don’t know



Why do we care?

log(damage, fatalities)
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National Academy of Sciences (2017)



Forecast
Uncertainities

Forecast issue

Expected
Causalities

| Required Evacuation time

Available
evacuation time

Mitigation Action Tim
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Marrero et al. 2013



a Volcano plumbing system

What is a volcano?

" Near-surface
gas emissions

A source of magma
Crustal transport (buoyancy)

Crustal storage (reservoirs, dykes, sills)
Mixing/mingling

Cooling

Crystallisation

Assimilation

Degassing
Vent T NSTmn AN % !

A B

Deep magma reservoir

Carrichi et al 2021



Magma has composition A ses————-  Magma has composition B

1200°C



CLASSIFICATION & FLOW CHARACTERISTICS OF VOLCANIC ROCKS

Basalt Andesite Dacite

Rhyolite Volcanic rock name

5263 % 63-68 %

68-77 % i Silica (S10;) content

. Eruption temperature

Lava color scale in °C:
1160° 600°
flow
(thick, sticky)
Mobility of lava flows

Decreasing mobility of lava

> |

Illustration by J. Johnson




So what'’s a volcanic eruption? %

“ ? Volcanic plume

'J

Outgassin
= g Shear brecciation

Viscous dissipation

Bubble growth

Exsolution surface

Magma with (bubble nucleation)

dissolved volatiles EEEt- 4 Saturation surface

S S

The 4 December 2015 paroxysm plume from Mount Etna’s
Voragine crater, as seen from Cesaro, Messina, at 9:27 Magma reservoir
Greenwich Mean Time. Credit: G. Famiani



CRITERIA VEI 0 VEI 1 VEI 2 VEI 3 VEI 4 VEI 5 VEI 6 VEI7 VEIS8+

e . moderate-
Description non-explosive  small moderate late large very large -
Volume of ejecta (m?) <104 104-10° 108107 107-108 108-10° 10°-10% 10%°-10™ 10"'-10"2 >10"2
Column height (km) <0.1 0.1-1 1-5 3-15 10-25 >25 -
Qualitative - “gentle, effusive” =~  -e— “explosive” —~ - “cataclysmic, paroxysmal, colossal” -
description “severe, violent, terrific” -
-.— “Strombolian” —= “Plinian” -
Classification ) . o
-4—— “Hawaiian”" —m» -4—— “Vulcanian” —— “Ultraplinian” -
) . B <1 Bo - >12 e
Duration of continuous = 1.6 -
blast (hours) - 6-12 -
Tropospheric injection negligible minor moderate  substantial B~

Stratospheric injection none none none possible definite significant -




Vesuvius St. Helens Rainier Egafballajnkull
3.3 cu km © 025 cu km 0.30 cu km
79 AD (VEI 57) 1980 (VEI 4) 250 BC (VEI 4) 2010 (VEI 4)

ey
] 1912 (VEI 6) SR
VEI Eruption Frequency 1991 (VEI 5)
VEI Frequency

frequent
frequent

tens per year . B uliﬂb%ﬁo
several per year 2800 cu 8)

one per decade
several per century

several per millennium

0
1
2
3
4 tens per decade
S
6
I
8 two per 100,000 years

Geology.com



Viscosity (chemistry, temperature)
Gas content (chemistry, storage time/ascent rate)

Rate of eruption (Volume of tapped storage, pressure

conditions, structure/strength of vent and substructure, gas
content, viscosity)

Volume of eruption (Volume of tapped storage, availability of
connected storage, overpressure in different reservoirs)
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Erupted mass (kg)

flood basalts

1lnE 10° 1ln”' super volcanoes?
14
12 - ~-10°
10 - =
= 0% 8
7]
bt 1]
2 38 c
1= © LaMeve database j=1
E ® Historical eruptions g
-'g'_ 6 -ll-ldmmrrmen-plm _1[]3 E
Lﬁ @ Small explosive enuptions E
= Kilas ua lava flows
4 | 10% W Etna lava flows %
. long-term e
Strolm ot average Magma e woutstHelers, isva dome
exp osions ﬂﬂs Supply rateS # Montsemat, lava dome
/’ 4 Santorini lava domes
0 - : : : : :
—4 —2 2 4 § 8 10

Eruption magnitude



What makes volcanoes dangerous?

Fatalities since

1500 CE
Pyroclastic density currents (60,000)
Tsunami (57,000)
Lahaars (46,000)
Ash fall (4,300)
Debris avalanche (3,500)
Gas emissions (2,300)
Lava flows (660)
Ballistics (370)
Hydrothermal (60)
Volcanic Lightning (9)



“...I looked back and the whole side of
the mountain, facing towards the
town, seemed to open and topple
down on the screaming people. I was
burned ... by the stones and ashes that

came flying ..., but I got to the cave,...”
Havivra Da Ifrile
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Underlying process Thing we can observe
Magma movement Deformation of the volcano

Noises made as the magma fractures its
pathway upward (seismicity)

Magma production and E e o T

evolution
Size/fluid content of the plumbing system



lmaging the plumbing system

|dentify rigid and soft regions by how fast
seismic waves travel though the material

Needs |lots of sensors

Needs lots of earthquakes

Low resolution

Not responsive — long timescale information

P-wave S-wave

%M Recgrded Seismogram

” Station

Seismic

/ Ray

Microearthquake hypocenter

: / (Seismic source)
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% Vp relative to 1-D initial reference model



(Gas emission

Gases present in all
magma

As magma rises,
pressure decreases,
solubility of gas in
magma changes.

Gas escapes through
the crust much faster
than magma travels







Hawaii 2018

Sulfur Dioxide at Kilauea (Debsan units)
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Seismicity )

Type
Rate

ocation
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Type
Different frequency characteristics

Different timescales

Different causes!
But what process causes what signal?
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Q0:00

0&:00

12:00
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Time [mins]

Tungurua, 10/4/15



Location

Piton de la Fournaise, 1998
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Tiltmeters
GPS

Laser Ranging
INSAR




Long-term inflation/deflation record in Axial caldera
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The problem with forecasting ...

60
a
We’ve seen increasing s 50
o« . . =
patterns of activity in all 2
these data... T 40 ¢
2.
g 30 |
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%)
oy
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5 20 |
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0 M I I
0 20 40 60 &0 100 120 140 160

Time (Hours from 00.00 June 01, 1991)

After Kilburn (2003)



Growth curves are not predictive of
failure points

1.14 11583
112 1.25
159

1.1
1.15

1.08
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1.06

1.05 I

1.04 1
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There is no pattern

2
10;

Eruptions after similar

repose times, with the g
same kind of magma 3
involved, at the same é1o°-

volcano, can have totally
different “run up” periods
of unrest. b

1 q S 6 I 7
) 10 10 10 10 10 10 10
Repose time [days]

Passarelli & Brodski 2012



Even if there was a pattern...

60°

60°

120°

120°

180°

180°

-120°

-120°

-60°

Global Volcanic Unrest 2001-2011

47% of restless volcanoes

eventually erupted

53% didn’t!
Systematic Erupted MNon-Erupted
Coverage

-60°

Xz,

MNon-deformed

N




Unrest detected Type of unrest Type of trigger Eruption?

(a) | Fhresti;.:ruptinn |
|l e l__...—--"" 20% Exam pl e.
0%
R et S T S Mount St. Helens 2004
Hydrothermal onl 80%
0%
i \ e s T Important because of the
Fracture of self-seal 60% .
| o% W media frenzy and
Appliv:able En;‘ entire ! f;‘; I mem ories Of 19 80
eniptive episoda. .
obabiltes i eruption
i Eruption N P
or lower on a day to 80% Erupts e 10%

day basis, depending | 80%

on monitoning results 80% VEI 3
| 24% |
Magmatic 30%

100% | 100% l

100% VEIl 1-2
I 4 | - i 0
Magmatic\l ——— i VEI 1-2 most likely (50%)
i i —— Actual outcome (dome) 8%

10%

Triggers small blast
| 0% |

Dome collapse ——— 30%

0% |

|
20% [ —— Dies out
| 0% |
Glacial shear T0%
| 0% |
0%
\ R
Dies out | |
| 0% |
a0% [

Newhall and Pallister (2015) | 0% |




Known

Aware

unknowns

Having knowledge Lack of knowledge

Unknown Unknown

Unaware

knowns unknowns




Known Known
knowns unknowns

Unknown
unknowns




Known

knowns

Known
unknowns

Unknown

unknowns

Things we are confident that we already
understand

How to measure gas, seismic emissions
and deformation around volcanoes

How viscosity and gas content impact
eruptive behaviour

What causes some seismic, gas and
deformation signals



Known

knowns

Known
unknowns

Unknown

unknowns

Things we know that we don’t fu/ly
understand

What causes some seismic signals
What causes some deformation signals
What causes some gas signals

What's going on at depth in detail

How close to triggering an eruption any
given system is




Known Known

knowns unknowns

Things we don’t realise that we already
know

Unknown

unknowns




Known
unknowns

Unknown
unknowns

Things that we don’t know that we don’t

know

277

Some things to reflect on:

1L,
2,

3.

Are the mechanisms at all volcanoes the same?

Are there physical processes happening at depth
we don’t know about?

How confident are we that the records we have
are statistically useful?

What about the volcanoes we can’t see or haven't
looked at properly?
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Science
“It's just mind boggling.” More than 19,000 undersea
volcanoes discovered

New seamount maps could aid in studies of ecology, plate tectonics, and ocean mixing

19 APR 2023 - 110 PMET - BY PAUL VOOSEN






Even for the things we do know...

We don’t have consistency.

About 1500 potentially active volcanoes globally*

500 million people living on the flanks of these volcanoes.

Monitoring is not uniform.

~ 100 volcano observatories, but not all have the same capacity






Lack of Ground-Based Monitoring

Maonitoring levels of volcanoes
in Latin America

4%
8%

11%
No

monitoring

(64%)

10% 64%

Volcano Monitoring in the US

Level 3
Basic real
time

Level 1
Minimal

High Threat
(N=37)

Moderate Threat
(N=48)

Low Threat
(N=34)

Very Low Threat
(N=32)

“It would take at least 20 years to finish installing and making fully
operational all instrumentation on "high-threat” and "very high-
threat" volcanoes if funding does not increase”

U.S. Geological Survey Volcano Hazards Program
Coordinator Dr. Charles Mandeville to
Congressional Hearing, 19 Nov 2014



Known Known

knowns unknowns
Unknown
unknowns

Unknown
knowns

For individual volcanoes the unknown-
unknowns are far greater.

»|f we don’t know it’s eruptive history, we
don’t know how it has behaved in the past.

»|If we don’t know the structure of the
plumbing system, we don’t know how it
might behave in the future.

»|If we don’t have any monitoring we don’t
know how it *is* behaving right now.



Volcan de Agua, Antigua Guatemala, Pop 46,054
~250,000 within 15 km of Agua.
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Geology/Earth Sciences

Social Science

Maths Physics



Geology / Earth
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