Embattled Deserts: Drylands in a Changing World

Dr Katerina Michaelides School of Geographical Sciences, University of Bristol

Distribution of Global Drylands

Source: UNEP-WCMC (2007)

Why are drylands important?

- Drylands support 38% of the world's population (~2.5Bn people), 90% of whom live in developing countries.
- The biodiversity of drylands provides ecosystem services which benefit local communities.
- Dryland carbon storage (soil carbon) accounts for more than one third of the global stock.
- Dryland degradation costs developing countries an estimated 4–8% of their national gross domestic product (GDP) each year.
- Resilient yet fragile ecosystems
- Prone to change once perturbed

Dispelling myths about drylands 1. Drylands are quiescent, static environments

Drylands are dynamic!

Climatic characteristics

- Temporally and spatially discontinuous rainfall
- Typically rainfall concentrated in a brief season (semi-arid)
- Dry spells for most of the year
- Rainfall distribution tends to be skewed due to overabundance of subnormal years and long term average inflated by a few years with exceedingly high rainfall
- Annual totals are determined by small number of high intensity, low duration rain events

Hyper-arid: < 25mm Arid: 25 – 200 mm Semi-arid: 200 – 500mm

Low annual total rainfall

but

Delivered as discrete storms, typically high intensity, short duration

Dryland soils

Water Balance in Drylands

Rockstrom & Falkenmark 2015

Davie 2008 (from UNESCO, 2006)

Transmission losses

Walnut Gulch Brochure, Tombstone, Arizona http://www.ars.usda.gov/SP2UserFiles/Place/20221000/WGBrochure.pdf

Groundwater Recharge

Losing Stream:

In arid regions, streambeds are usually dry. When storm flows fill the channel, water infiltrates through the bed recharging the aquifer below.

Typically found in Humid regions

Gaining Stream:

In humid regions, streambeds are usually wet. Groundwater, recharged by frequent rainfall, flows into the stream maintaining baseflow.

Climate Change and Drought

Source: Funk et al 2015

East Africa

Climate Change and Rainfall

Singer & Michaelides, 2017

But increase in annual rainfall and number of storms per year

Dispelling myths about drylands 2. Drylands are rare, barren, lifeless places

Ecological resilience strategies

Drought resistant vegetation Vegetation re-growth after dry or drought periods

Drylands are biodiverse

Pointing & Belnap, 2012

Dryland biodiversity is skin deep

Biological soil crusts

Land Degradation (desertification)

- Loss of soil productivity / fertility
- Decline in soil quality
- Loss of organic matter
- Physical, chemical and biological deterioration

- Reduction in biomass
- Decrease in biodiversity
- Decline in quality in terms of the nutritional value for wildlife
- (Quasi) permanent change in ecosystem

Interacting processes

Dryland Degradation (Jornada LTER, New Mexico, USA)

Grassland

Overgrazing

Time grazing the same area more significant that herd size

Grassland

Shrubland

Increases heterogeneity and resource redistribution

Ravi et al., 2010

Plants, runoff, erosion, nutrients

Michaelides et al., 2009; 2012

Nutrient Losses by Erosion

Nitrogen

Organic Carbon

Phosphorus

Total Nutrient Export

Dispelling myths about drylands 3. Nothing can destroy them any further

Interacting processes

Conflict Impacts?

Direct impacts

- Bombing and explosives
- Troop and heavy vehicle movement
- Mass migration
- Refugee camps

Indirect impacts

- Political instability and lack of governance
- Misuse or overuse of natural resources
- Ignore long-standing 'resilience' strategies (lack of trust)

Estimated natural recovery times in years for California desert plant communities subjected to various anthropogenic impacts (Lovich & Bainbridge, 1999)

Impact	Location	$T_{ m recovery}$	Reference
Tank tracks (military)	eastern Mojave	65,ª 76 ^b	Lathrop (1983a)
Tent areas (military)	eastern Mojave	45,ª 58 ^b	Lathrop (1983a)
Dirt roadways (military)	eastern Mojave	112, ^a 212 ^b	Lathrop (1983a)
Tent sites (military)	eastern Mojave	8–112 ^c	Prose and Metzger (1985)
Tent roads (military)	eastern Mojave	57-440 ^c	Prose and Metzger (1985)
Parking lots (military)	eastern Mojave	35-440°	Prose and Metzger (1985)
Main roads (military)	eastern Molave	100–infinity ^c	Prose and Metzger (1985)
Military	eastern Mojave	1500-3000 ^d	Prose and Metzger (1985)
Townsites	northern Mojave	80-110,e 20-50,b 1000+f	Webb and Newman (1982)
Pipeline	southern Mojave	centuries ^g	Vasek et al. (1975a)
Powerline	southern Mojave	33 ^h	Vasek et al. (1975b)
Fire	western Colorado Desert	5 ^{b,i}	O'Leary and Minnich (1981)
Off-road vehicle use	western Mojave	probably centuries	Webb et al. (1983)
Pipeline (berm and trench)	Mojave Desert	100 ^j	Lathrop and Archbold (1980b)
Pipeline (road edge)	Mojave Desert	98 ⁱ	Lathrop and Archbold (1980b)
Powerline pylons and road edges	Mojave Desert	100 ^j	Lathrop and Archbold (1980b)
Under powerline wires	Mojave Desert	201	Lathrop and Archbold (1980b)

Take-home messages

- Drylands are resilient yet fragile environments which cover ~40% of the Earth's land surface and ~2.5 billion people rely on for their livelihoods
- Drylands are on the "front line" in battles with climate change, desertification, and conflict.
 - Changes in rainfall with knock-on consequences for dryland water balance
 - Increase in drought severity and duration
 - Disrupting soil surfaces damage soil fertility and ecosystem functioning, with devastating consequences.
- Dryland degradation (desertification) is a global challenge with serious consequences for ecosystem functioning