

Earthquakes & Cascading Risks: Lessons from Japan and the UK

Katsu Goda

University of Bristol

Content

- 2011 Tohoku earthquake and tsunami
- Tsunami casualty mitigation through effective evacuation strategies
- Fukushima Daiichi nuclear power plant crisis
- Research challenges: cascading multi-hazards and risks due to mega-thrust subduction earthquakes

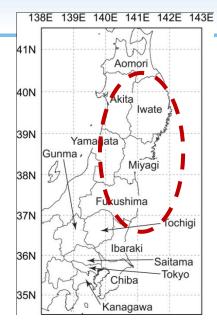
Key words:

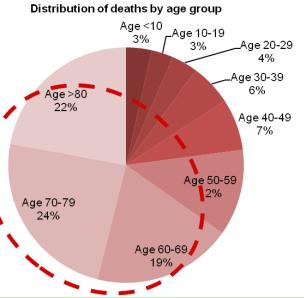
- Cascading multi-hazards and risks
- Disaster risk reduction
- Critical infrastructure

2011 Tohoku Earthquake & Tsunami

Earthquake Facts

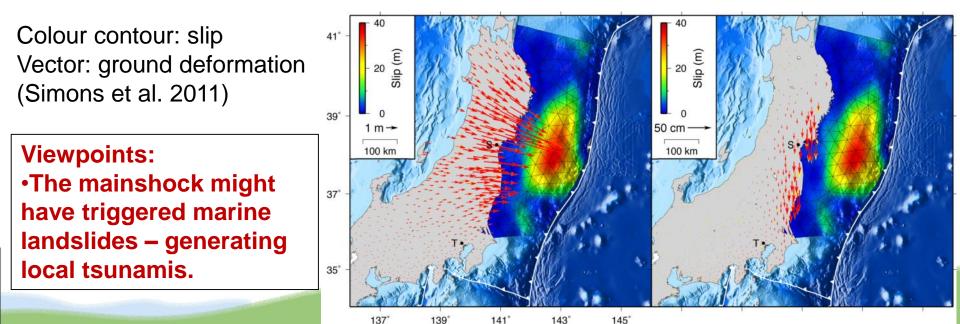
- Very large earthquake: M_w9.0
- Catastrophic tsunami damage
- 19,000+ death/missing
- Direct loss: 300-400 billion US dollars
- Infrastructure damage levees, roads, bridges, railways, water treatment plants, industrial facilities, etc.
- Widespread shaking damage and liquefaction
- Fukushima Daiichi nuclear power plant crisis (on-going, <u>as severe as</u> <u>the direct loss</u>)


Damage Statistics

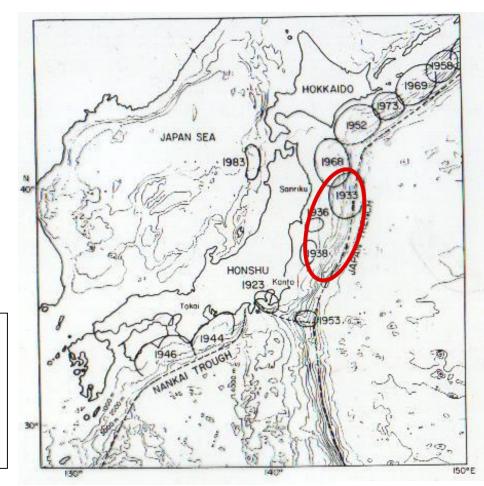

CABOT INSTITUTE Living with global uncertainty

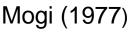
- Widespread damage to buildings concentrated in Iwate/Miyagi/Fukushima.
- This includes both tsunami-affected and shaking-affected cases.

Damage statistics from National Police Agency


Prefecture	Total collapse	Half collapse	Partial damage	Non- residential damage	Road
Iwate	20998	3174	2668	1538	30
Miyagi	65462	48684	76785	17826	390
Fukushima	15885	29125	92455	1015	19
Ibaraki	2179	14873	132921	8551	307
Tochigi	257	2074	56799	295	257
Gunma	0	6	16145	195	7
Saitama	0	5	1800	33	160
Chiba	771	8056	27714	708	2343
Tokyo	0	11	257	20	13
Kanagawa	0	7	279	1	0
Others	343	959	110	1673	33
Total	105895	106974	407933	31855	3559

- CABOT INSTITUTE Living with global uncertainty
 - A M_w9.0 mega-thrust earthquake at the plate boundary (2:46:23 pm, 11 March 2011) triggered tsunamis of 10+ m high, causing devastating damage.
 - Large offshore deformation (up to +40m)
 - Significant co-seismic deformation on land (up to 1 m subsidence).

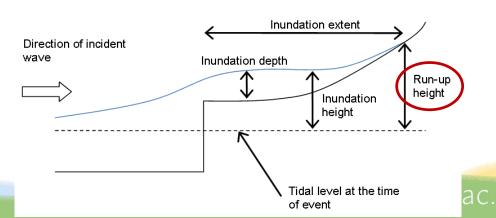


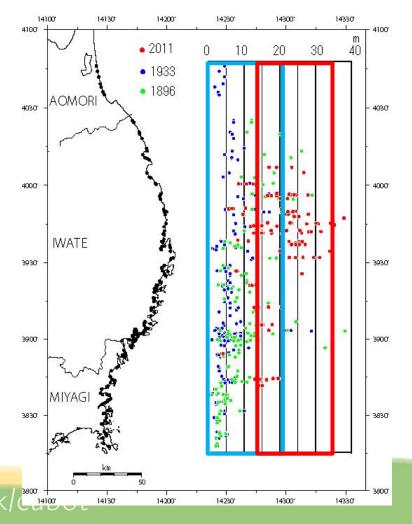

Was This Earthquake Forecasted?

CABOT INSTITUTE Living with global uncertainty

- Earthquakes expected in the Tohoku region were M_w7.4 to M_w8.2 due to six smaller fault segments based on historical seismicity.
- All six segments ruptured in a single event (*M*_w9.0) during the 2011 earthquake!

Perspectives: •What are the implications of underestimating design-critical scenarios on earthquake and tsunami risk management?




Was This Tsunami Forecasted?

CABOT INSTITUTE Living with global uncertainty

- The Sanriku coast suffered tsunamis in 1896, 1933, and 1960 earthquakes repeatedly.
- The 2011 event generated much larger tsunami waves. Such high tsunami waves were not expected.
- However, historical records indicate such massive tsunamis did occur in the past – e.g. 1611 Keicho tsunami and 869 Jogan tsunami.

Run-up measurements for three events at Sanriku coast

Effects of Topography

CABOT INSTITUTE Living with global uncertainty

- The Tohoku coastal line varies significantly from North to South.
- Northern Tohoku: ria coast submerged valleys.
- Southern Tohoku: coastal plain alluvial flat terrains.

Question: •What are the effects of terrain features on tsunami waves?

Ria coast (northern Tohoku)

Plain coast (southern Tohoku)

Rikuzen Takata

CABOT INSTITUTE

Living with global uncertainty

Living with global uncertainty

Taro (2011)

CABOT INSTITUTE Living with global uncertainty

> 10-m high walls (above MSL) over 2 km – a well-protected town against tsunami – did not protect the town completely (about 200 fatalities) – but significantly reduced the damage.

Taro (2012)

CABOT INSTITUTE Living with global uncertainty

- Fishing is resumed, and some facilities (offices and markets) are reconstructed.
- Clearing/incineration of debris is on-going and is a major issue.

Minami Sanriku (2011)

- Severe damage.
- High fatality rate (7% of the population).

Crisis management headquarters

Vertical evacuation building

Minami Sanriku (2012)

海虎将

CABOT INSTITUTE Living with global uncertainty

N定塩鮭

- Local communities try to open several market places, which are run by local people.
- The adopted strategy is to sell local and fresh products directly (visible producer).

enc

Shaking Damage

Sendai

Shirakawa

- Very large acceleration (> 2.5g) and long duration.
- Damage due to landslide/ slope failure.

- Loss of effective strength of soils due to rapidly increased pore pressure.
- Widespread liquefaction damage in reclaimed lands (Tokyo Bay area).
- This is due to a combination of susceptible soil (loose saturated sand) and long-duration ground shaking (up to 3 min).

Tsunami Casualty Reduction Through Vertical Evacuation Buildings

Tsunami Casualty Reduction

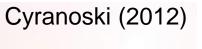
CABOT INSTITUTE Living with global uncertainty

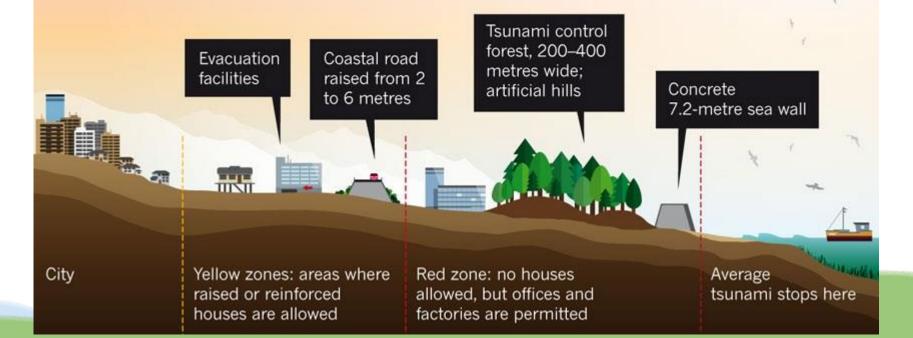
- What is the best strategy to reduce the number of fatalities in the future catastrophic tsunami?
- Option 1: As it is; sufficient tsunami protection Fudai.

Tsunami Casualty Reduction

CABOT INSTITUTE Living with global uncertainty

• Option 2: Rebuild the protection structures with higher capacity – Taro.

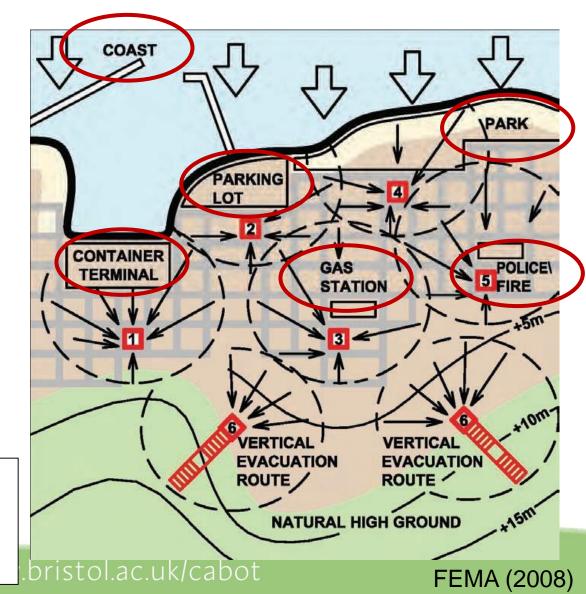

Tsunami Casualty Reduction


CABOT INSTITUTE Living with global uncertainty

- Option 3: Relocation of an entire town/city to high grounds Noda.
- Option 4: Combination of horizontal and vertical evacuation structures.

PLAN FOR A TSUNAMI-RESISTANT CITY

Sendai is considering refashioning its coastal area. A raised sea wall would block typical tsunamis and an elevated coastal road would protect against giant ones. A new law mandating zoning restrictions aims to lower the number of fatalities.


Horizontal & Vertical Evacuation

CABOT INSTITUTE Living with global uncertainty

- 19,000+ death disproportionate risks for elderly (75% of deaths for age 50+).
- Both horizontal and vertical evacuations must be improved.
- Different strategies for different communities (land use/feature, sea defence, tsunami hazard, demography, etc).

Question:

•What aspects should designers/planners consider for evacuation?

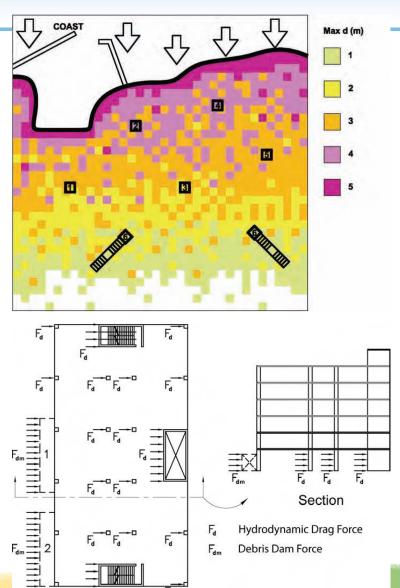
Design of Vertical Evacuation Buildings

CABOT INSTITUTE Living with global uncertainty

hmax

University of

BRISTOL


- Input information tsunami height and velocity at a location
- Various forces act on buildings subjected to tsunami: hydrostatic force, hydrodynamic force, debris, buoyant force, etc.

h_{max}

F.

Wall, or other

component

Fa

Fdm

"Ę

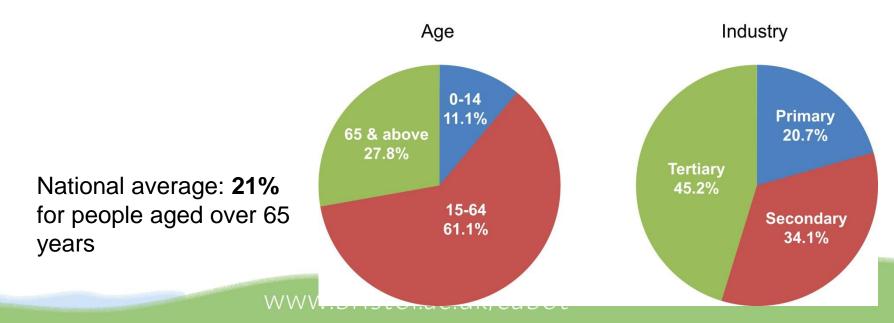
Plan

FEMA (2008)

www.bristol.ac.ul

nmax/5

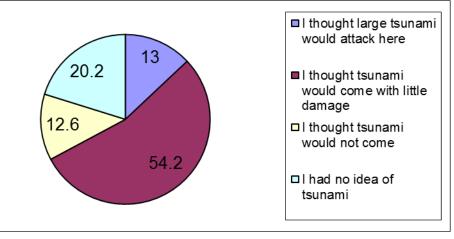
Structure or

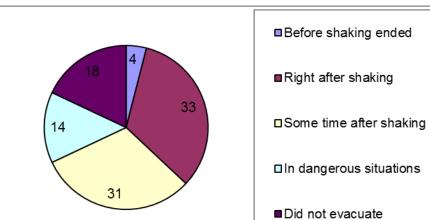

component

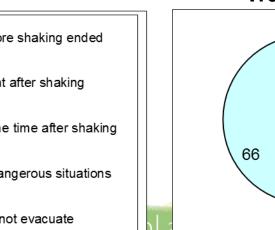
Town of Yamamoto, Miyagi, Japan

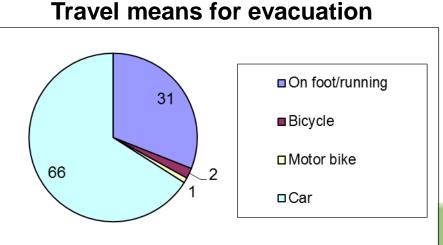
CABOT INSTITUTE Living with global uncertainty

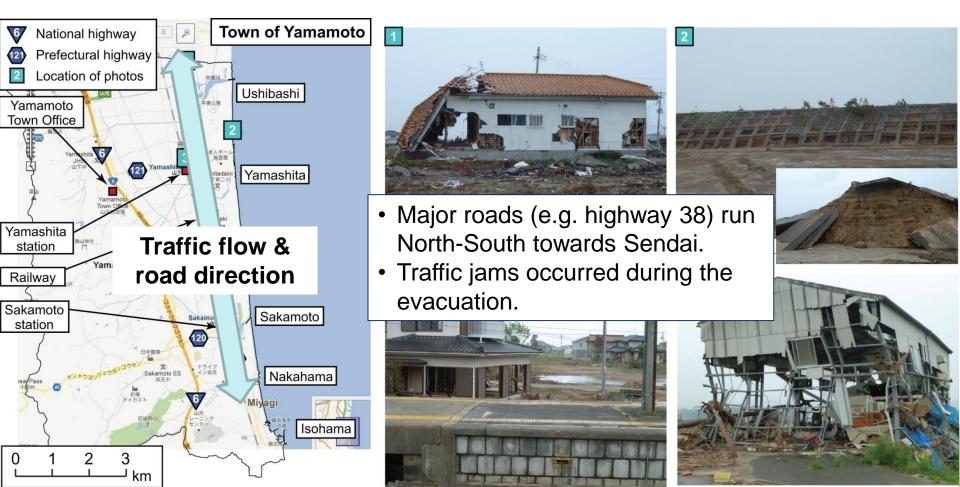
- Coastal plains South of Sendai (35 km).
- 676 deaths about 90 people (only) survived by evacuating to a shelter building. This is significantly less than other neighbouring municipalities (for instance, in Watari and Natori, about 2100 and 3250 people, respectively, evacuated and survived).
- Aging society.




Post-Tsunami Survey


CABOT INSTITUTE Living with global uncertainty

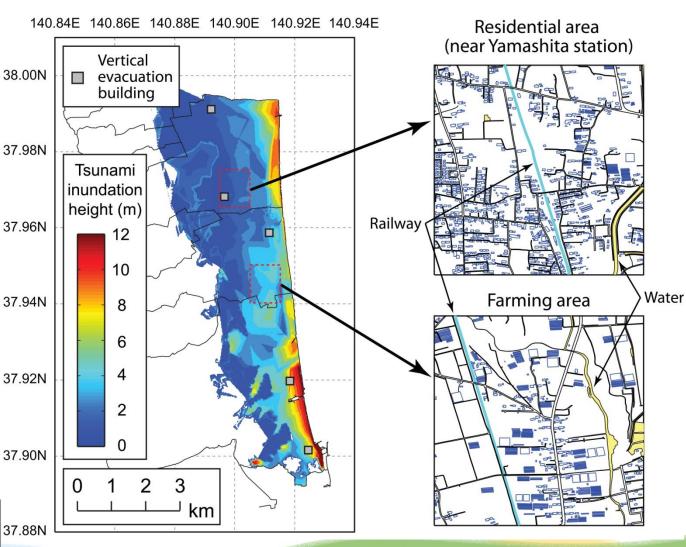

- Post-tsunami survey was conducted in Natori by Murakami et al. (2012).
- Unawareness of tsunami risks and delayed evacuation actions.
- Use of cars.


Timing of evacuation

Tsunami Damage in Yamamoto

CABOT INSTITUTE Living with global uncertainty

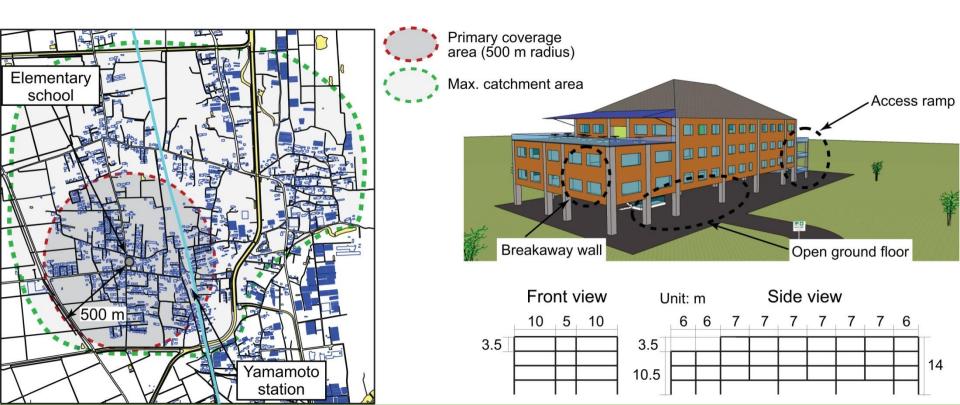
- Coastal revetments/levees were destroyed.
- Many residential houses were washed away.



Tsunami Inundation in Yamamoto

CABOT INSTITUTE

Living with global uncertainty


- Five sites for vertical evacuation buildings.
- Coverage area -500 m radius (4 miles per hour and 5 minutes; FEMA, 2008).
- Occupancy: local needs for services.

Yamamoto Elementary School

CABOT INSTITUTE Living with global uncertainty

- 500 m radius primary catchment and extended catchment.
- Open ground space and breakaway walls.
- Earthquake resistance and pile foundation (up to 10 m).

Informed Decision: Cost-Benefit Analysis

CABOT INSTITUTE Living with global uncertainty

- Design tsunami height: anticipated inundation height (2011 event) plus some freeboard (FEMA, 2008).
- Assume 600 lives saved for £47.5 million investments.
- £80K/life versus £20-30K/quality year (UK).
- Cost-effective!

Summary of cost-benefit analysis

Evacuation building site & occupancy type	Inundation depth (m)	Design tsunami height (m)	Building height (m) [# of storeys]	Covered population [Floor area (m ²)]	Cost (million GBP)
Site 1: Care home	1.95	5.54	14 & [4]	1320 & [2400]	18.1
Site 2: Elem. school	1.85	5.41	14 & [4]	1030 & [1500]	10.82
Site 3: Sports centre	4.09	8.32	14 & [3]	780 & [1000]	6.15
Site 4: Post office	10.49	16.64	17.5 & [5]	740 & [800]	6.89
Site 5: Fish process. plant	7.76	13.09	17.5 & [5]	970 & [1000]	5.53

Fukushima Daiichi Nuclear Power Plant Crisis

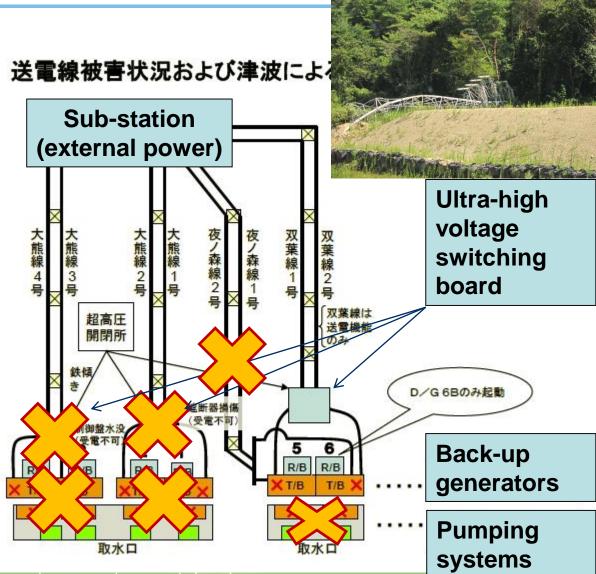
Fukushima Daiichi NPP

CABOT INSTITUTE

Living with global uncertainty

Fukushima Daiichi NPP

UK reactors: AGR (advanced gas-cooled reactors)


- Six boiling water reactor (BWR) units in the plant were constructed in 1970s. Heat is generated by nuclear fission and water is turned into steam, which drives a turbine to generate electricity.
- The facility was operated by Tokyo Electric Power Company (TEPCO).
- 14+ m tsunami (M_w 9.0 event) arrived at the plant, whereas the seawall was only 6.5 m high (M_w 8.2 event). Reactors 1-4 were inundated by the tsunami.
- They lost power supply, which was critical for pumping cooling water. Reactors 1-3 experienced meltdown. The emergency diesel generators and DC batteries were located at the basement of the reactor buildings.

Fukushima Daiichi Power Loss

CABOT INSTITUTE Living with global uncertainty

- The loss of power supply was caused by tsunami and shaking.
- Reactors 1-4 lost emergency diesel generators, DC batteries, and sea-water pumping systems by tsunami.
- The switching station for Unit 1&2 was damaged by shaking.
- The switching station was inundated (Unit 3&4) – unable to receive power externally.

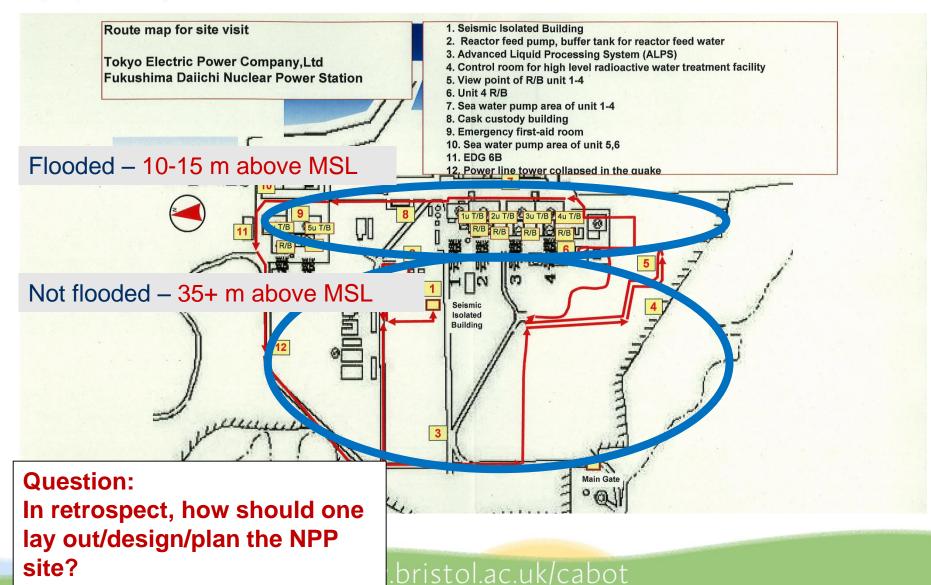
Current Situation

- Reactors 1-4 are currently under cold shut-down. They will be decommissioned (40-year plan).
- The compulsory evacuation zone is reduced from 20 km radius to 10 km radius.
- The current challenges are to continue to maintain cold shut-down status and process contaminated cooling water (400 ton per day).
- The <u>Advanced Liquid Processing</u> <u>System (ALPS)</u> has been constructed to remove all radioactive elements (e.g. caesium and strontium), except for tritium, from cooling water.

www.bristol.ac.uk

Current Situation

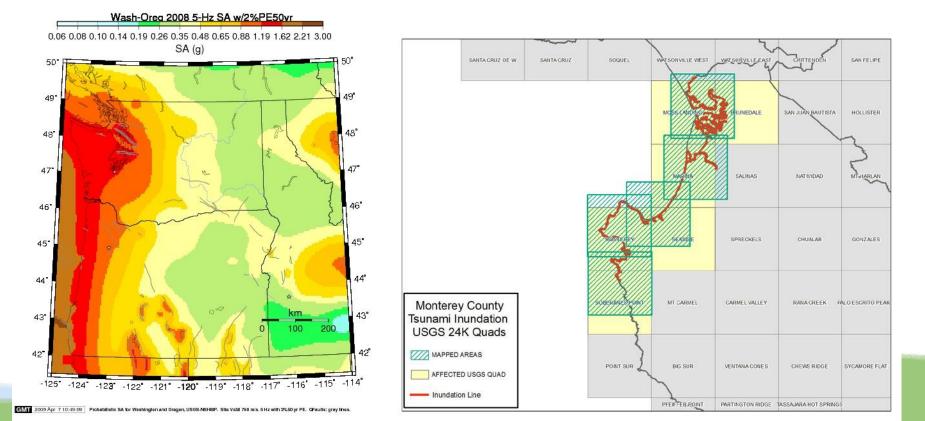
- A full operation of ALPS has been just started tritium needs to be removed. At this stage, the processed water will not be released into the environment – still the low-contaminated water needs to be stored in tanks.
- Removals of the fuels from the reactor buildings construction of outer frames and cranes to Reactors 3 and 4.



Site Layout & Design

CABOT INSTITUTE

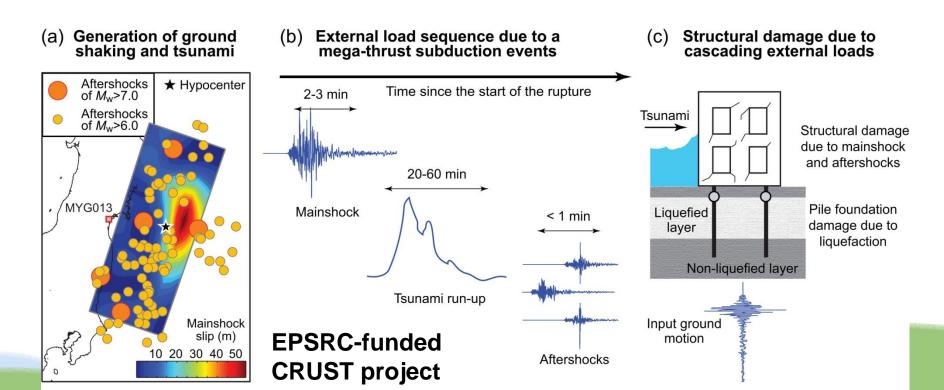
Living with global uncertainty


Research Challenges: Cascading Multi-Hazard & Risk Modelling due to Mega-thrust Subduction Earthquakes

Multi-Hazards Framework

CABOT INSTITUTE Living with global uncertainty

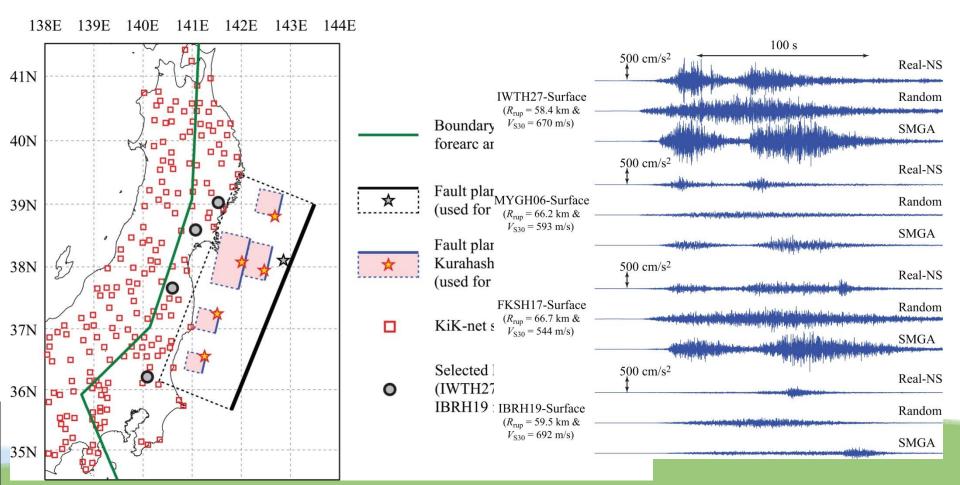
- Current approaches are fragmented no coherent methodology and framework across different hazards.
- Multiple hazard maps but based on different assumptions and scenarios.



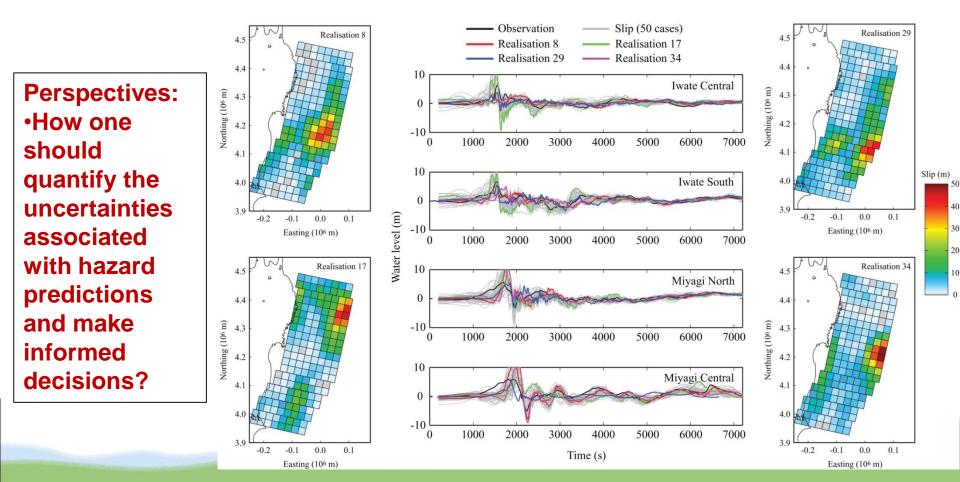
BRISTOL Cascading Hazards & Compounding Risks

CABOT INSTITUTE

Living with global uncertainty

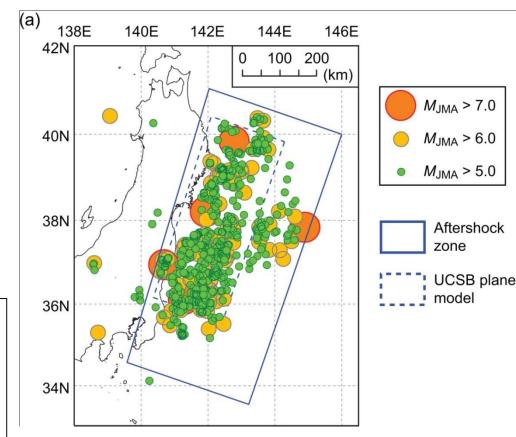

- Spatial and temporal dependency of external loading to critical infrastructure and its functionality (e.g. supply chain and business continuity planning).
- Multi-hazard modelling of a mega-thrust earthquake is important. Mainshock -> aftershocks -> ground failure -> tsunami -> fire -> ...

University of BRISTOL


Mega-thrust subduction earthquake – ground shaking modelling – large acceleration, long duration, etc.

Uncertainty Quantification

 Both strong shaking and tsunami are dependent on (unknown and uncertain) earthquake source characteristics.


Aftershock Hazards & Risks

CABOT INSTITUTE Living with global uncertainty

- Numerous major aftershocks over a wide spatial area.
- Post-earthquake building tagging. Evacuation – how long?
- Time-dependent hazards.
- Financial loss and insurance
 policy

Perspectives:

•The 2010 Darfield and 2011 Christchurch (NZ) earthquakes can be interpreted as mainshockaftershock sequence. •What about the 2004 Sumatra earthquake?

Water-borne Debris

- Impact forces caused by large floating objects such as ships and containers can be destructive.
- The estimation of such forces is highly uncertain.

Summary & Key Lessons

CABOT INSTITUTE Living with global uncertainty

- Imagine extreme situations scenarios!
- Cascading multi-hazards and risks.
- Uncertainty modelling and quantification.
- Combination of soft and hard measures resistant structures plus emergency planning/evacuation.
- Vertical evacuation buildings can be justified on the cost-benefit basis.
- Multi-layer protection system robustness & resilience.
- Cooperation among victims, Self-Defence Forces, municipalities, NGOs/NPOs, companies, governments, foreign aids, etc.

Any Lessons for the UK?

- Any critical infrastructure in the UK may be subject to similar cascading hazards and risks (due to different trigger events).
- The 2007 Ulley reservoir crisis put local communities, M1 motorway junctions, and a crucial regional electricity substation in extreme danger.

http://www.ulleyweb.co.uk/flood.htm

