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REGULAR ARTICLE

Comparing single-unit recordings taken from a localist model to single-cell
recording data: a good match*

Michele Gubiana, Colin J. Davisa, James S. Adelmanb and Jeffrey S. Bowersa

aSchool of Experimental Psychology, University of Bristol, Bristol, UK; bDepartment of Psychology, University of Warwick, Coventry, UK

ABSTRACT
Single-cell recording studies show that some neurons respond to complex visual information (e.g.
words, objects, faces) in a highly selective manner, with individual neurons responding to about
0.5% of presented images. Such data have often been taken as inconsistent with “grandmother
cell” theories as well as with localist models in psychology. In particular, it is commonly assumed
that units in localist models respond to only one input, resulting in greater levels of selectivity
than seen in single-cell results. To test this assumption, we recorded unit activity from a localist
model of word identification. Our results show that the model can capture the levels of
selectivity reported in neuroscience. Accordingly, single-cell data do not rule out localist coding
schemes. We propose that the term grandmother cell should be reserved for the hypothesis that
the brain implements localist representations: neurons that represent one and only one thing
but respond to multiple things.
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Introduction

There are many ways that “grandmother cells” can be
defined so that they are easily falsified. For instance, if a
theory of grandmother cells entails the view that each
of our visual experiences (indeed all possible future
experiences) is coded by single neurons, then it is clear
this view is untenable because there are not enough
neurons in a brain to code for all possible different experi-
ences (e.g. Eichenbaum, 2001; Plaut & McClelland, 2010).
Similarly, if a grandmother cell theory entails the view
that one and only one neuron codes a given object (i.e.
there is no redundancy in coding), then it is subject to
the criticism that losing a single neuron could lead to
the selective loss of knowledge (e.g. Lytton, 2007).

In the sameway, if a grandmother cell theory entails the
view that neurons selectively respond to one thing and
nothing else (i.e. baseline firing to all other stimuli), then
it is hard to explain the frequency with which researchers
have identified highly selective neurons (e.g. Waydo,
Kraskov, Quiroga, Fried, & Koch, 2006; Yuste, 2015). That
is, the probability of finding a grandmother cell of this
sort should be extraordinarily small given that researchers
canonly record froma fewdozenor atmost a fewhundred
neurons (out of millions), and given that researchers can
only present a tiny fraction of the possible images to a par-
ticipant. So, counter-intuitively, the frequent reports of
highly selective neurons are taken as evidence against
grandmother cells. Equally problematic for this view,

even the most selective neurons tend to respond to
other images (e.g. a neuron in hippocampus that selec-
tively responded to images of Jennifer Aniston also fired
to an image of Lisa Kudrow, her co-star on the television
show Friends; Quian Quiroga, Reddy, Kreiman, Koch, &
Fried, 2005). The common conclusion from the above
observations and results is that grandmother cell theories
are implausible. This in turn is used to argue that knowl-
edge is coded in a distributed format, with many
neurons involved in coding a given stimulus, and each
neuron coding many different inputs.

The problem with this line of argument is that these
observations are also consistent with localist coding,
the main theoretical alternative to distributed coding
within cognitive psychology. In simulations below we
show that a localist model of visual word identification
can account for the frequency with which selective
units are found and the observation that many highly
selective neurons often fire to more than one input (in
this case, words). These findings are important because
many theorists reject localist models in psychology on
the basis of the neuroscience.

Localist vs. distributed coding in cognitive
psychology

Within psychology localist and distributed models have
been advanced across a wide range of domains,
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including visual and spoken word identification, short-
term memory, episodic memory, semantic memory,
object perception, face perception, motor control, and
so on. On localist theories, individual words, objects,
simple concepts, and so on, are coded distinctly, with
their own dedicated representation. For example, the
words FOG and DOG would be coded with distinct and
non-overlapping mental representations. On any localist
account, the words FOG and DOG would be linked by
virtue of sharing some features (e.g. letters), but the
words themselves would be stored explicitly and separ-
ately in the mind. For example, the Interactive Activation
(IA) model of visual word identification (McClelland &
Rumelhart, 1981) includes localist representations for
letter features, letters, and words, and word identification
is achieved when a single unit is activated beyond some
threshold. As a consequence, it is possible to record from
a single unit and determine whether the model is proces-
sing a given word or not.

The use of localist representations was challenged by
the introduction of Parallel Distributed Processing (PDP)
models (Adelman, Gubian, & Davis, 2016; McClelland,
Rumelhart, & PDP Research, 1986; Rumelhart & McClel-
land, 1986). A key claimof this approach is that knowledge
is coded in a distributed manner in the mind and the
brain. That is, knowledge is coded as a pattern of acti-
vation across many processing units, with each unit con-
tributing to many different representations. A classic
example is the developmental model of word recognition
and naming by Seidenberg and McClelland (1989) that
can name many familiar (both regular and irregular) and
unfamiliar (untrained) words on the basis of learned dis-
tributed codes. As a consequence, even though the
model can succeed in naming the word DOG, it is not
possible to determine the identity of the word by record-
ing the activation of a single unit in the hidden layer.

Critically, proponents of PDP models often cite evi-
dence from neuroscience in support of distributed
models compared to localist models. For example,
McClelland and Ralph (2015) write:

Neuronal Recording Studies relying on microelectrodes
to record from neurons in the brains of behaving
animals can allow researchers to study the represen-
tations that the brain uses to encode information and
the evolution of these representations over time.
Several fundamental observations have been made
using this technique. As discussed above, these studies
indicate, among other things, that the brain relies on dis-
tributed representations…

Similarly, Flusberg and McClelland (2014) wrote:

The key take-homemessage is that connectionist models
are not just somewhat biologically plausible implemen-
tations of existing psychological theories; rather, they

provide alternatives to other theories and offer a
means of investigating a unique way of thinking about
mental processing… .

This last quote not only highlights the common claim
that PDP models are more biologically plausible than
alternative (localist) approaches, but in addition, high-
lights the claim that this is an important theoretical
distinction.

In fact we agree that localist and distributed coding
schemes constitute important alternative theories of
how knowledge is represented (cf. Bowers, Vankov,
Damian, & Davis, 2014, 2016; Page, 2000). The question
we address here is whether indeed single-cell recording
data do indeed rule out localist coding schemes. We
assess this by carrying out single-unit recordings in a loc-
alist model of visual word identification (Davis, 2010) and
comparing the results with single-cell studies that are
typically taken as inconsistent with grandmother cell
coding, as we detail next.

Comparing the selectivity of neurons and
localist units in a model of word identification

Some of the most striking demonstrations of selective
neuronal responding have been reported in the medial
temporal lobes of human participants. For example,
Quian Quiroga et al. (2005) recorded from a total of
993 units (single neurons or small groups of neurons)
from eight patients with epilepsy where electrodes are
implanted in order to localise the focus of the seizure.
The patients were tested over the course of 21 sessions
with approximately 90 images (photographs of people,
objects, and scenes) presented per session. They ident-
ified 132 units (14%) that responded to at least one
picture, and all these responses were highly selective,
with responsive neurons only responding to 2.8% of
the presented pictures (range: 0.9–18%). Furthermore,
51 of the responsive units (38.6%) respond to different
photos of the same person, building, animal, or object
(they showed some invariance). For instance, one
neuron responded to multiple images of Jennifer
Aniston (star of the TV show Friends).

Although these findings might be taken as lending
some support to grandmother cells, the authors ruled
out this interpretation based on two considerations.
First, although some neurons only responded to one cat-
egory of image within the experimental session (for
instance, one neuron responded to multiple images of
the actor Steve Carell and was near silent to 54 other
faces), other neurons responded to different categories
of images (for instance the Jennifer Aniston neuron also
responded to an image of Lisa Kudrow – a co-star of the
TV series Friends – and another neuron responded to
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Tower of Pisa and the Eiffel Tower). The authors concluded
that all neurons would be activated by multiple different
categories of images if more images were presented in a
given session (technical constraints restricted a given
session to about 100 images). Second, the fact that these
neurons were found in the first place (out of the many
millions of neurons in the medial temporal cortex)
implies that the neurons must respond to a wide variety
of different images (otherwise they would not be found).
A subsequent analysis of these results (Waydo et al.,
2006) estimated that the average selectivity of these
neurons was approximately 0.5%, meaning that these
neurons responds to about 0.5% of presented images,
and that each neuron responds to between 50 and 150
different categories of images (on the assumption that
adults recognise between 10,000 and 30,000 discrete
objects).1 This then provides an explanation of the fre-
quency with which they reported these highly selective
cells in previous experimental sessions. They noted that
if one assumes 0.54% selectivity, recording from an
average of 54 neurons per session and presenting 88
images should result on average in finding 15.9 units
responding to 17.9 stimuli. This is not so far from what
they in fact observed in each session.

Again,weagreewith the authors that these findings are
hard to accommodate with the view that a single grand-
mother neuron codes for a given person, place, or thing,
and that grandmother neurons only respond to one
thing (being entirely silent to everything else). But for
present purposes, the question is whether these findings
are problematic for localist coding models in psychology.

To assess whether indeed these findings are proble-
matic for localist theory we analysed the word units in
the Spatial Coding Model (SCM) of visual word identifi-
cation (Davis, 2010) that represents words with localist
codes. We carried out simulated single-unit recording
studies in which we recorded the activity of word units
while presenting a random sample of words to the
model. The question is whether our single-unit recording
results are broadly consistent with the single-neuron
recording results reported in the brain that are taken to
be inconsistent with localist coding.

Simulation 1

The SCM is a localist model of visual word recognition
that can simulate a broad range of findings in visual
word recognition (e.g. Davis, 2010; Lupker, Zhang, Perry,
& Davis, 2015; Stinchcombe, Lupker, & Davis, 2012). Pub-
lished simulations of themodel have used a vocabulary of
30,605 English words, comprising all words of between 2
and 10 letters with frequencies of occurrence of greater
than 0.34 per million in the Celex English Corpus Types

corpus (Baayen, Piepenbrock, & van Rijn, 1995). This
number of words is in the same range as the number of
discrete objects that a typical adult can recognise, accord-
ing to the estimate by Biederman (1987), as cited by
Waydo et al. (2006). The size of this model’s vocabulary
was our principal reason for choosing this particular loc-
alist model, rather than other localist models such as
the IA model (which is restricted to 11,794-letter words)
or the Dual Route Cascaded model (which is restricted
to 7954 monosyllabic words).

When a familiar word is presented to the SCM (i.e. a
word contained in the model’s vocabulary) activity in
the corresponding word unit shows a sigmoid activation
function over time y(t), in which there is a brief interval
where activity y increases faster than linear-
ly(∂y(t)/∂t . 0, ∂2y(t)/∂t2 . 0), followed by an interval
where activity grows roughly linearly (∂y(t)/∂t . 0,
∂2y(t)/∂t2 � 0), before finally converging towards an
equilibrium state at a slower than linear
rate(∂y(t)/∂t . 0, ∂2y(t)/∂t2 , 0). Typical activation func-
tions are shown in Figure 1 for the cases where the word
stimulus is either sink or zebra. In the latter example, there
are nowords in the vocabulary that are close orthographic
neighbours of the word zebra, and hence the zebra word
unit is the only word unit that shows any increase in
activity over time; for the remaining word units, activity
declines towards the lower limit (of course, there are
other units in the model that do become active, such as
letter units and letter feature units, but we focus here
on the word layer, which constitutes the vast majority of
the units in this model). The situation is slightly differ-
ent for the word sink: although the activation function
for the winning word unit is very similar to that seen in
the previous example, here we can see some evidence
of other word units beginning to activate before lateral
inhibition from the sink word unit has the effect of
suppressing their activity. Those units which become
partially activated are orthographic neighbours of sink
– sick, silk, sank, and sunk. This example already illus-
trates that activity is not limited to a single grand-
mother cell representation, that is, activity is not as
selective as in the straw man (or straw grandmother)
characterisations of localist networks. Nevertheless, it
is the case that, for this particular model, relatively
few units are driven above their baseline activity by
familiar word stimuli.

Method
We performed a series of quantitative analyses aimed at
assessing the compatibility of results from single-neuron
recording studies with computational models based on
localist networks. To make the case concrete, we
attempted to compare the behaviour of the SCM
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(Davis, 2010) with the probabilistic analysis of single-
neuron recording studies reported by Waydo et al.
(2006). Units in the SCM take on activation values that
abstracts away from the complexity of physical
neurons. As a consequence, there is no obvious one-to-
one mapping between physical measurements in terms
of neuron spikes per second with model unit activation
in time. To make the comparison between Waydo et al.
(2006) and SCM possible we made a number of choices

and assumptions (Table 1). Given these assumptions,
the comparison becomes relatively straightforward.

All of the simulations reported in this article were con-
ducted using the easyNet simulation software developed
by Adelman et al. (2016).2 The estimate of selectivity in
SCM was computed as follows. All N = 30, 605 words
in the model vocabulary were independently presented
to the model for a fixed amount of time T = 100
simulation cycles. The model did not perform any task;

Figure 1. Example activation functions over time in the original SCM for two different word stimuli (sink and zebra).

Table 1. Correspondence between criteria used to identify selective neurons in single-unit recording studies and criteria we used in our
simulations.
Waydo et al. (2006) SCM

“we considered a response to be significant if it was larger than the mean plus
a threshold number of SDs of the baseline (before the onset of the image)
and had at least two spikes in the poststimulus time interval considered”

There is no analog to spikes. We consider a response to be significant, i.e. a unit
responds, if its level of activation rises at least uy ≥ 0 above its starting
(resting) level during stimulus presentation. (See text on the choice of uy )

“poststimulus time interval considered (0.3–1 s)” Time interval is taken to be a number of simulation cycles T after stimulus
presentation largely sufficient for the model to perform lexical identification

Selectivity is estimated by looking at the (estimated) distribution of its value
given responses of multiple neurons to stimuli presentation

Selectivity is estimated by counting the number of responses NR each unit
provides across the presentation of all N = 30, 605 word stimuli known to
the model. The estimator for selectivity is the median of NR/N across all the N
units in the word layer. (Note that the number of units N in the word layer
coincides with the number of words known to the model)

Stimuli are images Stimuli are written words
Universe of stimuli cardinality assumed to be around 30,000 Universe of stimuli cardinality known exactly and equal to the model

vocabulary size, that is the number N of word units, N = 30, 605
Number of neurons unknown Number of units known and equal to the universe of stimuli cardinality,

N = 30, 605
“A large majority of neurons within the listening radius of an extracellular
electrode are entirely silent during a recording session.… Thus, the true
sparseness could be considerably lower”

All unit activities are recorded

“there is a sampling bias in that we present stimuli familiar to the patient (e.g.
celebrities, landmarks, and family members) that may evoke more responses
than less familiar stimuli”

We avoid this potential bias by selecting words at random from the set of
words known to the model
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we simply recorded word unit activities. A unit is said to
respond to a stimulus if at any point in time t during
stimulus presentation (0 ≤ t ≤ T ) the following holds
true:

y(t)− y(0) . uy ≥ 0, (1)

where y(t), a value between –0.2 and 1.0, is the level of
activation at each point in time (here t is a discrete
value that indexes simulation cycles), and uy is a threshold
to be specified. In this way each unit provides a binary
outcome at the end of a stimulus presentation, that is, it
did or did not respond to the stimulus. This simple defi-
nition was chosen after observing the typical system
dynamics, whereby at the start of a stimulus presentation
a number of units raise to some level above their resting
or baseline level, that is, the value y(0), and subsequently
decrease again due to competition (except for the
winner), while the large majority of units steadily decrease
right from the start (cf. Figure 1). Selectivity is estimated
from the observations of the quantity NR/N, where NR is
the number of responses (as defined in Equation (1)) a
single unit gives following the presentation of N stimuli.
Since the distribution of NR/N across the N = 30, 605
units is usually quite skewed, we will adopt the median
as estimator.

Results and discussion
Figure 2 reports empirical cumulative distribution func-
tions (ECDFs) of the number of responses NR as defined

above. The different functions represent different
choices for the threshold uy (cf. Equation(1)). For
example, the curve corresponding to uy = 0 shows the
number of stimuli for which a unit responded by increas-
ing its activity above its resting level. By reading the
median off the curve (i.e. the value of NR corresponding
to ECFD = 0.5) we note that this value is 19, meaning that
typically units would go above their baseline activity y(0)
only for 0.06% of stimuli ( 19

30, 506), or in other words, units
do not go above their baseline activity in 99.94% of the
cases. This shows that it is safe to consider as a response
even an increase in activity above baseline level greater
than say uy = 0.01, or to be more conservative,
uy = 0.05. Figure 2 shows that for those values of uy
medians of NR are 4 and 2 for uy = 0.01 and uy = 0.05,
respectively. Even adopting the more inclusive criterion
uy = 0.01 we get an estimated selectivity of 0.013%,
which is far smaller than the 0.5% selectivity rate esti-
mated by Waydo et al. (2006).

Simulation 2

The extreme selectivity observed for the SCM model in
Simulation 1 is a problem for the model not simply from
the perspective of matching data from single-cell record-
ing studies, but also for explaining behavioural results. For
example, using a semantic categorisation task, Bell,
Forster, and Drake (2015) found evidence for priming
relationships between relatively orthographically distant

Figure 2. ECDFs of number of responses NR for several values of activation threshold uy (cf. Equation (1)) obtained by presenting
N = 30, 506 words to SCM for T = 100 cycles. All parameters of SCM are as in the published model (Davis, 2010).
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words (e.g. capable priming cabbage, senior priming
sailor). Bell et al. refer to such pairs as “SCM neighbours”
on the basis that they were chosen on the basis of their
moderate similarity, as measured by the match scores
computed in the SCM model. The present version of the
model cannot capture such priming effects because
such orthographic neighbours are not typically among
the relatively small set of word units that become acti-
vated by the prime. That is, the lexical activation in the
model is somewhat too selective to support such priming.

It is important to note, though, that selectivity is not a
defining feature of localist neural network models. Math-
ematical analyses of the relevant properties of these net-
works have been described by Grossberg (1973), who
noted the existence of a quenching threshold, below
which input signals are treated as noise and suppressed.
Inputs greater than the quenching threshold are pre-
served or amplified, depending upon model parameters
and the nature of the lateral inhibition (including the
signal function). Thus, modifying the lateral inhibitory
function of the original SCM can result in changes to the
selectivity of activity at its word layer. In particular, Davis
(1999, chapter 2) noted that the approximately winner-
take-all behaviour associated with models like IA (McClel-
land & Rumelhart, 1981) can be transformed to a less
selective coding at the word layer if the lateral inhibitory
connection is replaced with what Grossberg refers to as
shunting inhibition, whereby the inhibitory input to each
unit is weighted by that unit’s current activity (specifically,
the inhibitory signal becomes magnified as a unit’s
activity increases). This enables word units which
provide a moderate match to the input stimulus to
begin to become active without being immediately sup-
pressed by the best matchingword unit. This form of inhi-
bition is already used in other layers in the SCM, but was
eschewed at the word layer in the published model so
as to permit a generalisation of the original IA model
(which does not use shunting inhibition). However, it is
possible to rewrite the model’s equation for computing
lateral inhibition to allowageneralisation that can encom-
pass both shunting and non-shunting inhibition models.
That is, we can replace the original expression for the
strength of lateral inhibitory signals:

Qi = l1(x− [xi]+), (2)

with a generalised form which allows for self-shunting
inhibition:

Qi = (l1 + l2 [xi]+) (x− [xi]+). (3)

Here,Qi represents the lateral inhibitory input to the ith
word unit, xi represents the current activity of the ithword
unit, x represents the summed activity of all word units

(weighted according to the length of the words they
code; see Davis (2010), Equation (30)), and the notation
[xi]+ indicates a function that applies a lower bound of
zero to unit activities (e.g. units with negative activities
do not result in a negative value of Qi). In Equation (3),
setting l1 to 0.34 and l2 to 0 is equivalent to the original
SCM. On the other hand, setting parameter l1 to 0 and l2
to some positive value results in a model in which lateral
inhibition at the word level depends entirely on shunting
inhibitory signals. This is the version of the model that we
test in Simulation 2, adopting a setting of l2 = 0.3. With
this modification to inhibition in place, the selectivity of
the model depends largely on the bottom-up letter
word excitation strength,3 which effectively determines
the quenching threshold.We alsomodified twoother par-
ameters: (a) the yglobal parameter (which weights the con-
tribution of total lexical activity to “Yes” responses in the
lexical decision task; see Equation (39) in Davis, 2010)
was reduced from 0.4 to 0.04; this parameter adjustment
was necessary to compensate for the greater level of total
lexical activity in the modified model; (b) the glen par-
ameter (which weights the strength of inhibition to
word units that differ in length from the number of
letters in the current stimulus; see Equation (34) in
Davis, 2010)was increased from0.06 to 0.3; this parameter
change reflects the decreased reliance on lateral inhi-
bition to “clean up” the input.

Method
The methodology for presenting stimuli to the network
andmeasuring selectivitywas the same as in Simulation 1.

Results and discussion
Figure 3 shows the ECDFs of network selectivity given a
range of uy values with a value for bottom-up letter word
excitation strength a = 2.0. Comparison with Figure 2
indicates that the network using shunting inhibition pro-
duces activity that is still highly selective. The curve for
uy = 0 has its median value at NR = 486, which means
that typically a unit responds to only 1.6% (i.e. 486

30, 506) of
the word stimuli belonging to the model’s vocabulary.
Nevertheless, this outcome is considerably less selective
than the original model. A conservative choice for the
threshold uy = 0.05 provides an estimate of selectivity
of 0.47% (median NR = 144), which closely matches the
0.5% estimate by Waydo et al.

Figure 4 shows how the ECDFs vary as a function of
the value of the excitatory input parameter awhile
keeping uy = 0.05. As can be seen, there is a clear
relationship between the strength of the excitatory
input and the selectivity of the network – in principle,
it is possible to achieve any desired level of selectivity
by varying the magnitude of a. Thus, there is no sense
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in which results from single-cell recording studies
demonstrate levels of selectivity that are inconsistent
with localist models. This observation does not render
localist models unfalsifiable, but it does imply that falsifi-
cation cannot be achieved purely on the basis of data
from single-cell recording studies (though such data
could constrain the parameterisation of models, and in
combination with behavioural results could falsify
specific models).

The effect of the changes to the model can also be
seen by examining activity over time. Figure 5 shows

the activity functions for the same two word stimuli as
in Figure 1. Comparing the two figures reveals a couple
of important differences. First, there are clearly many
more word units activated in the modified model than
in the original model (nevertheless, it remains the case
that over 98% of word units show no positive response
to these stimuli). The second difference is that the equi-
librium activity of the winning unit is considerably lower
when the stimulus is sink, which has many orthographic
neighbours, than when the stimulus is zebra (which acti-
vates far fewer units). This difference reflects the effect of

Figure 3. ECDFs of number of responses NR for several values of activation threshold uy (cf. Equation (1)) obtained by presenting
N = 30, 506 words to the modified SCM for T = 100 cycles.

Figure 4. ECDFs of number of responses NR for several values of a (parameter scaling excitatory input to the word layer) and for a fixed
value of uy = 0.05.
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lateral inhibition, which effectively conserves the total
activity at the word layer.

Of course, it is important to establish that the modi-
fied model can still provide a good model of visual
word recognition. A comprehensive analysis of the
behaviour of this model is beyond the scope of the
present article; simulating the same set of phenomena
as the original SCM model would require careful
exploration of the parameter space of the model.
Here we simply note that the model satisfies the funda-
mental property required of a model of visual word
identification, that is, it can identify familiar words. To
test this, we sampled 1000 words and 1000 nonwords
from the set of stimuli contained in the British
Lexicon Project (Keuleers, Lacey, Rastle, & Brysbaert,
2012). The sampling criteria were that stimuli were
classified correctly by >99% of participants and did
not contain common suffixes (-ing, -er, -ed, -es, and
-s); the latter criterion reflects the theoretical assump-
tion, motivated by experimental findings (e.g.
Marslen-Wilson, Tyler, Waksler, & Older, 1994), that rec-
ognition of morphologically transparent words involves
a decomposition process (e.g. swelling � swell + -ing)
that is not specified in the current model. Each of the
1000 words was correctly identified by the model
(the identification threshold was set at 0.35). When
the task was lexical decision (i.e. categorising stimuli
as words or nonwords), the model correctly classified

100% of the words and 98% of the nonwords
(threshold activities for the YES and NO channels
were set to 0.35 and 0.3, respectively). The nonwords
that were miscategorised as words were very word
like nonwords such as twetty or pseudocompounds
such as whiskwince. Thus, despite the much greater
level of lexical activity, the model is near-perfect at
identifying words and discriminating words from
nonwords.

General discussion

It is widely claimed that single-cell recording data in
neuroscience support distributed as opposed to localist
models in psychology (McClelland & Ralph, 2015;
O’Reilly, 1998; Plaut & McClelland, 2010). A key problem
with this claim, however, is that it has not been tested.
Indeed, in contrast with the vast literature reporting
single-cell recording data (for review see Bowers, 2009),
there are only a handful of studies that have character-
ised the responses of single units in PDP and related arti-
ficial neural networks, and even fewer studies that have
compared these results to the neuroscience findings.
And as far as we are aware, this is the first study to
compare the response properties of localist represen-
tations and single neurons. What is perhaps surprising
is that when these comparisons are made the results

Figure 5. Example activation functions over time in the modified SCM for two different word stimuli (sink and zebra).

LANGUAGE, COGNITION AND NEUROSCIENCE 387

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
B

ri
st

ol
] 

at
 0

6:
30

 2
9 

Se
pt

em
be

r 
20

17
 



highlight the biologically plausibility of localist coding
schemes.

Two findings from neuroscience are often taken in
support of selective distributed rather than grandmother
cell coding schemes; namely, the fact that selective units
often respond to more than one category of input, and
the frequency with which selective neurons are found
(Waydo et al., 2006). Although we agree that these find-
ings are problematic for grandmother cell theories when
grandmother cells are defined extremely narrowly (i.e.
the view that a single neuron fires in response to a
given input and responds at baseline levels to everything
else), our simulations with the SCM model of visual word
identification show that localist representations can
accommodate these two sets of results. Accordingly,
the neuroscience results should not be used to reject loc-
alist models in favour of PDP models in psychology.

Furthermore, recent analyses of single units in PDP
models also lend some support to localist coding
schemes. That is, in contrast with the widespread view
that PDP models learn highly distributed codes (a key
reason why so few researchers have analysed single
hidden units one-at-a-time), these models sometimes
learn localist representations (Bowers et al., 2014,
2016). Even “deep” networks that can match human per-
formance on some object recognition tasks often learn
highly selective codes (e.g. Yosinski, Clune, Nguyen,
Fuchs, & Lipson, 2015). In our view, the key message
for psychologists is that analyses of single units in both
PDP and localist models demonstrate the biological
plausibility of localist representation. The message for
neuroscientists is that theorists should consider the
hypothesis that brain implements localist coding
schemes in which single neurons represent one thing,
but fire to multiple things. Indeed, Bowers (2009)
suggested grandmother cells be defined as localist rep-
resentations. Adoption of this definition would ensure
that psychologists and neuroscientists were using a
common language, and no one would be dismissing a
hypothesis that few if any researchers take seriously (or
indeed, ever proposed).

Review of results

We now consider the present results in somemore detail.
In Simulation 1 we carried out single-unit recordings
from the word units in the original SCM without chan-
ging any of the parameters. Here, we found that
indeed the degree of selectivity was higher than esti-
mated by Waydo et al. (2006). That is, rather than a selec-
tivity estimate of 0.5% we found 0.01%. This might at first
appear to support the common claim that the neuro-
science is inconsistent with localist coding models.

There are two reasons why we think this conclusion is
unjustified. First, Waydo et al. (2006) note themselves
that their estimate of 0.5% selectivity may be a great
overestimate given the technical and methodological
limitations of the Quian Quiroga et al. (2005) study.
They write:

Two significant factors may bias our estimate of sparse-
ness upward. A large majority of neurons within the lis-
tening radius of an extracellular electrode are entirely
silent during a recording session (e.g. there are as
many as 120–140 neurons within the sampling region
of a tetrode in the CA1 region of the hippocampus
(Henze et al., 2000), but we typically only succeed in
identifying 1–5 units per electrode)… Thus, the true
sparseness could be considerably lower. Furthermore,
there is a sampling bias in that we present stimuli familiar
to the patient (e.g. celebrities, landmarks, and family
members) that may evoke more responses than less fam-
iliar stimuli. For these reasons, these results should be
interpreted as an upper bound on the true sparseness,
and some neurons may provide an even sparser
representation.

That is, the authors are suggesting that their estimate of
sparseness (meaning selectivity, cf. note 1) may be off by
more than an order of magnitude. In which case, the
level of selectivity we observed in original model is not
outside the range of possible selectivity values.

Second, the parameter settings of the original SCM
model were not constrained in any way by estimates of
neural selectivity. This raises the question of whether a
modified version of the model can better capture the
neural data as reported. In fact, there are good behav-
ioural data to suggest that the level of selectivity is too
extreme in the published SCM model. In particular,
there is good evidence that a large cohort of words is
co-activated when a person identifies a single word.
For instance, while processing the meaning of a given
word (e.g. PEAR or WARM) the meaning of form related
words (e.g. BEAR or ARM) are also activated (Bowers,
Davis, & Hanley, 2005; Pecher, de Rooij, & Zeelenberg,
2009). Given that a specific target word shares overlap
many different words (e.g. PEAR is closely related to
BEAR, DEAR, FEAR, HEAR, NEAR, REAR, TEAR, WEAR,
YEAR, EAR, PEA, etc. and it overlaps with many more
words to a lesser degree), this strongly suggests that a
large cohort of form related words are co-activated at
the same time. This is not captured in the original SCM
model.

In Simulation 2 we modified the way lateral inhibition
works in the model, such that the activity of a word unit
is used to weight the lateral inhibitory input to that unit.
This reduces winner-take-all behaviour by allowing
weakly activated units to increase their activity in
response to positive input without being immediately
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suppressed. This type of shunting inhibition is used in
other localist models, notably in those studied by Gross-
berg and colleagues (e.g. Carpenter & Grossberg, 1987;
Grossberg, 1973). The key result of this modification to
the model is that it is possible to manipulate level of
selectivity by varying a single parameter. By choosing
an appropriate value for this parameter we are able to
match the level of selectivity estimates reported by
Waydo et al. (2006). Importantly, the model is still able
to identify all the words in its vocabulary. Of course, in
order to make any claims regarding the viability of the
modified model as a theory of visual word recognition
it will need to account for all the behavioural data that
the original model can explain. But this is not the goal
of the present paper. Indeed, we do not intend to link
the viability of localist coding to this specific model of
word identification. Rather, we simply use this demon-
stration as an existence proof that a localist model that
can identify a large set inputs (in this case over 30,000
words) can straightforwardly capture the selectivity
data that are often used to reject grandmother cells in
neuroscience and localist representations in psychology.

One possible objection to our simulations above is
that we were randomly sampling from ∼30,000 word
units (in which every unit represents a word) whereas
in neuroscience studies researchers are randomly
sampling from many millions of neurons (in which
many neurons may not even be involved in the identify
a stimulus). The different conditions may lead to very
different estimates of selectivity. For example, our selec-
tivity measures observed in Simulation 2 would have
been much greater (and inconsistent with the observed
data) if we embedded the 30,000 units amongst millions
of other units that did not fire to the inputs).

The problem with this critique is that it rests on the
assumption that there is a single neuron/unit that
codes for a specific word. But this is not the assumption
of any biologically plausible theory in neuroscience or
psychology. Indeed, Barlow (1985), Gross (2002), Page
(2000), and Perrett et al. (1989), among others, are all
clear that redundant coding would be required in any
feasible grandmother coding scheme, and level of
redundancy might scale with the familiarity of the item
(Konorski, 1967). Similarly, we imagine that there might
be many 1000s of redundant units in any biologically
plausible localist model. One (simplistic) way to simulate
this for present purposes would be to simply replicate
the SCMmodel 1000 times (so that there are 1000 redun-
dant representations for each word), such that there are
30,000 × 1000 units, or 30 million word units. This scaled-
up model would result in identical selectivity values.
Perhaps another 30 million units could be added that
are not currently committed to any words, making a

network of 60 million units with a selectivity value of
50% of our estimate. Andmanymore units might be con-
sidered that code for sublexical representations (e.g.
letters, bigrams, etc.) that fire to more inputs, which in
turn might bring the selectivity values back closer to
our original estimates. The point is simply that it is poss-
ible to scale up the current model to include many
millions of units while maintaining similar levels of
selectivity.

To continue with this (admittedly speculative) analysis
comparing number of units in this highly redundant SCM
network and brain areas, how many neurons might there
be in the visual word form area (the brain area one would
record from if you were looking for selective responses to
words)? It has been estimated that there are ∼100,000
cells per cubic mm in cerebral cortex (Braitenberg &
Schüz, 1998), and the volume of the visual word form
area may be roughly ∼175 cubic mms (based on the
number of active voxels; Baker et al., 2007). This would
suggest that there are approximately 17.5 million cells
in the visual word form area. Of could this estimate
could be way off, but it does at least illustrate that a
redundant version of the SCM model that includes
1000 units associated with each word may have as
many (or more) units than neurons in the visual word
form area. There have not been single-cell recording
studies carried out in the visual word form area in
humans, but if localist model of word identification is
to be maintained, we would have to predict that
similar levels of selectivity are obtained when recording
from cortical areas devoted to coding words.

Quian Quiroga et al. (2005) carried out their single-cell
recording studies in the hippocampus (and related struc-
tures) which includes many times more neurons than
visual word form area (perhaps an order of magnitude
or much more). But there are also good reasons to
think that episodic memories are coded in a much
more redundant manner. For instance, according to the
multiple trace hypothesis (Moscovitch & Nadel, 1998), a
separate memory trace is encoded each time a given
items is encountered and remembered (e.g. each time
you see a new episode of the TV show Friends new
traces of the actress Jennifer Aniston are stored) and
new memory traces are encoded each time you remem-
ber of something (e.g. every time you think about Jenni-
fer Aniston will store new memory traces of Jennifer
Aniston). With massive redundancy, similar levels of
selectivity might be expected even when randomly
probing for localist representations amongst 100s of
millions of neurons. In addition, putting aside any com-
parisons in the number of neurons in various cortical
regions and models, Waydo et al. (2006) estimated that
each neuron they recorded from responded to
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between 50 and 150 different images (based on the
assumption that people recognise between 10,000 and
30,000 discrete objects). We found that our localist
units responded to a similar number of words (based
on a model that knows ∼30,000 words). Accordingly,
we would argue that our method of analysing the SCM
model provides a plausible comparison to single-cell
recording studies reported by Waydo et al. (2006), and
as a consequence, results from such studies should not
be used to rule out localist coding models.

Notes

1. Somewhat confusingly, Waydo et al. (2006) used the
term sparseness to refer to neural selectivity; that is,
they defined sparseness as the proportion of stimuli a
neuron responds to. Here we use the term selectivity,
and reserve the term sparseness to refer to the pro-
portion of neurons in a population of neurons that fire
in response to a given image. Although these two
measures are closely related, the two measures can dis-
sociate (see Bowers, 2011; Földiák, 2009).

2. http://adelmanlab.org/easyNet/. All simulations reported
in this article can be reproduced in easyNet by download-
ing the material (input data and code) available at: http://
adelmanlab.org/easyNet/downloads/Shunted-SCM_
files/.

3. As described in Davis (2010), the model computes match
values (varying between 0 and 1) which reflect the simi-
larity of the input stimulus to each of the words con-
tained in the model’s vocabulary. The α parameter
scales the strength of this excitatory input to the word
layer.
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