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Grandmother cells and localist representations: a review of current thinking

Jeffrey S. Bowers

School of Experimental Psychology, University of Bristol, Bristol, UK

ABSTRACT

There is now a large literature in neuroscience highlighting how some neurons respond highly
selectively to high-level information (e.g. cells that respond to specific faces) and a growing
literature in psychology and computer science showing that artificial neural networks often learn
highly selective representations. Nevertheless, the vast majority of neuroscientists reject
“grandmother cell” theories out of hand, and many psychologists reject localist models based on
neuroscience. In this review, | detail some of the conceptual confusions regarding grandmother
cells that have contributed to this state of affairs, and review the literature of single-unit
recording studies in artificial neural networks that may provide insights into why some neurons
respond in a highly selective manner. | then briefly review the contributions from leading
theorists in psychology and neuroscience. My hope this special issue contributes to a more
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productive debate on an important issue that has

misunderstandings between disciplines.

For over 30 years, the distinction between localist vs.
distributed coding has been central to theorising in
psychology (McClelland, Rumelhart, & PDP Research
Group, 1986; Rumelhart, McClelland, & PDP Research
Group, 1986). By contrast, the distinction between
grandmother cells vs. distributed coding has been
less central to theory in neuroscience, and indeed,
the term “grandmother cell” is somewhat pejorative,
designed to highlight the absurdity of the hypothesis.
Nevertheless, in recent years, a number of high-
profile publications have highlighted the extremely
selective firing of some neurons in humans, and a
growing number of computational studies have
shown that artificial neural networks learn highly selec-
tive representations as well. This has led to a grow-
ing interest in grandmother cells (see Figure 1),
but still, it remains the case that neuroscientists over-
whelmingly dismiss the grandmother cell hypothesis,
and attempts to link theory in psychology and neuro-
science is often characterised by misunderstandings
that have slowed theoretical progress in both
disciplines.

Why is the grandmother cell hypothesis still so
widely rejected in neuroscience, and what are the
theoretical confusions between disciplines? In an
attempt to address these questions | thought it would
be useful to first explain why | (a cognitive psycholo-
gist) became interested in grandmother cells in the

often been characterised by

first place, and briefly summarise some points of dis-
agreement between myself and others. | hope this is
an effective (rather than self-indulgent) way to explain
to neuroscientists what psychologists are talking
about when contrasting localist and distributed the-
ories and why this has some bearing on the grand-
mother vs. distributed contrast in neuroscience. At
the same time, | hope this helps clarify for psycholo-
gists the relevance of neuroscience to the localist vs.
distributed debate.

This then provides the context for a brief review of
single-unit recording studies in artificial neural networks.
As far as | am aware, no one has reviewed this literature
previously (in contrast to the multiple reviews of single-
cell recording studies in brain), but the findings may
provide some important insights into why some
neurons respond highly selectively. Finally, | conclude
by providing a brief summary of the excellent set of con-
tributions to this special issue from leading theorists in
psychology and neuroscience. Although some of the
contributors reject grandmother cells outright (Rolls) or
challenge their functional relevance (Thomas and
French), most of the contributors take grandmother
cells as a serious hypothesis about how the brain codes
for information. Together, the chapters provide much
needed discussion regarding how grandmother cells
theories should be considered in neuroscience and
psychology.

CONTACT Jeffrey S. Bowers @) j.bowers@bristol.ac.uk
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Figure 1. Number of citations to “grandmother cell” or “grand-
mother cells” per year averaged over decades (according to
Google Scholar).

Why (some) cognitive psychologists take
localist representations seriously, and why
this should matter to neuroscientists.

As a cognitive psychologist | am interested in modelling
complex behaviour at an algorithmic level that describe
the processes that are involved in solving a given task
(specifying how a problem is solved), but do not consider
in any detail how the processes are implemented in the
brain. Bayesian theories of mind within psychology are
often further removed from neuroscience, as these the-
ories tend to be developed at a computational level of
analysis that specify the goals and problems that
people face with little consideration algorithmic,
let alone the neural, underpinnings of behaviour
(Bowers & Davis, 2012). Nevertheless, most cognitive psy-
chologists (including most Bayesian theorists) agree that
a cognitive model should be consistent with what we
know about the brain, and it is considered an advantage
when a model has clear links to neuroscience. Indeed,
this is one of the main motivations for connectionist net-
works that provide an intuitive link between artificial
units and connections on the one hand, and neurons
and synapses on the other.

Itis in this context that | often found conversations with
students and colleague on the topic of localist vs. Parallel
Distributed Processing (PDP) models in psychology quite
frustrating. Localist models have a long history in psychol-
ogy, and they often provide the best account of behaviour
across a range of domains. But when discussing the rela-
tive merits of these two approaches | found the successes
of localist models did not seem to carry much weight, and
the reason was always the same: Localist model were
assumed to be biologically implausible. If a localist
model did a better job, it was not a sign that localist
models should be taken seriously, but rather, that distrib-
uted PDP models need to improve.

To illustrate this perspective, here is a passage from
Seidenberg and Plaut (2006) in the context of comparing
localist and distributed processing models of visual word
identification (although they apply same arguments to
all domains of cognition). The authors note that localist

models often account for more empirical findings than
PDP models, but nevertheless, this is not considered
key for evaluating the two approaches. They write:

The dual-route and PDP approaches to understanding
word reading are both supported by explicit compu-
tational simulations, but the role that these simulations
play in theory development in the two cases is strikingly
different. The DRC model of Coltheart, Rastle, Perry,
Langdon, and Ziegler (2001) continues the long tradition
of a bottom-up, data-driven approach to modelling: A
model is designed to account for specific behavioural
findings, and its match to those findings is the sole
basis for evaluating it. These models aspire to what
Chomsky (1965) called “descriptive adequacy”. The PDP
approach is different. The models are only a means to
an end. The goal is a theory that explains behaviour
(such as reading) and its brain bases. The models are a
tool for developing and exploring the implications of a
set of hypotheses concerning the neural basis of cogni-
tive processing. Models are judged not only with
respect to their ability to account for robust findings in
a particular domain but also with respect to consider-
ations that extend well beyond any single domain.
These include the extent to which the same underlying
computational principles apply across domains, the
extent to which these principles can unify phenomena
previously thought to be governed by different prin-
ciples, the ability of the models to explain how behaviour
might arise from a neurophysiological substrate, and so
on. The models (and the theories they imperfectly
instantiate) aspire to what Chomsky termed “explanatory
adequacy”. The deeper explanatory force derives from
the fact that the architecture, learning, and processing
mechanisms are independently motivated (as by facts
about the brain) rather than introduced in response to
particular phenomena.

Although | agree with the authors that a range of cri-
teria are relevant to assessing the merits of a specific
model or modelling approach, there are reasons to ques-
tions their conclusions regarding the advantages of the
PDP approach. First, although they claim that PDP
models provide a more general and principled expla-
nation of a wide variety of phenomena, they ignore
powerful localist modelling frameworks. For example,
the theories of Grossberg et al. provide a general set of
learning and computational principles that apply across
a wide range of cognitive and behavioural domain in a
biologically plausible manner. Localist representations
have played a central role in in his models (see Gross-
berg, 2016). Accordingly, there is little reason to assert
that the PDP approach has privileged access to explana-
tory adequacy. Second, and most importantly for present
purposes, the claim (common in the literature) that dis-
tributed codes in PDP models are more biologically
plausible is asserted without evidence. Nevertheless,
this claim, more than anything else, dominated my
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conversations regarding the relative merits of these two
approaches.

This lead to the Bowers (2009) paper where | provided
a detailed review of single-cell neurophysiology that
characterised the responses of single neurons in a
range of species performing a variety of tasks, and
where | related the findings to the predictions of localist
and distributed models developed in psychology. The
striking finding from neuroscience literature is that a
great deal of information can be retrieved from the
firing of single neurons, as nicely captured in this
guote from over 20 years ago:

Over the past 50 years, there has been an astonishing
change in how we regard cells in the CNS, and especially,
in the cortex. At the beginning of this period, it was
believed that there was such an incredibly large
number of such cells (105/mm3 of cortex, and more
than 10'° altogether) that it would be absurd and mean-
ingless to consider the role of a single one, and therefore
averaging the activity of large numbers of them was the
only sensible approach. Now it is possible to record from
a single neuron in the cortex of an awake, behaving
monkey, determine how well it performs in its task of
pattern recognition, and compare this performance to
that revealed by the behavioral responses of the same
animal. The fact that thresholds are comparable
(Britten, Shadlen, Newsome, & Movshon, 1992) would
have astounded the cortical neurophysiologist of 50
years ago. (Barlow, 1995, p. 417)

Based on the review of the data, and a consideration of
how localist representations in cognitive models func-
tion, | concluded that the neuroscience does not falsify
localist models in psychology.

A follow-up debate between myself and proponents
of distributed theories within both psychology (Plaut &
McClelland, 2010) and neuroscience (Quian Quiroga &
Kreiman, 2010) was useful in highlighting some of the
disagreements and confusions regarding the term
grandmother cell (mirroring a similar debate in response
to Page, 2000). On some definitions grandmother cells
are clearly untenable. For example, if grandmother cell
theories are committed to the claim that there is a
single neuron associated with each unique experience
(e.g. a single neuron coding for my grandmother knitting
by the fireplace), with grandmother cells selectively
responding to one input and not responding above
baseline to anything else, with only one neuron per
experience (no redundancy), then indeed, this is an
implausible theory that is falsified by the data. This
characterisation of grandmother cells is widespread in
neuroscience (see Rolls, 2016). But on less extreme defi-
nitions (e.g. units that code for familiar categories rather
than all possible experiences), there is some room for dis-
agreement, and indeed, a small group of theorists have
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at least considered grandmother cells as a serious
hypothesis that should not be dismissed out of hand
(e.g. Barlow, 1972; Bowers, 2002; Elliott & Susswein,
2002; Gross, 2002; Newsome, Britten, & Movshon, 1989;
Page, 2000; Perrett et al., 1989; Thorpe, 1989, 1995).

In Bowers (2009, 2010), | suggested that grandmother
cells should be defined as localist representations as
used in psychology; that is, units that represent one
thing but are activated by related things. For example,
in the interactive activation (IA) model (McClelland &
Rumelhart, 1981), a localist representation for the word
DOG is activated most strongly by the input DOG, but
it is also activated (to a lesser extent) by the visually
similar words such as HOG and LOG by virtue of their
shared letters (for more detail, see Gubian, Davis,
Adelman, & Bowes, 2016). Apart from having a much
more precise definition, the benefit of defining grand-
mother cells as localist representations is that it adopts
a common terminology across disciplines that should
help avoid confusions (e.g. making it clear rejecting the
extreme version of grandmother cells has no bearing
on theory in psychology), it makes the neuroscience rel-
evant to assessing theory in psychology, and it makes the
large and sophisticated modelling tradition in psychol-
ogy relevant to understanding the response properties
of neurons. Of course, it is far from clear that brains
rely on localist representations, but it is question worth
asking (unlike the extreme grandmother cell theory
that no one has ever endorsed and that Rolls, 2016,
rightly rejects).

Since 2010, there have been many high-profile reports
of neurons responding to high-level information in a
highly selective manner in humans (largely in the hippo-
campus and related structures; e.g. Ison et al., 2011; Ison,
Quian Quiroga, & Fried, 2015; Rey et al., 2015), and mul-
tiple review articles on single-cell recording studies
(Quian Quiroga, 2012, 2016; Quian Quiroga, Fried, &
Koch, 2013; Roy, 2012, 2015; Yuste, 2015). Rather than
provide another review of the neuroscience, | thought
it would be more useful to provide a brief review
studies reporting highly selective units in PDP models
and so-called deep networks that have recently been
the focus of so much attention in computer science.
This later work has been carried out with little consider-
ation of how the results relate to theory in psychology
and neuroscience, but | would argue that the findings
are also relevant to the current issue.

Brief review of single-unit recording in
artificial neural networks

Single-unit recordings in artificial neural networks have
been explored in both psychology and computer
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science, and although similar results have been reported,
the amount of interest and attention to the work in the
two fields is very different. | briefly review the two litera-
tures next.

Single-unit recordings of PDP models in the psychologi-
cal literature: Although PDP networks have been popular
in psychology since the mid-1980s, few single-unit
recordings have been carried out. Given that it is a far
easier task to probe units in PDP models compared to
real brains (where single-neural coding has been an
active field since the 1950s), and given our limited under-
standing how PDP models work (McCloskey, 1991) an
obvious question is why? And | think the answer is
simple: most researchers studying connectionist net-
works in psychology have assumed that the learned rep-
resentations are distributed with the activations of single
units meaningless. As Mozer and Smolensky (1989, p. 3)
put it:

...one thing that connectionist networks have in
common with brains is that if you open them up and
peer inside, all you can see is a big pile of goo.

The term “sub-symbolic” (Smolensky, 1988) was com-
monly used to highlight that individual units cannot be
interpreted by themselves, and this was considered a
major break from previous theorising, and key to under-
standing how cognition is implemented in brain. This
continues to be the mainstream view of PDP modelers.
For example, in a recent review of PDP modelling,
Rogers and McClelland (2014) wrote:

...a percept of a visual input is assumed to be rep-
resented as a pattern of activation distributed over
many neurons in several different brain areas, and each
neuron is thought to participate in the representation
of many different items. This representational scheme
is held to apply to essentially all kinds of cognitive
content: Words, letters, phonemes, grammatical struc-
tures; visual features, colors, structural descriptions of
objects; semantic, conceptual, and schema represen-
tations; contents of working memory and contextual
information affecting processing of current inputs;
speech plans, motor plans, and more abstract action
plans— all are thought to take the form of distributed
patterns of activation over large neural populations.

But despite these strong claims, there have been very
few attempts to directly test this assumption by carrying
out single-unit recording studies.

As far as | am aware, the first attempt to carry out a
single-cell recording study analogous to single-cell
recordings in the brain was reported by Berkeley,
Dawson, Medler, Schopflocher, and Hornsby (1995).
They trained simple three-layered networks via back-
propagation on a variety of tasks, including a logical
reasoning task that had previously been simulated by

Bechtel and Abrahamsen (1991), and the “kinship
problem” problem studied by Hinton (1986). The model
they focused on was trained on the logical problem
and it included 14 input units (a pattern of activation
across these units defined the input problem, with
pairs of input units coding for the individual components
of a logical problem, such as OR, AND, IF-THEN, etc.), 3
output units (a pattern of activation across these units
categorised the input problem into 1 of 4 different argu-
ment types and indicated whether or not the argument
was valid), and 10 hidden units. The key point for present
purposes is that after training, the model was able to cor-
rectly categorise 576 input patterns (logical statements)
into six categories.

After training they recorded the response of each
hidden unit to a range of inputs using a scatter plot for
each unit. The unit’s response to a specific input was
coded with a point along the x-axis, with values on the
y-axis arbitrary (y-axis is included in order to prevent
points from overlapping). These so-called jittered
density plots are roughly analogous to the raster plots
used to measure the firing patterns of neurons to differ-
ent stimuli (for an example of a jittered density plot, see
Vankov & Bowers, 2016). The critical finding was that the
scatter plots often took on a “banding” patterns, in which
multiple different inputs (different logical problems)
drove a hidden unit to the same level of activation. In
some cases, the banding was consistent with localist
coding. For example, hidden unit 6 in their model
responded strongly to all logical problems that included
the “OR” feature, and not at all to other inputs. This is
analogous to a neuron that responded to all images of
Jennifer Aniston but not to other faces. Accordingly,
unit 6 appears to constitute a localist representation for
the input OR.

In subsequent work, Dawson and Piercey (2001) and
Berkeley (2007) carried out lesion studies on the units
from the original Berkeley et al. (1995) network, and in
some cases, the units functioned like localist units. For
example, after removing unit 6, the model performed
well on problems that did not involve OR, and catastro-
phically failed (0%) on all problems that included the
OR feature. Although the authors disagreed somewhat
on how to characterise the units, the findings clearly
show how single units respond highly selectively to
inputs, and that removing single units can have selective
impairment on performance (just the opposite of so-
called graceful degradation in which lesions to single
units results in a small overall decrement in performance
across many items, a pattern of result predicted from dis-
tributed theories).

Similar banding patterns were obtained in other tasks
and network designs. Leighton and Dawson (2001)
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reported banding in a PDP model trained on the Wason's
card selection task that involves training a network a
conditional rule (of the form of “If P then Q") using a
similar network to Berkeley et al. (1995). Berkeley and
Gunay (2004) found banding patterns when they used
a standard sigmoid activation function in their network
in contrast with the “value units” they had used in pre-
vious work. Originally, Berkeley et al. (1995) had
claimed that this banding pattern was restricted to net-
works with a specific type of activation function.
Further evidence that this pattern of results is quite
general was reported by Niklasson and Boden (1997)
who reported banding patterns in a different sort of
network that used a sigmoid activation function to
map a set of inputs into six different categories.

It should be noted that in many cases (indeed most
cases) the units the networks reported by Berkeley
et al. learned more than two bands, such that a given
unit responded selectively to more than one thing. For
example, a unit might activate .5 (out of a maximum of
1.0) to the input feature OR and 1.0 to the AND input
feature, and not at all to other inputs (resulting in 3
bands). This is an interesting case in which the unit has
properties of both localist and distributed coding. That
is, it is possible to interpret what the unit is responding
to (if the unit is activated .5 then the OR unit is
present), but the unit is involved in coding multiple
things. This is perhaps reminiscent of what has been
called a “totem pole” neurons (Malach, 2012). But the
most relevant units for present consideration are the
units that contain two bands, and that selectively
responded to one input, as did hidden unit 6 in Berkeley
et al. (1995).

More recently, my colleagues and | have used these
scatter jitter plots to characterise the representat-
ions learned in larger recurrent neural networks that
co-activate multiple items at the same time in short-
term memory (STM). Our work was inspired by earlier
work of Botvinick and Plaut (2006) who developed a
recurrent PDP model of immediate serial recall that
was trained to encode a series of letters and then recall
them back in the same order (e.g. given the sequence
A, F, Q, recall A, F, Q). The authors claimed that the
model succeeded by co-activating multiple distributed
patterns of letters in the hidden layer. We found this con-
clusion surprising as it appeared to challenge the claim
that distributed codes are poorly suited for co-activating
multiple items at the same time, due to the superposition
catastrophe (Von der Malsburg, 1986). Indeed, the super-
position catastrophe has provided a computational
reason for learning localist codes in cortex (Bowers,
2002; Page, 2000), just as catastrophic interference pro-
vided a pressure to learn selective and sparse codes in
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the hippocampus (Marr, 1971). If indeed the Botvinick
and Plaut (2006) model supports STM through the co-
activation of multiple overlapping distributed patterns,
it would undermine this argument.

However, we found that recurrent PDP networks that
were successful in co-activating multiple items at the
same time learned many localist codes (units with two
bands), with the number of local codes increasing
when the superposition constraint became more difficult
(Bowers, Damian, Vankov, & Davis, 2012; Bowers, Vankov,
Damian, & Davis, 2014). Furthermore, we found that
recurrent PDP models of immediate serial recall could
only generalise to novel items (e.g. recalling a sequence
of novel words) when they learned localist represen-
tations (of letters). That is, we found that localist codes
were better able to support generalisation, just the oppo-
site to what is typically claimed. We also found that
lesioning learned localist units in these networks often
led to highly specific deficits in performance. For
example, after deleting unit 152 (out of a total of 200
units) that selectively responding to the letter “J”, we pre-
sented the model with 1000 words (all composed of 3
letters), of which 100 contained the letter “J”. The
model was 99% in recalling words that did not contain
the letter “J”, and failed 100% of the time on words
that did contain the letter “J”. (See Table 1 from
Bowers, Vankov, Damian, & Davis, 2016.) This nicely par-
allels the results of Berkeley (2007) who found highly
selective deficits following the lesioning of single local
units.

In Vankov and Bowers (2016), we explored the
impact of arbitrary input-output mappings on the
nature of the learned representations in PDP networks.
As detailed below, we found that PDP models suc-
ceeded on the basis of learned distributed represen-
tations in most conditions, but networks did learn
localist representations in some conditions even
though the model was trained on items one-at-a-time.
We concluded that the superposition constraint pro-
vides a stronger pressure to learn localist represen-
tations than arbitrary input-output mappings, but that
the superposition constraint is not the only pressure
to learn localist codes.

As far as | am aware, these are the only single-unit
recording studies carried out on PDP networks within
the psychological literature. Nevertheless, a number of
conclusions seem justified, including that PDP models
sometimes learn localist codes, and that learned localist
representations in PDP models have functional value
(such that removing localist units has specific predicted
consequences). These findings also suggest hypotheses
about when (and why) neurons in cortex (as opposed
to hippocampus) respond selectively. For example,
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selective responding might be expected in cortical
systems that generalise and support STM (Bowers et al.,
2016).

Single-unit recording of deep networks in computer
science: In contrast with the limited number of studies
in psychology, there has been an explosion of single-
unit recording studies in the computer science literature
when applied to “deep” networks. This has followed the
extraordinary success of these networks in solving a chal-
lenging range of complex tasks, including state-of-the-
art speech (Hannun et al,, 2014) and image (Krizhevsky,
Sutskever, & Hinton, 2012) recognition, and even game
playing (Mnih et al, 2015). Deep networks are now
being used in a wide range of applied settings, and com-
panies are investing billions of pounds in developing
deep networks because their enormous promise.

Two features of these networks are worth noting for
present purposes. First, they are not so different from
the early PDP networks developed in the 1980s.
Although there have been some innovations to
improve their performance, by the most important differ-
ence is that: (@) computers with graphic cards can be
trained many thousand times more quickly and (b)
there are now much larger datasets of labelled data
that are needed for supervised learning (cf., Ciresan,
Meier, Gambardella, & Schmidhuber, 2010). This allows
massive networks (sometimes up to 1 billion connections
over multiple layers) to be trained on massive datasets
(e.g. Le et al,, 2012).

Second, as is the case with PDP networks, there is rela-
tively little understanding how or why these networks
perform as well as they do. Indeed, this has been the
prime motivation carrying out single-unit recordings in
deep networks. But unlike the single-unit recording
studies carried out in psychology or neuroscience, the
main goal of these single-unit studies has been to
improve the performance of the networks, with little con-
sideration of how the findings relate to theory in psychol-
ogy or neuroscience. Nevertheless, this work may also be
relevant to theory in the same way simple PDP networks
are; namely, insights into when and why these large net-
works learn selective codes may provide hypotheses as to
why some neurons respond in a highly selective manner.

One approach to single-unit recording in computer
science is broadly similar to the single-unit recordings
in psychology (and neuroscience). That is, the activation
of single units is recorded in response to many different
meaningful inputs in an attempt to determine whether a
consistent set of inputs (e.g. images of specific objects)
drive the unit. Yosinski, Clune, Nguyen, Fuchs, and
Lipson (2015) call this the “data-centric” approach to
characterising the function of individual units. Once
again, localist representations were discovered across a

range of different types of networks and across a range
of different tasks. For example, Le et al. (2012) observed
localist codes in a “deep belief” network that learned a
localist representation of a face without supervision
(also see Coates, Karpathy, & Ng, 2012), whereas other
researchers have reported localist representations in
deep convolutional networks trained with supervised
learning methods (Agrawal, Girshick, & Malik, 2014; Li,
Yosinski, Clune, Lipson, & Hopcroft, 2015; Zeiler &
Fergus, 2014; Zhou, Khosla, Lapedriza, Oliva, & Torralba,
2014). And in these later networks, localist coding was
observed across a range of training conditions. For
example, Zhou et al. (2014) carried out single-unit
recordings when the same network was trained on two
different tasks. In one condition, a convolutional
network was trained to categorise 1.3 million images
into 1000 different object categories, and in other, the
same model was trained to categorise 2.4 million
images into 205 scene categories. They found localist
codes in both cases, but surprisingly, found more localist
codes for objects in the later case even though the
model was not trained on objects (objects were diagnos-
tic of scene categories, which made learning localist
codes for the objects relevant to task performance). In
other work, Li et al. (2015) reported highly overlapping
set of learned localist codes when the same networks
were given different random initialisations of weights,
again showing the generality of the findings.

A second and more popular approach to characteris-
ing single units in deep network is called “network
centric” (Yosinski et al., 2015) and uses a process called
activation maximisation. On this method, rather than
present a set of meaningful images to a network and
measure how individual units respond, the experimenter
generates images that best drives the units. For instance,
a random pattern (noise) might be presented to a
network, and then input is systematically varied
(though various algorithms) in order to generate
images that drive a unit more strongly. If meaningful
images are generated in this way it suggests that the
unit selectively codes for this high-level visual infor-
mation (Erhan, Bengio, Courville, & Vincent, 2009; Le
et al, 2012; Mahendran & Vedaldi, 2016; Nguyen, Doso-
vitskiy, Yosinski, Brox, & Clune, 2016; Nguyen, Yosinski,
& Clune, 2015, 2016; Simonyan, Vedaldi, & Zisserman,
2013; Wei, Zhou, Torrabla, & Freeman, 2015; Yosinski
et al,, 2015).

Initial attempts at activation maximisation suggested
individual units code for information in a distributed
manner given that the images that maximally drove indi-
vidual units did not correspond to interpretable inputs
(Goodfellow, Shlens, & Szegedy, 2014; Nguyen et al,
2015; Simonyan et al.,, 2013; Szegedy et al,, 2013). Indeed,
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Figure 2. Eight examples of noisy images that are confidently categorised as a familiar object.

Taken from Nguyen et al. (2015).

in some cases, deep networks would confidently categor-
ise noise as a familiar category (e.g. labelling with near cer-
tainty thatimages that look like TV static - to humans - as a
robin; Nguyen et al., 2015). This is not what one should
expect from a grandmother unit. See Figure 2.

However, when various constraints on how images
are generated are introduced so that the synthetic
images share the general structure of natural images,
then highly interpretable images emerge (e.g. Nguyen
et al, 2015; Nguyen, Dosovitskiy et al, 2016; Yosinski
et al,, 2015). For example, Yosinski et al. (2015) intro-
duced a penalty for generating high contrast images
(adjacent pixels that had very different values), and pena-
lised images with pixels with large values (such that any
new images included less “bright” regions), and pena-
lised pixels with low values (such that any new images

Layer 8

Pirate Ship

tended to have no activation in these regions). Note,
none of constraints were designed to produce meaning-
ful patterns, they just insured that the images that were
generated shared some basic properties with natural
images (e.g. objects in the world tend to have similar
levels of illumination at adjacent locations). Nevertheless
strikingly meaningful patterns emerged, as seen in
Figure 3. These are just the sort of images that would
be expected on a grandmother theory of neural rep-
resentation. Again, these interpretable images have
been observed across a range of networks (convolutional
networks as well as deep belief networks without any
supervision) and under a range of training conditions.
The learned representations revealed through activation
maximisation have been compared to grandmother cells
(Le et al.,, 2012).

..

Rocking Chair

Teddy Bear

Figure 3. Synthesised images that best activate three different units from layer 8 of a deep convolutional network. Four different
examples of the best synthesised images for each unit is presented. Clearly, these units are most activated by meaningful objects.

Taken from Yosinski et al. (2015).
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Although activation maximisation techniques provide
striking demonstrations that units respond selectively to
meaningful inputs (e.g. images of rocking chairs) the fact
that these same units also respond to very different pat-
terns (that look like TV static) complicate the interpret-
ation of the units. In some ways this parallels Waydo,
Kraskov, Quian Quiroga, Fried, and Koch (2006) analysis
of the single-cell recording data collected by Quian
Quiroga, Reddy, Kreiman, Koch, and Fried (2005).
Waydo et al. argued that even the most selective
neurons (e.g. the Jennifer Aniston neuron) would
respond to other categories of (untested) objects.
Indeed, Waydo et al. estimated that if the experimenter
could present all familiar categories of objects to the
patient with the Jennifer Aniston neuron (images of all
familiar people, places, and things), then between 50
and 150 other familiar items would drive this neuron.
This reasoning lead the Waydo et al. (2006) to reject
grandmother cells in favour of what they called sparse
distributed coding (also see Quian Quiroga, Kreiman,
Koch, & Fried, 2008). In the same way, a “data-centric”
analysis of a deep network (analogues to single-cell
recording studies) often reveal units that responds
highly selectively to one category of object (e.g. images
of motorcycles), but the activation maximisation
method shows that this same unit will respond to
other images, just images that are unlikely to be tested
(such as a specific image that looks like TV static). An
interesting question is whether activation maximisation
findings support the conclusion that deep networks
also learn sparse distributed rather than localist codes.

In fact, there is an important distinction that should be
drawn between the Waydo et al. (2006) analysis of neural
firing and the activation maximisation findings observed
in artificial networks. That is, in the Waydo analysis, all the
highly selective neurons observed in humans are
expected to fire to other familiar objects. It was just a
limitation of time that prevented the experimenter
from identifying the other relevant familiar objects that
drive these neurons. By contrast, both data-centric and
activation maximisation findings show that selective
units in artificial networks often represent only one fam-
iliar category of object in the universe of trained objects,
or indeed, represent one familiar category of object
amongst all possible categories that respect the visual
structure of the world. It is only unfamiliar images that
do not follow the statistical structure of the visual
world that confuse these units. Given that localist rep-
resentations and grandmother cells are theories about
how familiar objects are coded (Bowers, 2009), the obser-
vation that these selective units also respond to specific
examples of noise does not seem so relevant. In addition,
as discussed below, Waydo et al's (2006) claim that

selective neurons fire to multiple familiar objects is also
consistent with localist coding schemes (see Gubian
et al, 2016).

Still, what is to be made regarding the observation
that selective units in deep networks often respond
strongly to both one meaningful category as well as
some specific images that look like meaningless noise?
One possible response is that the same may apply to
humans. Indeed, some researchers have advanced the
argument that mistakenly identifying an unnatural
image as familiar objects in a deep networks is analogous
to other illusions that humans clearly do experience (e.g.
Kriegeskorte, 2015). It is just in practice difficult to find
images that would fool humans in the same way that
images confuse artificial networks. It is important to
note, however, that even if we accept this, it does not
challenge the grandmother cell hypothesis. For
example, consider a cell that responds to one person
amongst all known and unknown possible people (e.g.
a unit that only responds to Jennifer Aniston after
testing the individual with all possible human faces) as
well as some specific patterns of TV static. It seems
reasonable to call this a grandmother cell given that it
selectively codes for one familiar person, and it is very
unlikely fire to anything else in the person’s lifetime.

Another response to this finding is that it reflects a
deep disconnect between how deep networks and the
human visual system operate. This in turn may lead to
the conclusion that single-unit recordings from deep net-
works (or perhaps all artificial networks) are just too differ-
ent to be meaningfully related to theory psychology and
neuroscience. This indeed is a serious concern (a
concern more general than the localist/distributed issue,
but of neural network modelling in general). Another
possible conclusion, however, is that the important differ-
ences between brains and deep networks do not under-
mine the more general inferences that can be drawn.
Indeed, a key feature of the PDP and deep neural net-
works above is that they rely on learning algorithms
that are not designed to learn distributed or selective
codes. Rather, the models learn the representations that
are best suited for a given task. As Plaut and McClelland
(2000) put it, PDP networks “discover representations
that are effective in solving tasks...” and this “provides
more insight into why cognitive and neural systems are
organised the way they are”. (p. 489). On this logic
(which | accept) the observation of localist coding in
PDP networks across some but not all conditions may
provide some insight into what sorts of problems are
best solved by localist codes, with implications not only
for PDP networks, but perhaps for real brains as well.

Single-unit recordings of alternative neural networks.
| should also note that a number of alternative neural
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networks also learn highly selective representations,
including adaptive resonance theory (ART) networks
(e.g. Carpenter & Grossberg, 1987), and spiking neural
network models that rely on spike timing dependent
plasticity (Masquelier, Guyonneau, & Thorpe, 2009). |
will not consider these findings here because the net-
works include built-in processes that contribute to the
development of localist representations. As a conse-
quence, the models do no provide independent evi-
dence that localist codes are the best suited for solving
the problems they faced.

It is worth noting, however, that the observation that
PDP and deep networks often learn localist codes
suggests that there are good reasons to build in pro-
cesses that result in more selective coding. It is also the
case that ART and spiking neural network models that
rely on spike timing dependent plasticity are more bio-
logically plausible than the PDP and deep networks
described earlier. Furthermore, the learned localist rep-
resentations in these networks are crucial to the func-
tioning of these models, including the capacity of
these networks to learn quickly without suffering forget-
ting - the stability-plasticity dilemma (Grossberg, 1980).
So these models again highlight the biologically plausi-
bility of grandmother cells.

Conclusions from simulation studies

In summary, the single-unit recording studies carried out
on PDP networks within psychology and on deep net-
works within computer science have different motiv-
ations, but both sets of results demonstrate that single
units respond highly selectively to meaningful inputs.
Unlike in neuroscience it is possible to more systemati-
cally explore a vast number of images of familiar
objects, persons, and scenes, and indeed, explore a
large space of possible images in order to get a better
idea of what single units represent. It is clear that
single units sometimes selectively represent meaningful
categories when tested against all familiar as well as a
large space of unfamiliar but possible items. The ubiquity
of localist coding across all these networks and con-
ditions should give pause to cognitive psychologists
and neuroscientist who dismiss localist coding (or grand-
mother cells) as implausible, and suggest reasons as to
why brains may adopt similar strategies.

Summary of chapters

Given the recent excitement regarding the high selectiv-
ity of single-cells in hippocampus and cortex, and the
recent explosion of research showing selective codes
emerge in artificial neural networks, it is a good time to
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explore the thoughts of leading theorists in psychology
and neuroscience on the controversial topic of localist
and grandmother cell representations. | am very
pleased that so many authors focused on terminological
issues that have led to so much confusion in the
literature.

| have organised the contributions as follows. | start
with theorists that have emphasised a neuroscience per-
spective (Krieman; Riesenhuber & Glezer; Grossberg; and
Rolls), followed by psychologists associated with the PDP
perspective (Rodny, Shea, & Kello; and Thomas & French),
followed by psychologists associated with the localist
perspective (Coltheart; Hummel; Page; Gubian, Dauvis,
Adelman, & Bowers; and Vankov & Bowers). Some of
the assignments of people to research areas are a bit
arbitrary and could have been assigned differently, but
in any case, together, the articles provide an excellent
summary of thinking on this topic from a range of
perspectives.

Neuroscience perspective

Krieman: Krieman describes 10 characteristics of neural
representations (whether localist or distributed), and
then summarises a range of findings in visual and non-
visual systems in order characterise representations as
localist or distributed. His conclusion is that grandmother
representations are found throughout the brain, from
low-level visual systems (retinal ganglion cells) to high-
level visual system (inferotemporal cortex), as well as
memory systems (hippocampus) and systems involved
in interpreting inputs and decision making (frontal
cortex). In his words, “grandmothers galore”. For
example, Krieman characterises simple cells that
respond maximally to line segments at a given angle at
different locations as grandmother cells. He also empha-
sises that these grandmother simple cells pool to grand-
mother complex cells, and argues that a collection
simple cells constitute a distributed representations of
the more complex information coded in complex cells.
The claim that co-active local representations at one
level of a system are also part of a distributed represen-
tation at another level is common (Hummel, 2016; Page,
2016; Plaut & McClelland, 2010).!

One point | would like to emphasise here is that
Kreiman is adopting the view that grandmother cells in
neuroscience are similar to localist codes in psychology.
It is striking how this helps clarify issues between psy-
chology and neuroscience. In their commentary of
Bowers (2009) paper, Quian Quiroga and Kreiman
(2010) were critical of my claim that grandmother cells
are biologically plausible, but the disagreements
between Kreiman and myself are largely resolved in
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this contribution, and | think this largely reflects using the
same terminology rather than fundamental change of
position.

Riesenhuber and Glezer: Riesenhumber and Glezer
describes new analyses from a previous study (Glezer,
Jiang, & Riesenhuber, 2009) that employed the fMRI
rapid adaptation technique (fMRI-RA) to examine the
nature word representations in the visual word form
area (VWFA). In the previous study, the authors reported
data suggesting that the VWFA contained neurons tuned
to whole words (localist representation) rather than pre-
lexical letter combinations, and they took their findings
to be consistent with localist models of reading. In the
present study, the Riesenhumber and Glezer reanalysed
the Glezer et al. (2009) results to see how quickly localist
representations develop for newly learned words (novel
words were repeated in this study). The striking finding
was that they obtained evidence for newly acquired loc-
alist word representations in the VWFA following just 5-6
exposures in a single day.

The evidence for newly acquired localist represen-
tations in the VWFA following a few representations is
theoretically significant because it is commonly argued
that consolidation, a time consuming processes, is
necessary before new information is added to the
cortex. Indeed, according the complementary learning
systems hypothesis, information is coded in a highly
selective (although not localist) manner in the hippo-
campus, and that this information is slowly transferred
to the cortex in a more distributed manner (McClelland,
McNaughton, & O'Reilly, 1995). This novel finding poses a
challenge to this theatrical approach, and indeed, adds
to the arguments put forward Page (2016) against the
complementary learning systems hypothesis.

Grossberg: Grossberg provides a summary of his mod-
elling approach, with specific emphasis on visual object
identification and how sequences of items can be
stored in STM. Grossberg also supports the hypothesis
that there are multiple levels of grandmother cells, and
that co-active grandmother cells at a lower level of a hier-
archy constitute a distributed representation for higher
level knowledge (like Krieman and others). However he
also introduces another term that | think is quite apt,
namely, a “grandmother cohort”. As | detailed in Note
1, it is important to distinguish between the view that
all units are meaningless when considered in isolation
(the standard definition of distributed coding in PDP
modelling; see Rogers & McClelland, 2014) and a collec-
tion of meaningful units that map onto more complex
localist representation. The term Grandmother cohort
captures the former position quite elegantly | think.

Grossberg also makes an important distinction
between localist representations that code for specific

categories (Grandma Leitner!) and more abstract ones
(e.g. a generic person). He notes that ART can accommo-
date both forms of localist coding, and that a vigilance
parameter in his model determines the granularity of
learned localist representation (the issue of specificity
of grandmother cells is a central point of the Coltheart
contribution, discussed briefly below). In addition, he
notes that the dynamics of the competitive processes
in his network can vary, with winner-take-all dynamics
(typical in most of his modelling) or less severe compe-
tition that lead to distributed coding (e.g. Carpenter,
1997). Accordingly, in addition to grandmother cells
and grandmother cohorts, more traditional forms of dis-
tributed coding can also develop in his networks.

Rolls. In contrast with the above authors, Rolls is criti-
cal of grandmother cell theories. According to Rolls,
grandmother cell theory is committed to the view that
each visual experience is coded by a single neuron that
does not fire to anything else. He dismisses this view
because there are not enough neurons (or synapses) to
code for all the possible visual experiences, because it
is implausible to suggest that a lesion of a single
neuron would lead to the selective loss of knowledge,
and because grandmother cells cannot generalise. Rolls
also reviews a number of single-cell recording studies
that he takes as inconsistent with grandmother cells.
For example, he describes a study by Rolls and Tovee
(1995) in which the authors reported the responses of
14 neurons in the superior temporal sulcus in 2
monkeys in response to 68 stimuli (23 face and 45
non-face). The critical finding was that the average spar-
seness was 0.65 (meaning that the average neuron
responded to 65% of the images?). Rolls also notes that
neuron firing is probably much more selective than this
once correcting the spontaneous firing of the 14
neurons and given that the .65 value is based only on
the neurons that responded to one or more of the
images. As Rolls (2016) write:

There were many more neurons that had no response to
the stimuli. At least 10 times the number of inferior tem-
poral cortex neurons had no responses to this set of 68
stimuli. So the true sparseness would be much lower ... .

Nevertheless, Rolls considers the results inconsistent
with grandmother cell theories that predict much more
selective responding (according to Rolls, a grandmother
cell coding scheme would predict a selectivity value of 1/
68 for these images).

Another finding that Rolls takes to be inconsistent
with grandmother cells is based on an analysis of the
encoding of information by multiple cells (Rolls, Treves,
& Tovee, 1997). On this analysis, grandmother cell the-
ories predict that the number of stimuli that can be
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represented by a population of neurons rises approxi-
mately linearly with the number of neurons, whereas
with distributed encoding, the number of stimuli that
can be represented should rise exponentially. The
results of the Rolls et al. (1997) study is claimed to
support the predictions of distributed coding and to be
inconsistent with grandmother cell theories.

However, it is important to note that these analysis are
only relevant to falsifying the extreme version of grand-
mother cells that Rolls describes. As detailed by Gubian
et al. (2016) and Page (2016), localist models can
account for the levels of selectivity reported Waydo
et al. (2006), and can explain the number of stimuli
that can be represented and identified by a population
of neurons.

Theorists from psychology associated with the
PDP perspective

It is unfortunate that many theorists associated with the
PDP perspective declined to contribute, but | am pleased
that Rodny, Shea, and Kello (2016) as well as Thomas and
French (2016) have contributed. Interestingly, the
authors take very different views from one another as
well as from all other contributors.

Rodny, Shea, and Kello: Rodny et al. challenge an
assumption shared by theorists from both the localist
and distributed perspectives, namely, that knowledge
representations are stable over time (indeed, stability
over time is one of the definitions of a representation
provided by Kreiman, 2016). The authors summarise evi-
dence that “...representations continually shift and
change, even on relatively fast timescales, and even
after learning has stabilized”, and describe a spiking
neural network that learns localist representations that
change over a wide range of timescales. This raises a
new potential challenge for understanding the represen-
tations that support perception and cognition (a compli-
cation that applies to both localist and distributed
theories), and it will be interesting to see future develop-
ments on this fundamental claim. Most relevant to the
current topic, it is interesting that the authors are endor-
sing a form of (transient) localist coding. It is perhaps
worth noting that although Kello is associated with the
PDP framework, he has for some time been sympathetic
to the view that knowledge is coded in a localist format
(e.g. Kello, 2006).

Thomas and French: Unlike Kello, Thomas and French
have been long-term critics of localist/grandmother
schemes, and accordingly, it is interesting to note that
Thomas and French do not reject the hypothesis that
grandmother cells exist. However, they do question
whether these cells are functionally significant. On their
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view, neuron that selectively responds to an image of a
grandmother “have very little, or no impact on the
actual recognition of my grandmother”. They detail two
scenarios in which grandmother cells might develop,
but where distributed representations in fact do all the
work. On this view, grandmother cells are not important
topic to explore, and thus the title of their paper: “Grand-
mother cells: Much ado about nothing”.

In support of this view, the authors note that there are
no neuropsychological syndromes | which a patient fails
to identify a particular person, and describe a study that
found non-selective neurons played an important role in
categorising visual stimuli (Thomas, Van Hulle, & Vogels,
2001). With regards to this later point, Thomas et al.
(2001) used a Kohonen network to categorise the
response of 219 neurons in the inferior temporal cortex
of a monkey trained to categorise photographs as tree
vs. non-trees (the neural responses were taken from
Vogels, 1999). The model was able use these signals as
inputs in order to categorise the in inputs quite accu-
rately (83%). They then removed the inputs from
neurons that where more or less selective (none of the
neurons were completely selective), and found that the
more selective neurons did not contribute more to
the performance of the network. Indeed, they found
that that the input from the less selective neurons was
more critical in supporting performance. They took
these findings as evidence that the selective responses
of neurons often reported in the literature are not func-
tionally relevant, and the important computations are
performed by distributed codes.

Theorists from psychology supportive of localist
coding

Coltheart: Coltheart starts with a brief historical review of
the concept of grandmother cells, dating back to a
course taught at MIT by Jerome Lettvin in 1969, and
then highlights many of the conceptual confusions
regarding this hypothesis over the years. Like other con-
tributors to this issue, Coltheart emphasises that the
grandmother cell hypothesis is not committed to the
claim neurons fire to one thing and nothing else, nor
the idea that there is a single neuron with no redun-
dancy. But a novel point that Coltheart makes is that it
is important to distinguish between grandmother cells
and gnostic units. On this view, grandmother cells selec-
tively code for specific items (my grandmother’s face, my
hand, that dog), whereas gnostic units selectively code
for general categories (grandmother faces in general,
cars in general, dogs in general). According to Coltheart,
both types of representations are localist, but a failure to
distinguish between levels of abstraction lead to
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confusions. Indeed, according to Coltheart, the evidence
for gnostic units is strong, but the evidence for grand-
mother cells within the visual system is weak.

Note, there is no reason to think that qualitatively
different processes need to be involved in learning and
representing grandmother and gnostic units. For
example, Grossberg (2016) also contrasted localist units
that code for quite specific inputs (Grandma Leitner!)
and more abstract representations (general or prototypi-
cal grandmother face), and argued that the different
levels of abstraction can be explained with different
setting of a vigilance parameter in ART models (so that
both grandmother and gnostic units might be coded
at the same level of the hierarchy of network). Another
possibility is that grandmother units are at level n-1 of
a hierarchy that pool onto gnostic units at level n, such
that grandmother units of JOHN, BILL, JANE, SUE, etc.
all map onto a common generic representation of
person.

| agree with Coltheart that many single-cell recording
studies in the visual system provide evidence for gnostic
rather than grandmother units (e.g. neurons that
respond to hands in general; e.g. Gross, Bender, &
Rocha-Miranda, 1969), but it should also be noted that
highly selective responses to specific items have also
been observed in cortex. Perhaps one of the more strik-
ing examples was reported by Logothetis, Pauls, and
Poggio (1995) who trained two rhesus monkeys to ident-
ify a large set of novel computer-generated objects that
were highly similar to one another. The most common
selective response (by far) was to a specific object in a
given orientation, with a smaller number of neurons
responding to a given object across orientations (both
types of representations would appear to be grand-
mother unit by Coltheart’s definition). Bowers (2009)
reviews a variety of additional results that would seem
more consistent with grandmother rather than gnostic
units. Nevertheless, it is a distinction worth making,
and the distinction becomes all the more important if
it turns out that future work shows that neurons in the
cortex tend to respond selectively at the category level
but not the item level.

Hummel: Hummel provides a detailed analysis of the
defining attributes localist and distributed coding and
their relative advantages. He notes the terms localist
and distributed coding terms are only meaningful with
respect to that which is being represented. Every
hidden unit in a distributed coding scheme will maxi-
mally fire to an input (or a set of inputs), but if the
input(s) is meaningless, it does not constitute a localist
code (just like you would not argue that a unit in a
deep network that responds strongly to a noise that
looks like TV static is a localist representation for this

specific form of noise). Localist codes represent mean-
ingful things. Hummel also contrasts “deeply distributed”
representations in which all units are uninterpretable
(the standard theoretical position of PDP modelers; see
Rogers & McClelland, 2014, quote above), with distribu-
ted representations composed of a pattern of activation
over localist units. Again, | think it is a mistake to call co-
active local codes a distributed representation, and much
prefer Grossberg’s term “grandmother cohort”. But
“deeply distributed” seems an excellent term to describe
the view that all cognitive content (e.g. letters, pho-
nemes, words, objects, etc.) is coded in a distributed
format.

Hummel argues that both localist and distributed rep-
resentations have their place, and their relative merits
depend on the goals of the computation to be per-
formed. A key point that is not raised by any of the
other contributors is that localist representations may
be best suited for supporting symbolic computations.
The long-standing localist/distributed debate needs to
be distinguished from the long-standing symbolic/non-
symbolic debate, and indeed, localist models can be
either be symbolic or non-symbolic. For example, the
Spatial Coding Model includes local symbolic letter
codes (Davis, 2010), whereas the I1A model of word identi-
fication includes local but non-symbolic letter codes
(McClelland & Rumelhart, 1981). Although most models
with localist representations do not support symbolic
computation, Hummel argues that symbolic models
require localist codes.

Page: Page makes two quite different points. First, he
challenges the common conclusion drawn from an influ-
ential study by Rolls et al. (1997; repeated by Rolls, 2016).
As noted above, Rolls et al. (1997) recorded from 14
neurons in superior temporal sulcus that responded
more strongly to face compared to non-face stimuli.
The critical observation was that the ability to identify
a specific face from the pattern of neural responses
was exponentially related to the number of neurons
from which they measured, with more neural responses
associated with better accuracy (single neurons did a
poor job). This was taken to be a signature of districted
coding. However, Page shows that a localist model of
face identification can capture these data as well, and
concludes that the findings cannot be used to support
distributed compared to localist coding. Whether the
findings are inconsistent with grandmother cells (as
claimed by Rolls, 2016) depends on how grandmother
cells are defined.

Second, Page describes some objections to the comp-
lementary learning hypothesis that is frequently used to
explain why distributed representations are found in
cortex (a topic also considered by Riesenhuber and
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Glezer, 2016; Grossberg, 2016). As noted by Page (also
see Bowers et al., 2016) many of the original claims
motivating the complementary learning systems no
longer hold, including the claim that localist codes are
poorly suited for generalisation. But Page raises a more
fundamental objection, claiming there is a logical
problem regarding how the interleaving learning of
new patterns (from the hippocampus) and old patterns
(already stored in the cortex) can be achieved by a
system employing gradient-descent learning. | look
forward to future discussions on this topic.

Gubian, Davis, Adelman, and Bowers: Gubian et al.
adopt a similar approach to Page (2016) in that they chal-
lenge the interpretation of an influential finding taken to
falsify grandmother cells. Quian Quiroga et al. (2005)
reported neurons in the hippocampus and related struc-
tures that responded highly selectively to images of
objects, persons, and places (e.g. the Jennifer Aniston
neuron), and in a subsequent analysis of these results,
Waydo et al. (2006) concluded that the average selectivity
of these neurons was approximately .5%, meaning that
these neurons responds to about .5% of presented
images, and that each neuron responds to between 50
and 150 different categories of image. These findings
were taken as evidence in support of sparse distributed
coding and inconsistent with grandmother cell coding.
The key finding by Gubian et al. is that a localist model
of visual word identification can also explain this level of
selectivity, and accordingly, the findings should not be
used to reject localist representations. Again, whether
these findings are inconsistent with grandmother cells
depends, on how grandmother cells are defined.

Vankov and Bowers: Finally, Vankov and Bowers
explored some of the factors that contribute to localist
coding in simple feed-forward PDP models when items
are trained one-at-a-time. As reviewed above, Bowers
et al. (2014) found that recurrent PDP models learn localist
representations when trained to co-activate multiple
items at the same time in STM, but learned distributed rep-
resentations when trained on the same items one-at-time.
At the same time, a number of PDP and deep networks
learn localist representations when trained on images
one-at-a-time. Why the different results? We looked into
whether learning arbitrary input-output mappings
(characteristic of mappings learned the deep networks)
provides a pressure to learn localist representations.

Our main finding is the PDP models succeeded with
arbitrary input-output mappings using distributed
codes in many of the conditions we tested, but we did
find localist codes under the conditions in which deep
networks learn localist codes, namely, when learning to
map multiple images of an object (in this case faces) to
a single output when the input units took on continuous
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rather than binary values. Clearly, these findings high-
light that localist codes are adaptive in PDP networks
under some conditions and not others, and future work
is required to better characterise what exactly is the
pressure to learn localist codes when processing items
one-item-at-a-time. Based on our results, it is clear that
arbitrary input-output mappings do not provide as
strong a strong pressure to learn localist codes as does
co-activating multiple items at the same time.

Overall summary

The term “grandmother cell” is often defined in different
ways, and accordingly, it is not always clear what theories
are challenged when a researcher rejects grandmother
cells. What is clear is that there is a large literature in
neuroscience highlighting the extreme selectivity of
some neurons in cortex and hippocampus, and a
growing literature of single-unit recording studies in arti-
ficial neural networks that also report highly selective
(localist) representations. If grandmother cells are
defined as localist representation in psychological
models, then grandmother cells cannot be dismissed
out of hand, and indeed, good arguments can be put
forward in support of grandmother cells of this sort.
The articles in this special issue show that many research-
ers consider grandmother cells a serious hypothesis
about how knowledge is coded, as well as highlight
key disagreements and issues that need to be addressed
in future work. If nothing else, | hope this special issue
contributes to a more productive debate on an impor-
tant issue that has often been characterised by misun-
derstandings between disciplines.

Notes

1. By contrast, | have argued that a collection of local codes
that map onto more complex (local) code does not con-
stitute a distributed code. For example, | disagree that
co-activating the letter representations D-O-G in the IA
model constitutes a distributed representation of the
word DOG given that the co-active letter codes do not
encode the fact that DOG is a word (it only encodes
the fact that three letters are co-active; for more detail,
see Bowers, 2009, 2010). Although there is clearly dis-
agreement about what constitutes a localist vs. distribu-
ted representation (even amongst advocates of localist
coding), one thing should be clear; namely, the co-acti-
vation of multiple localist codes is very different from
the distributed representations proposed by proponents
of PDP models. According to PDP theorists, all cognitive
content, including letters, is coded in a distributed
manner in which each unit is involved in coding multiple
things (see above quote by Rogers & McClelland, 2014).
So if the a collection of simple grandmother cells in V1
or localist letter detectors in the IA model are described
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as part of a distributed representation that map onto
higher levels of representations (e.g., the collection of
localist letter codes D-O-G constitute a distributed rep-
resentation of the word DOG), it is important to dis-
tinguish between distributed representation composed
of meaningful localist units and distributed represen-
tations composed in meaningless units. Hummel (2016)
calls the latter form of representation “deep distributed”.

2. As is common in the neuroscience literature, Rolls uses
the term “sparseness” to measure the selectivity of a
single neuron rather than as a measure of the proportion
of neurons that fire in response to a single image. One of
the common confusions in translating neuroscience to
psychology is that the terms selectivity and sparseness
are used differently in the different literatures (see
Bowers, 2011).
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