

Quasiparticle Concept

A short philosophical excurse

(Incomplete) List of Quasiparticles

Electronic quasiparticle in metals Flectron Hole Electronic quasiparticle in metals Bound state of electron and hole Exciton Phonon Lattice vibration in solids Excitation in superfluid Helium 4 Roton spin separated charge Holon charge separated spin Spinon Soliton Domain wall Skyrmion **Topological vortex** neither bosons nor fermions Anyon **Dirac Fermion** massless fermion

Sven Friedemann – Correlated Electron Systems

2023

Quasiparticles

! Caution ! Electron refers to bare electron and electronic quasiparticle

Sven Friedemann – Correlated Electron Systems

Quasiparticle

Collective Excitation

- Well defined
- Long lived $\frac{1}{\tau} < \omega$

- Model for excitations
- Acts like weakly interacting particle
- Quantum numbers
- Dispersion relation
- Confined to host

(1)

 $\Delta \omega \propto$

/

Quasiparticle - Relevance

Applications

•	Electrons and Holes	n

- Fluxon
- Soliton
- Spinon
- Skyrmion

metals & semiconductors industry SQUID computing spintronics data storage

Fundamental Understanding

- Reductionism
- Emergence

Correlated Electron Systems

2) The Kondo Effect and Heavy Fermions

Literature

- 1. AC Hewson: The Kondo Problem to Heavy Fermions
- 2. Coleman, P. Introduction to Many-Body Physics.
- 3. Coleman, P. Heavy Fermions and the Kondo Lattice: a 21st Century Perspective, http://arxiv.org/abs/1509.05769

• Resistance minimum in dilute magnetic alloys

- Cannot be phonon nor electron scattering $\rho = \rho_0 + A \ T^2 + B \ T^5$

Sven Friedemann – Correlated Electron Systems

The solution

• Kondo effect

Scattering of conduction electrons on local moments

Conduction electrons vs local moments

45

- Radial extension of electron orbits
- 4f inside 6s shell
- -> 4f localised
- Partial f-shell carries ⁵/₂ magnetic moment

Local Moments in Metallic Host single particle picture

Sven Friedemann – Correlated Electron Systems

2023

Local Moments in Metallic Host hybridisation V

47

- Interaction of Conduction electrons with local moments
- Antiferromagnetic

$$H_K = J \boldsymbol{S} \cdot \boldsymbol{s}$$

• Singlet energy lowered by

$$\Delta = -\epsilon_f \exp\left(-\frac{1}{2g(\epsilon_F)J}\right)$$

Kondo temperature

$$T_K \approx \frac{\Delta}{k_B}$$

Additional states at Fermi level

Sven Friedemann – Correlated Electron Systems

Resistance minimum

• Scattering rate

$$\frac{1}{\tau} \propto \left[Jg(\epsilon_F) + 2 \left(Jg(\epsilon_F) \right)^2 \ln \left(\frac{T_{\rm K}}{T} \right) \right] \frac{10^{\circ}R(T)}{R(2T)}$$

• Pertubation theory predicts log divergence for single impurities

$$\rho = \rho_0 + A T^2 + B T^5 + c_f \ln\left[\frac{T_K}{T}\right]$$

2023

- Small problem:
- Logarithmic divergence
- Experiment shows saturation
- Can be explained by Kondo lattice model

Heavy Fermions

Lattice of magnetic moments

- Ce, Yb, U
- E.g. CeCu₂Si₂

hybridisation in Kondo Lattice

- Conduction band
- f-states at Fermi level
- Form new bands with large density of states
- Electronic quasiparticles
- -> high effective mass

Sven Friedemann – Correlated Electron Systems

Heavy Fermions – Heat Capacity

52

Heavy Fermions – Electrical Resistivity

 $\rho = \rho_0 + AT^2$

- Prefactor $A \propto g(E_F)^2$
- small for normal metals $A \sim 10^{-3} \mu \Omega \text{ cm/K}^2$
- Very much increased in Heavy Fermions

Heavy Fermions – Electrical Resistivity

- Coherent Transport at low temperature
- Single ion Kondo effect at 300 x=0.094 high temperature 0.29 om (μΩcm/Ce -> maximum around $T_{\rm K}$ 200 100 0.99attice 10 0.01 0.1 100 T(K)

59

Fermi-liquid behaviour at low
temperatures
$$\frac{C}{T} = \text{const.}$$

- Crossover around T_K
- Entropy corresponds to local moment

$$\frac{m^*}{m} = 1 + \frac{1}{3}F_1^s$$

Heavy Fermions – Heat Capacity

Magnetic Susceptibility

High T:

- free moments
- Curie

Low T:

- Screened moments
- Pauli
- Enhanced (1/T_K) $\chi_P = \frac{\mu_0 \mu_B^2 g(E_F)}{1 + F_0^a}$

Sven Friedemann – Correlated Electron Systems

Heavy Fermions – Fermi Surface

",Large" Fermi Surface detected with Quantum Oscillations

- Proof for Quasiparticle
- High mass

<i>F</i> (T)	m^*/m_0	$10^{-3}v_k^* (m \cdot s^{-1})$
200 ± 100	80 ± 10	• • •
1300 ± 20	24 ± 2	9.6
1034 ± 5	40 ± 2	5.1
740 ± 10	23 ± 1	7.5
638 ± 10	14 ± 1	11.5
210 ± 10		
122 ± 2	6.0 ± 0.2	11.6
40 ± 4	11 ± 3	3.7

2023

Kadowaki Woods ratio in HF

- Constant ratio of Sommerfeld and resistivity coefficients
- Observed in heavy fermion compounds
- Spanning many orders of magnitude

$$\frac{A}{\gamma^2} = const \approx 10 \ \mu\Omega \ \mathrm{cm} \ \mathrm{mol}^2 \mathrm{K}^2 \mathrm{J}^{-2}$$

Kadowaki, K. & Woods, S. B. Solid State Commun. **58**, 507–509 (1986).

Sommerfeld-Wilson Ratio

63

2023

Evidence for heavy Quasiparticles

- ✓ Specific heat $C = \gamma T$
- ✓ Resistivity $\rho \rho_0 = AT^2$

$$\checkmark \frac{A}{\gamma^2} = const$$

$$\checkmark SWR = \frac{\chi_0}{\gamma_0} = \frac{1}{1 + F_0^a}$$

- ✓ Wiedemann-Franz
- ✓ Fermi surface

 Should be able to do all the things a quasiparticle can do...

Heavy Fermion – Superconductivity

- Large jump in Specific heat
- Consistent with Rutgers formula

 $\Delta C = 1.43 \gamma T_c$

- Heavy electrons forming superconductor
- Superconductivity in material with magnetic moments
- Retardation not possible with phonons
- ✓ Unconventional Steglich 1979

Sven Friedemann – Correlated Electron Systems

(Topological) Kondo Insulators

- Hybridisation band gap at ϵ_F
- Insulator at below T_K

- Topological as parity between
 f and *s*, *d* is opposite
- -> no adiabatic connection between bulk and vacuum
- -> metallic surface state

Sven Friedemann – Correlated Electron Systems