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Semiconductor Properties: doping
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» Current can be flow of -ve charge (N-type) or +ve (P-type)



Semiconductor Properties: voltage
e voltage = engineer conductivity
e voltage can be internal (pn junction) or applied externally
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MOSFET

Gas Oxide Silicon
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Concentration of oxidation species

Distance

logb T vps>Vpssat Deal-Grove Model (1965)
e oxygen arrives at oxide surface;

4

e crosses oxide film to Si;

e arrives at Si surface and reacts:
Si+ 0, - Si0o,

* SiO, is great insulator

* Si/SiO, monolayer, low defects
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MOSFET

D

Concentration of oxidation species

eal-Grove Model (1965)
oxygen arrives at oxide surface;
crosses oxide film to Si;
arrives at Si surface and reacts:
Si+ 0, - SiO,
SiO, is great insulator
Si/SiO, monolayer, low defects



MOSFET

1959 Mohamed Atalla, Dawon Kahng
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Circuit symbol

100V Power MOSFET Billions of 4 nm
MOSFETs on microchip



MOSFET

2024 MOSFETSs in production
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LOG, OF THE NUMBER OF
COMPONENTS PER INTEGRATED FUNCTION

1965
Moore’s Law
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Number of components per Integrated
function for minimum cost per component
extrapolated va time,

26 = 64 components
on single chip by 1965

216 = 65,536 components
on single chip by 1975

The experts look ahiead

Cramming more components
onto integrated circuits

With unit cost falling as the number of components per
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Year
1971
1972
1974
1976
1978
1982
1985
1989
1993
1995
1997
1999
2000
2002

004
200¢
2006

Processor Name
4004
8008
8080
8085
8086
80286
80386

Intel486
Pentium
Pentium Pro
Pentium Il
Pentium Il
Pentium IV

Pentium IV (Northwood)
DAantiiima IN IDvAA~AAA

~ 6,000 components
on processor chip by 1974

Core 2

Transistor Count
2,300

3,500

6,000

6,500
29,000
134,000
275,000
1,200,000
3,100,000
5,500,000
7,500,000
9,500,000
42,000,000
55,000,000
169,000,000
230,000,000
291,000,000

Process Technology (um)
10
10
6
3
3
1.5
1.5
1
0.8
0.6

0.35
0.25
0.18
0.13
0.09
0.09
0.065



40 Years of Microprocessor Trend Data
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More of Moore 1970 - 2002
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2002 130 ).,

e Classic Silicon Scaling
* Reduce dimensions, constant E field - electrostatic integrity (gate control)
* Modifications for short channel effects
* stopped at 130 nm



90 nm Technology Generation — 2003 (Intel)

Equivalent scaling 1: Strained silicon

High stress film

/ R

Tension
Compression

PMOSFET NMOSFET

Major change in technology:
« strained silicon: improved speed with no extra power and
no loss of electrostatic integrity (gate control)



IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 43, NO. 6, JUME 1996 atl

Deep Submicron CMOS Based
on Silicon Germanium Technology

A. G. O'Neill and D. A. Antoniadis, Fellow, IEEE
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Electrostatic integrity (gate control)

The gate controls the flow of current
through the channel region.

e Drain

source Dielectric

Planar FET

Up untilabout 2011, planar
transistors were the best
devices available.

Charge can leak through the channel
region and waste power.

...................................................................

Stacked nanosheet FET

The gate completely surrounds the
channel regionsto give even better
control thanthe FinFET.

FinFET

Surrounding the channel region on
three sides with the gate gives better
control and prevents current leakage.



Electrostatic integrity (gate control)

& the flow of current
Wnel region.

.

& Drain

:

Dilectric

% h anar FET

. . buntilabout 2011, planar

Charge can leak thra _ I \sistors were the best
region . /|CcS available.

three sides with the gate gives better chanl reions to give even better
control and prevents currentleakage. :  controlthanthe FinFET.
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More of Moore

e -
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1970 (10 um)
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2002 {130 nm))

e Classic Silicon Scaling
* Reduce dimensions, constant E field
* Modifications for short channel effects

* stopped at 130nm
* Equivalent scaling

* Reduce dimensions less

e Strain, hi-k dielectric, finFET, nanosheet
 System innovations

e Multi-core

!_. #‘
System|innovation

e Mixed technology platforms



More than Moore
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Minimum Feature Size [um]

{half pitch dimensions)

Source: Leo Lorenz

Technologies for an Increasing Number of
Applications hit Scalability Limits

Only Memory and high performance microprocessors strictly follow Moor's predictions
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A global perspective of semiconductors

* The global semiconductor industry is one of the largest in the world

1990’s: 80% of manufacturing was in the US or Europe — including UK.
2020: revenue from semiconductors was 0.5% of global GDP

e 2021: 1.1 trillion microchips produced

125 microchips per person on Earth

Global microchip market was $614 Billion

Bigger than global software market of $569 Billion
Global power semiconductor market was $39.5 Billion
Around 80% of the market is silicon

Around 0.5% of the market is from UK

* 2024:

Smartphone logic > 20 billion = 2 x 10 MOSFETs
Data storage 128 GB (£5) = 128 x 8 x 10° = 102 floating gate MOSFETs

Taiwan (TSMC) and Korea (Samsung) account for 80% of processor
and memory chips. Chip production is not globally distributed

e Wafer fabs in UK:

» < 20k gates = 2x10 of logic, clock speed 10Mhz



A UK perspective of semiconductors

e Semefab. ASICS 3 to 20V
analogue and digital content -

typically <20k gates of logic, clock
speed 10Mhz.

* Diodes. Discrete, logic gates,
power management, auto

* Dynex Semiconductor. Power
devices (IGBT, bipolar, thyristor)
and power assemblies

* Newport Wafer Fab is the UK's
largest chipmaking facility. In
2024 it was sold to Vishay for
compound semiconductors

e Clas-SiC SiC foundry for power
semiconductors

e Pragmatic Flexible substrates




A UK perspective of semiconductors

* Government: Dept of Science, Innovation & Technology identifies semiconductors
as one of five critical technologies

* UK declared investments in semiconductors:
e 2022 £0.1 billion to “replicate silicon valley” (Levelling Up)
e 2024: £1Bn announced for semiconductors (over 10 yrs)

Semiconductor Semiconductor
investment | GDP Investment
(SBn) (STn) | (/%GDP)
UK 1.27 3.1 0.04
USA 53 25.4 0.21
EU 216 15.8 1.37
China 150 17.96 0.84
S Korea 470 1.7 27.65
Japan 26.7 4.2 0.64
India 15 3.4 0.44
UK 7 3.1 0.23




A future UK semiconductor industry

UK needs a semiconductor industry for security and economic reasons

We have some world class power semiconductor manufacturing, design and
compound semiconductors.
This is necessary but not sufficient for UK

We need: < 50nm CMOS foundry & mixed technology packaging

for more than Moore, automotive, 5G, and Internet of Things (loT) devices that
rely on devices like power management, analog and display driver integrated
circuits (ICs), MOSFETs, microcontroller units (MCUs) and sensors.

A 200mm fab with 50,000 wafers/month can cost as much as S1 billion,
including construction and equipment.

Getting a state-of-the-art >300mm fab is possible in ~10 years, but with fab cost
$10-20 billion.

UK investing at least S7 billion would be consistent with comparators, based on
investment as % of GDP

New mindset: maximise our gains, not minimise our losses

UK can have a semiconductor industry but needs:
realistic investment of £billions + commercial incentives + university strengths

Will our new government act?



Beyond silicon?

Molybdenum disillfide
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* Silicon/ CMOS is really good!

Si is abundant, an element

SiO; is stable oxide giving excellent isolation (> 3nm)
Si/SiO; interface is monolayer, low defects

MOSFET lon/ lorr > 10°

CMOS only consumes power when switching states
Globally, Si industry is mature AND innovative



Beyond silicon? — Wide bandgap semiconductors
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Beyond silicon? — Wide bandgap semiconductors
Bandgap Energy
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Beyond silicon? — Silicon Carbide MOSFETs

2017 Tesla Model 3 — wot, no engine? SiC Inverter (STMicroelectronics)

e Silicon Carbide is will be really good!

Si and C are abundant

Material quality needs to improve

SiC MOS technology lies decades behind Si

Si/SiO; interface is possible, but with defects

So MOSFETs are possible but gate engineering needed...



Newcastle
+ University

Gas Oxide Silicqn * Some residual C may out-diffuse
Carbide through the oxide film
SiC +3/2 0, Si0, + CO
SiC+2 0, - SiOo, + CO,
- - Some residual C may remain,
2 3
== SiC + 0,-> Si0, + C
* thin grown SiO,>Fewer defects

Genl: SiC oxidation
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Re-engineering the Gate Stack: ICSCRM 2017

YV V V

Sio,

Ultra-thin (0.7 nm) oxidation
- low Temperature (<600 °C), short time (<3 min)
High field effect mobility, 1 = 154 cm?/V.s
Steep subthreshold slope S = 127 mV/dec
Good temperature stability 25 - 300 °C
Low interface trap density,
6x10!! < D, < 5x10% cm2eV!

Urresti et al ICSCRM 2017 (MSF Vol 924, p494, 2018)
Arith et al IEEE Electron Dev Lett VoI39, p564, 2018
Urresti et al IEEE Trans Electron Dev Vol66, p1710, 2019
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4H-SiC MOS Capacitor
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Thickness (nm)

D,, passes through a minimum
corresponding to 0.7 nm SiO, layer

minimum D, occurs for a thermal budget
of 600 °C for 3 min

corresponds with 0.7-nm growth of SiO,
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MOS capacitors have the same gate

stack as MOSFETs

For thin SiO,
D, = 6x10! - 5x10%° cm~2eV!



Semiconductors 101: carrier mobility u
- —

velocity-field relation v = p E
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Experimental: mobility p.(T)

Newcastle
+ University

Hee reduces by 40% at T=300°C ?140 + thin SiO,

— sustains high mobility 0T { : .+ thick SiO,
£100 {

tee b as T 4 for thin SiO, p80 ¢ { }

— phonon scattering Z 60 }

— greater lattice vibrationas T T s_g 20 F

Wee T as T 1 for thick SiO, €t o ‘

— coulomic scattering S o

— interaction time reduces as T T - 0 50 100 150 200 250 300

Temperature (°C)

The temperature dependence of mobility for the thin-SiO,
MOSFETs shows that it is dominated by phonon scattering
— fewer C related defects reduces coulombic scattering
— gives rise to its high mobility .



Experimental: SiC versus Si mobility
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interface
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* Si, SiC bulk mobilities are similar:
Si Wy, = 1450 cm2/Vs

* Universal mobility plot

reveals:
— SiC devices ~50% of Si devices
— contributions to scattering:
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— Fitting to the data gives:
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Film Thickness (nm)

Gas
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Gen?2: SiC oxidation

Oxide Silicon
Carbide
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Some residual C may out-diffuse

through the oxide film

SiC+3/20,- SiO, + CO

SiC+2 0, - SiOo, + CO,

Some residual C may remain,
SiC+0,> Si0, +C

thin grown SiO,—> Fewer defects

Oxide thickness increases
with oxidation time.

Oxidation rate reduces
with oxidation time as
oxide thickness increases.

Oxidation Rate (nm/h)
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Re-engineering the Gate Stack: ICSCRM 2023 '- University
PECVD S'OZ - ___ 500} l.\l+PEC.VD+N l VGS-;/TH =5V
"Source IS 35400 — PECVD:N
N++ % 300 |

S’ 200

gwo- == - 7.7
|V s

e Ultra-thin oxidation °©o 2z 4 6 & 10
 New paradigm:

» N,O pre-treatment; SiO, by PECVD; 10s

 High T anneal (>1100°C ), longer t (~100min) % 104}
* High field effect mobility 94 cm?/V.s =
* Reduced V, instability g ::f
+ Low D, 1.2x10%! - <100 cm-2eV/-! £
P B P N+PECVD+N
> Yakut et al ICSCRM 2023 St fis ToR0PN
107 0 5 1l0 1l5 2l0 25

Gate Voltage, V55 (V)



Summary:

Semiconductors underpin electronic systems
MOSFETs rule!

Semiconductors in the UK - crisis? what crisis?
Silicon Carbide has promise for power electronics
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