Tutorial Series

Powering up the future with GaN

Thursday 9th February 5pm-5:50pm GMT

Presenter: Andrea Bricconi, cco Moderator: Nare Gabrielyan, Product Marketing Manager

GaN

Ground Rules and Instructions

Please make sure you are muted

Use the chat for comments and questions

2

Tutorial Webinar Series Schedule

	Торіс	Presenter	Live Date
sie)	Powering up the future with GaN	Andrea Bricconi, CCO	February 9th
h)	GaN devices in power electronics	Florin Udrea, CTO	March
ir)	Quality and ICeGaN reliability		April
nie)	ICeGaN™ vs GaN		Мау

About the Host

- Master's degree in Physics, Academic research on III/V compound semiconductors.
- Spent more than 25 years in the semiconductor industry, covering different roles in Manufacturing, R&D, Marketing, Business development and Sales in major Semiconductor manufacturers.
- Working on LV and HV GaN power technologies, applications and marketing for the last 12 years, leading WW teams
- Joined Cambridge GaN Devices in 2020 as VP Business Development and Application Engineering. He is now the company's CCO, in charge of Sales & Marketing organization

CGD - Chief Commercial Officer

Andrea Bricconi

Cambridge GaN Devices at a Glance

A Fast-growing CleanTech Pioneer spun-out from the Cambridge University

Outline

The context

► The GaN promise

► ICeGaN[™] for smart integration

CGD's solutions

36,7Gt

of CO₂ emissions

~23,000 TWh consumed electricity

4 Megatrends Driving The Growth of Energy Consumption Unprecedented Levels of CO₂ Emissions Caused by Human Activity

Sources: Global Energy Review 2021, World Energy Supply and Consumption, Statista; Data refer to 2019 w/ to CO₂ emissions and Twh consumed energy Property of Cambridge GaN Devices Ltd

Population Growth

Digital Transformation

Climate Change

Urbanisation

camgandevices.com © 2023 CGD

3 Areas Driving the Growth of Energy-Efficient Solutions

1. ELECTRIFICATION

The e-mobility disruption, energy efficiency regulations and CO₂ reduction emissions targets will drive change

2. RENEWABLE ENERGIES

Wind and **Solar** power expected to account for 50% of the power mix by 2030 and 85% by 2050

3. CONNECTIVITY

Big data, Cloud Computing and 5G

full deployment will continue a 3-digit growth (and **6G** is coming)

Power Semiconductors are the Core of Energy Conversion and Control

Sources: Yole Développement - Forecast for eBike, eScooters and EV/HEV for GaN and a subset of Wide Band Gap, McKinsey Center for Future Mobility, McKinsey Global Energy Perspective 2022 Executive Summary

An Ecosystem Geared up for the GaN Revolution

More global economies establish reduction policies to achieve **0-net CO₂ emission by 2050.**

Markets and Trends

Energy-efficient, power dense and **miniatured devices** push the growth of GaN-based solutions.

Socio-economic factors and advances in technology are driving **energy use and electricity spending.** SĪ

Governments around the world announce a **national semiconductor strategy.**

Investments and Landscape

New foundries arise to fulfill the global demand for energy-efficient power devices.

Intrinsic properties which are relevant for power conversion favour GaN on many aspects

	Silicon Super-junction	GaN Cascode	p-GaN gate Schottky HEMT	iCe GaN™
Specific on-resistance Ron x Area $[m\Omega \ x \ cm^2]$	8	2.8	3.2	3.2
Typ. Threshold voltage [V]	3.5	4.0	1.7	3.0
Maximum gate Voltage [V]	20	20	7	20
Ron x Qg [m Ω x μ C]	3.5	0.8	0.3	0.3
Ron x Qoss [m Ω x μ C]	21	6	3.3	3.6
Ron x Qrr [m Ω x μ C]	312	6	0	0
Negative voltage drive requirement	no	no	Desirable	no
Integrated Current Sensing	no	no	no	yes
Typical Packaging	TO220/TO-247	TO-247	SMD	SMD

Intrinsic properties which are relevant for power conversion favour GaN on many aspects

The lower the value the					
for light load efficiency but also enable higher	Silicon Super-junction	GaN Cascode	p-GaN gate Schottky HEMT	i Ce GaN™	
efficiency at high frequency. High frequency enables power density →	8	2.8	3.2	3.2	
GaN for light load or power density	3.5	4.0	1.7	3.0	
Maximum gate Voltage [V]	20	20	7	20	
Ron x Qg [m Ω x μ C]	3.5	0.8	0.3	0.3	
Ron x Qoss [mΩ x µC]	21	6	3.3	3.6	
Ron x Qrr [m Ω x μ C]	312	6	0	0	
Negative voltage drive requireme	ent no	no	Desirable	no	
Integrated Current Sensing	no	no	no	yes	
Typical Packaging	TO220/TO-247	TO-247	SMD	SMD	

Intrinsic properties which are relevant for power conversion favour GaN on many aspects

Less charges to dissipate at each commutation. Enables	Silicon Super-junction	GaN Cascode	p-GaN gate Schottky HEMT	i Ce GaN™	
better soft switching. GaN can provide higher efficiency combined with	8	2.8	3.2	3.2	
high frequencies → HalfBridge LLC topologies	3.5	4.0	1.7	3.0	
→ GaN or SiC based on needs	20	20	7	20	
Ron x Qg [mΩ x μC]	3.5	0.8	0.3	0.3	
Ron x Qoss [mΩ x µC]	21	6	3.3	3.6	
Ron x Qrr [mΩ x µC]	r [mΩ x μC] 312		0	0	
Negative voltage drive requirement	e drive requirement no		no Desirable		
Integrated Current Sensing	no	no	no	yes	
Typical Packaging	TO220/TO-247	TO-247	SMD	SMD	

Intrinsic properties which are relevant for power conversion favour GaN on many aspects

	Silicon Super-junction	GaN Cascode	p-GaN gate Schottky HEMT	iCe GaN™
The lower the better for repetitive hard	8	2.8	3.2	3.2
simple half-bridge-based	3.5	4.0	1.7	3.0
CCM-PFC) → BOM savings for highest efficiency will	20	20	7	20
use GaN (or SiC)	3.5	0.8	0.3	0.3
Ron x Qoss [mΩ x μC]	21	6	3.3	3.6
Ron x Qrr [m Ω x μ C]	312	6	0	0
Negative voltage drive requirement	no	no	Desirable	no
Integrated Current Sensing	no	no	no	yes
Typical Packaging	TO220/TO-247	TO-247	SMD	SMD

Efficient Power Electronics for a cleaner Environment

15

What if All Data Centres Were to Adopt GaN

CGD estimations based on 8% higher efficiency per server PSU Sources: Eaton, Statkraft - Data Centers and Decarbonization – Oct. 21

From Discrete to Hybrid and Monolithically Integrated

Enhancement mode GaN can be operated like MOSFETs

Threshold voltage is pushed to 3 V and max Gate Voltage to 20 V

Typical transfer characteristics for eMode GaN HEMTs

CGD's transfer characteristics

Internal gate signal is optimized for safe operation while external signal goes up 20 V

High Performance in HB and Low Side topologies BOM costs can be greatly reduced

Driven by: Standard Si Half-Bridge \Driver

Requires: 16 External Components

 6 resistors | 2 Capacitors | 6 diodes | 2 beads

GaN #2 – Competitor's Application Note on HalfBridge driving

Driven by: GaN specific Half-Bridge Driver

Requires: 8 External Components

• 6 Resistors | 2 Capacitors

CGD's ICeGaN™

Driven by: Standard Si Half Bridge Driver

Requires: 4 External Components

• 2 Resistors | 2 Capacitors

High Performance in HB and Low Side topologies

BOM costs can be greatly reduced

350W TP PFC - Output Power vs Efficiency

CGD Product Portfolio

APPLICATIONS

A Targeted Offering Entering the Market with 2 SMD Packages, 3 R_{DS(on)} Classes

CGD's H1 series are SINGLE CHIP eMode HEMT, with 3V threshold voltage, with real 0V turnOFF and with a revolutionary gate concept that can be operated up to 20V.

No cascode, no complex multi-chip configurations or no thermally complex integrated solutions, but a single chip with embedded proprietary logic which enables the coupling with std gate drivers or controllers.

PN	Туре	R _{DS(on)}	Voltage Rating	DC Current rating	Peak Gate Voltage	Package	Features	Preferred gate driver	
CGD65A055S2	Single eMode	55 mOhm		27 A					
CGD65A130S2		S2 Single	130	130 650 V	10.4	2014	DINOXO	ICeGaN [™] **,	Any
CGD65B130S2		mOhm	(750 V*)	12 A	20 V	DFN 5x6	Current Sense ***	driver	
CGD65B200S2		200 mOhm		8.5 A					

*,**,*** see product datasheets

DesignIn support with Reference Designs and Eval Boards Cambridge Gan Devices

Support Material available in English, Simplified and Traditional Chinese

TECHNICAL CONTENT

- Application Notes
- User Guides
- White Papers

MARKETING CONTENT

- Product Brief
- Podcast and Videos
- Technical Articles

Visit: www.camgandevices.com

BOARDS

- Evaluation Boards & Userguides
- Interface Boards
- Reference Design Boards

- The world must make a better use of energy and reduce carbon footprint. This requires new technologies to replace silicon.
- GaN, among others, show incredible potential and is rapidly gain market traction in consumer and industrial applications. Automotive will come.
- 600 V+ GaN HEMTs shall be made as ease to use as possible and deliver on promises, to broaden market adoption and further improve on efficiency and power density.
- There's only one technology which requires no negative voltage for gate driving, extended gate voltage to 20 V and true 3 V threshold voltage, all integrated into 1 enhancement mode 650 V GaN HEMT and this is ICeGaN™ by Cambridge GaN Devices.
- CGD is in mass production and will broaden their sales channels shortly. Stay tuned!

in

GaN

Stay tuned with us!