

EPSRC Centre for Doctoral Training in Sustainable Electric Propulsion (SEP)

61%

of businesses surveyed are not confident in finding enough people available with the necessary skills to fill their high-skilled job vacancies

21% (£1.2 trillion) of the UK's total turnover is generated from the engineering sector

203,000 people with Level 3+ engineering skills are required per year up to 2024

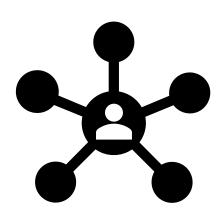
9% working in engineering jobs are BAME, compared to 12% of the UK workforce

While women comprised 47% of the overall UK workforce in 2018, they only made up 12% of those working in engineering roles The most positive projection of graduates entering into engineering is still 20,000 fewer than needed

79,000 "related roles" requiring mixed application of engineering knowledge and skill alongside other skill sets will need to be filled every year to 2024

POWER ELECTRONICS

DRIVERS	xEV uptake, CO ₂ limits, a	ir quality regulation, ULEZs, charging	access Very low CO2	, zero emission zones, LCA, n	naterials security, rapid/opportunity charging infrastructure
TARGETS*	Current status		2025 targets		2035 targets
Cost (\$/kW)	5 \$/kW		4 \$/kW		3 \$/kW
Power Density (kW/kg)	15 kW/kg		22 kW/kg		50 kW/kg
Power Density (kW/l)	12 kW/l		15 kW/l		60 kW/l
			-	1	¥
SEMICONDUCTOR MATERIALS	Optimi	sed Si semiconductor devices	SiC semiconduct	tos devices	
			GaN semiconduc		````````````````````````````````
			Gain semicond		Jltra-wide band gap materials (e.g. Ga203, Diamond)
	High temp., lower lo	oss, more robust materials for powe	r modules and discrete devices		
COMPONENTS Semiconductor packaging			modules with integrated filters, se	ensors and gate drives	
				Co	onverter in-package devices
Passive components	Higher er	ergy density and higher temperatur	e capable passives	>>> Next	generation dielectric and magnetic materials for passives
Sensors and fault mechanisms	Low loss, high temp. a	nd accurate sensors	\rangle	Sensorless and wirel	less health management
	Reactive fail-safe r	nechanisms	Self-diagnostic and fault toler	ant control	> Self-healing and reconfigurable power electronics
CONVERTER ARCHITECTURES	Si converter topol	ogies for increased eff. and power d	ensity 💦 🔪 🔪		
					optimised for wide band gap materials
			locks (e.g. integrated DC-DC/OB		Integrated DC-DC, inverter and OBC
			rated drives (motor, power electro	onics, control)	Power electronics embedded in motor
		mbedded power electronics softw		\rightarrow	Self learning software optimised for drive cycle
ENABLERS	Glycol/water/oil/air coolin		egrated motor and PE thermal ma		Single vehicle thermal management
			advanced manufacturing process	ses to improve power electro	onics performance or lower cost
	2015	2020	2025	2030	2035



New training methods to address diverse engineering skills with fun factor

Vision

"The creation of a new generation of UK specialists driving the electric revolution in the transport sector."

ADVANCED PROPULSION

CENTRE UK

Innovate UK Knowledge Transfer Network

Innovate UK

Ricardo

mocean

TT Electronics

TURNTIDE

Dyson

IXYS

The Thinking Pod innovations

Turbo Power Systems

Aerospace Technology Institute

Catapult

ECPE

PEMD

TOSHIBA

Toshiba

Amantys

ChanganUK

Höganäs 🖽

TRIDONIC

AVL

Environmental Measurements Limited

ADVANCED ENGINEERING

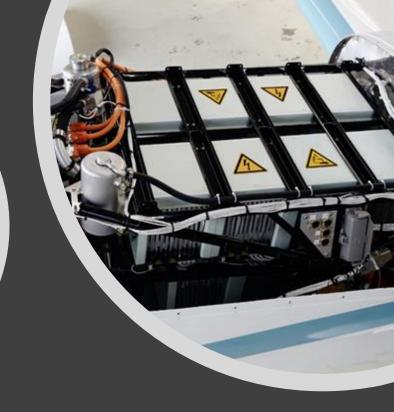
Yasa Motors

ZF TRW

Hoganas

Protean

Tridonic



1

Electric Propulsion



Big Data Circuit Topologies Control **Electrical Machines Energy Storage** Manufacturing Materials Mechanical design **Reliability and Health Management** Semiconductors Signal Processing System control **Thermal Management**

Year 1 Training + thesis research + cohort based activities

Year 2-4

Thesis research + cohort based activities

Year 2

Engineering and Physical Sciences Research Council

Fusion Training Units

Rapid Prototyping & Teamwork

Industrial Design & Leadership

Year 3

Product Design & Responsible Innovation

Year 4

Supervisor on Demand

Supervisor A, B, C, D

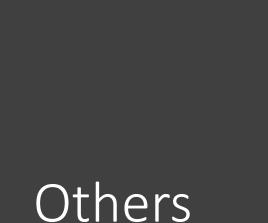
Year 2

Supervisor A, B, D, E, F

Year 3

Supervisor A, C, D

Year 4



Equality, Diversion and Inclusion (EDI)

ŶŴŶŶŶŶ

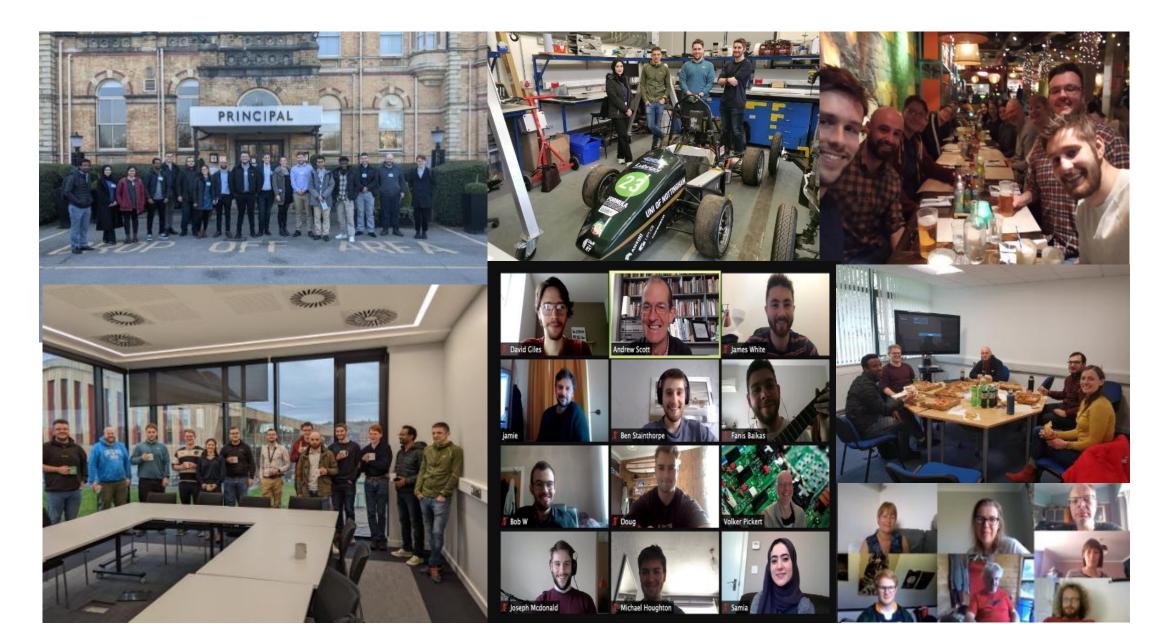
Responsible Innovation

=

General Data Protection Regulation

Confidentiality

Health and Safety



Tell me and I'll forget show me and I may remember; involve me and I 'll understand.

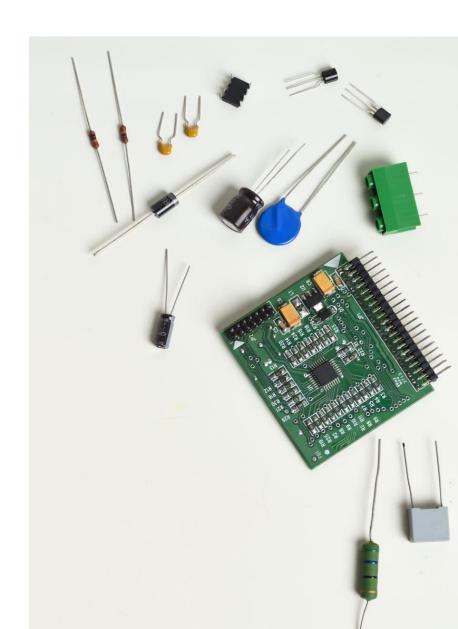
Xun Kuang, Chinese Philosopher 312-230 BC

Come and talk to us: CDT Manager: Amanda.Lane@newcastle.ac.uk Website: https://research.ncl.ac.uk/electric-propulsion

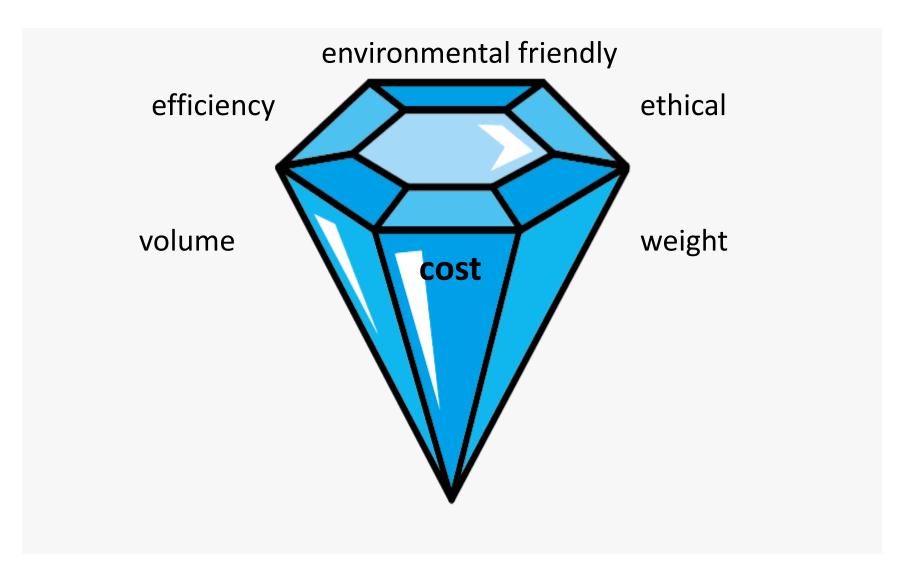
Acknowledgment Pictures and Figures

Page 2: www – Pinterest Page 4: Engineering UK 2018 Report Page 10: www – Springer Open Blog Page11: www – Springer Open Blog Page 17: www- Appreciation at work

Joined Centre between


- UKRI
- 31 industrial and network partners
 - and 2 universities

A minimum of 50 students will be trained over 5 years


Research covers the electric revolution

Developed bespoke cohortbased training programme

• What is CDT SEP?

