_\ ‘l‘{.’
247 N> THE UNIVERSITY of EDINBURGH

~y/s School of Engineering

THE

ROYAL
SOCIETY

What do | work on for the next 30 years? Power-
Electronics, Renewables, and the
Path to 2050

Dr Paul Judge

Lecturer in Power Electronics and Smart Grids
& Royal Society Industry Fellow




R
2% THE UNIVERSITY of EDINBURGH

School of Engineering

Context — UK Targets towards 2050

The UK is Currently:

— Committed to fully decarbonised the overall energy
system by 2050

— Committed to Decarbonising the Power System by 2035
(subject to security of supply).

— Targeting 40 GW of offshore wind by 2030
— 1 GW of floating wind by 2030

— 5 GW of Hydrogen Production by 2030

Net Zero Strategy: Build Back Greener
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National Grid ESO — Future Energy Scenarios 2020
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National Grid ESO — Future Energy Scenarios 2050
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National Grid ESO — Future Energy Scenarios 2050
Consumer Transformation Energy Flows (TWh)
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Latest Experimental/Commercial High-
Power SIC MOSFETS

Wolfspeed Wolfspeed ROHM Wolfspeed Mitsubishi Mitsubishi Hitachi

1200 V 1700 V 1200 V 3300V 3300V 3300V 3300V
450 A 680 A 586 A 541 A 1500 A 750 A 800 A

e SiCis now common for consumer EVs. Will continue to supplant Si IGBTs up
the power level.

* Higher Power Traction, Wind and Solar generation next expansion areas
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Floating Wind
A Driver to DC Collector !
Networks?

* The 2022 Scotwind Leasing round offered
awards for 25 GW of wind resources, ~50%

of which are in sea depths requiring floating
foundations

e Offshore Renewable Energy Catapult have
estimated up to 50 GW of floating wind
required for UK to reach 2050 targets

* UK government target of 1 GW by 2030
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Floating Wind
A Driver to DC Collector
Networks?

Floating Wind with
Dynamic Cabling
to Seabed
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Floating Wind
A Driver to DC Collector
Networks?

AC vs DC Winad
Turbine

32/66 kV AC 3-
core cable

DC 2-Core Cable
Lighter/More

Flexible Dynamic
Cabling

High Gain
DC-DC Converter

1.2-5 kV input to 100 kV

output \

High Voltage SiC Wide
bandgap Devices — key
Enabler
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SiIC MOSFETs - Application to HVDC Converters

3.3 kV 1500 A Devices

Si IGBT SiC MOSFET
ABB 5SNA Mitsubishi Module
1500E330305 [2]

Turn On Energy

(rated current) 2.15J 1.44
Turn Off Energy

(rated current) 2.8 0.53)
Forward Voltage

¢ Drop 32V 2.1V

(rated current)

e SiC MOSFETSs have resistive on-state characteristics. They can be paralleled to decrease conduction losses — This is
not possible with IGBTs due to their bipolar device conduction characteristic.

«  MMC are conduction loss dominated so significant potential to trade off increased switching loss (resulting from
parallel modules) with decreased conduction loss.

* Isitworth it? - Not likely for now. SiC MOSFETs are significantly more expensive that comparably rated IGBTs and 3.3
kV and 4.5 kV devices are not commercially available yet.

1 Decade down the line — Maybe.
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Offshore Hydrogen S
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* Hydrogen acts as energy %+ | T0SHoRE | _ |
storage & enables Power R [ O —| O
system flexibility %+ | |

 Decreases curtailment of wind
resources. | | |

« Offshore production increases T
conversion efficiency L

* UK targeting 5 GW of hydrogen N iry |
production by 2030 R \EJ

Net Zero Strategy: Build Back Greener
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Offshore Hydrogen
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DC Circuit Breakers | 0 ¥ i
* Hydrogen acts as ‘energy’ storage. Ol 1
SiC Based Full-Bridgemmc | I} = Toooooomooooooooooooooo- ‘
. . . Eliminating DC Circuit
* Potential to retrofit/reuse obsolete oil/gas Breaker Requirements? Mixture of AC and DC
platforms ‘ | collector networks
* Multi-terminal HVDC allows Electrolysis %* | moas
| O e
Platform to be shared between several % ; pa—=
wind farms Large Scale Offshore g‘( {L(
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* Potential for depleted gas fields use as e | o
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Energy Storage In
HVDC

Reduced system inertia due to displacement of
synchronous generators.

Hydrogen fired gas turbine and battery systems
providing fast acting spinning reserve.

May still be a requirement for additional fast ms-
to-second response may still be required
» Supercapacitor/Battery energy storage
integrated in:
e AC System - E-STATCOM solutions
* DC System
 Embedded within HVDC Converters

* B4-84 CIGRE Working Group examining
option
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Energy Storage embedded
in AC Transmission System

Energy Storage embedded
in HVDC Converters?
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Energy Storage embedded in
DC Transmission System?
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Research at Edinburgh
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MMC with Integrated Energy Storage
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z o ‘ ‘ ' ! Energy Storage Element Sub-Modules (ESE-SM) using
5 o é é Battery or Ultracapacitor Storage
S 2000 | | | | \
_ Standard Half-Bridge Sub-Module A move to SiC
E significantly reduces
the additional
e converter mass that
*  Converter is formed of a mixture of standard sub-modules (SMs) and SMs that are interfaced through DC-DC must be supported
converters to Energy Storage Elements (ESE-SMs), such as ultracapacitors or batteries. within the valve

tower

*  Converting 4% of SMs to ESE-SMs allows the converter to have a 10% energy storage rating.

P. D. Judge and T. Green, "Modular Multilevel Converter with Partially Rated Integrated Energy Storage Suitable for Frequency Support and
Ancillary Service Provision," in IEEE Transactions on Power Delivery. doi: 10.1109/TPWRD.2018.2874209
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10 kVA Modular Multilevel Converter Demonstrator

Designed to allow flexible integration
of energy storage into the sub-
modules of the converter
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Challenges of SiC

IGBT vs SiC MOSFET

SI-IGBT — SiC MOSFET : EOFF =18.9mJ ==s= Si IGBT : EOFF =63.8mJ
| T T 1
* Very good conduction 1000 -
b Poor SWitChing . Device V o W it g L1
. . . < 500+ .
* Slow IGBT turn off due to excess minority carriers Voltage | " H!g:erlgv_/dt Mo
mpacts machine winding li etime. olse
° Negligible oscillations o concerns. Better busbar/capacitors/filters required
.. -0.5 0 0.5 1 1.5
e Lower dV/dt similar dl/dt . , , \ , ,
T
400 - 3 | Higher Voltage/Current Oscillations |-
—_ . . EMI/Noise Concerns. Better busbar required.
SiC-MOSFET < 200 - cDeVICEt Advanced gate-driving |
urren
* Very good conduction & switching ol o
L 1 1 1 I
* Expensive -0.5 0 05 1 15
300 - ' n ' ' 1
* ~600 A is the largest production module Device II \\ Lower Losses
— . . . _ 0 Power Y Enables a more optimised
* Oscillations in drain-source voltage & current a major concern due s L converter design with lower LCOE
. > - -
to EMI generation = 100 osses
. . . ope . 0 it N
* Challenges in device availability and rating . |
-0.5 0 0.5 1 1.5

Time (uS)
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Parallel Hybrid Converter

2000 }» =

1000 - o A

Low Frequency Si IGBT Converter

Providing Bulk Power Transfer .

Current (A)

R R (N
+ Intermediate step to a full SiC based rAS o L i N W .. !
rter ngh Current (e g 1800 A) SIC VDC ° 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
converter - : ‘aas
MOSFETs not commercially available yet. NN R R - e 4
e SRR -
* Possible using commercially available > —-— 2 0/
SiC MOSFETs —— 8.l |
J$ Jﬁ Jﬁ Lyr Lo Y v ¥/ -2000 VJ/ &
+ Output filter purely inductive: AAAE_AAAS HE (o) ‘ ‘ | : ‘ ‘ ‘
p p y b 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
o i i Y NE_A 0
High Bandwidth Current Control g T
el YYD Y\ T T T T

2000 -
B R
1000 -
<
e AN W "W’ " ﬁhn_ﬂ.ﬂ P o) AL
High Frequency Partially Rated SiC MOSFET Converter W' AN MO < 'e':-'u‘u'u— 4 Wﬂ“

LR |
Providing Active Filtering & Partial Power Transfer -1000

Current (A)
(=]

-2000 - =1
1 | L 1 L 1 L

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
Time (s)

P. D. Judge and S. Finney, "2-Level Si IGBT Converter with Parallel Part-Rated SiC Converter Providing Partial Power Transfer and Active

Filtering," 2019 20th Workshop on Control and Modeling for Power Electronics (COMPEL), Toronto, ON, Canada, 2019, pp. 1-7.. 24
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Efficiency Improvements for a 1.5 MW Module

Low Frequency Si IGBT Converter

18000 . ~ ~ o
B GeT Copdugﬁon 18000 T Providing Bulk Power Transfer
I /GBT Switching I IGBT Switching A ] JG JG
16000 F 4 16000 I — S!C Corldu.ction | Lip
Two-level Converter B SiC Switching NS
2’2 e\
] JC} Jf} Grid Interface = 14000 F | Ve
Output Inductor Transformer 14000 - . Ta'a’a)
Fa'a'a H ) O A 23T
Ve s ( J ICINC G
" : L . 12000 - g 12000 F . ,
! ]('} JG E 10000 § lj} J}
a3 A 10000 7 Jll-‘ Jll-‘ JII-‘ Lyr Lo 44 4r
38 s ° 9 A\ APt by
[ a*;-’ 8000 |- 1 ?g 8000 F | A __AAA®
Filter Network w. n? n? | S _ AN\
Damping Resistor H H H
6000 [ 7 6000 L - Jl‘ Jl‘ Il-“}
High Frequency Partially Rated SiC MOSFET Converter
4000 | . 4000 F i Providing Active Filtering & Partial Power Transfer
2000 [ 7 2000 i
0 0 +
1.7 kv 1800 A IGBT .
1.7 kv 1800 A IGBT 1.7 kV 380 SiC MOSFET

» Fully SiC based approach also a valid future option - SiC MOSFET resistive on-state characteristics would allow
conduction optimised device to be used for the main bridge -> Push power semiconductor losses even further down
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Flexible test bench that can be highly re-

configurable into multiple different topologies

* DSpace controller with FPGA allows
advanced control prototyping
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The Modular Multilevel Gate Driver

IGBT vs SiC MOSFET

e SIC MOSFET : EOFF =18.9mJ =sxs Si IGBT : EOFF =63.8mJ
T ]

[
1000 -

- Device UV VMMAAK o cxcrsmsmmme 5
< 5001 Voltage Higher dV/dt |
. K Impacts machine winding lifetime. EMI/Noise H—
ot concerns. Better busbar/capacitors/filters required G
0 . . . : AMA—
05 0 0.5\ 1 15 Arb Itra ry T S
400 - 5‘-. Higher Voltage/Current Oscillations | - VO Ita g e
— EMI/Noise Concerns. Better busbar required.
< 200 - Device Advanced gate-driving 1
Current
or e
05 0 05 ) 15 Gate Driver can modulate its output with a resolution of ~2.5 ns
300 - ' - ' 1
Device ! Lower Losses . .
200 power R Enables a more optimised | * Provides 6 voltage levels in 5V steps
2 100~ Losses | converter design with lower LCoE |- * New isolator chips should let hd I tol
= \ pPS snou €t us pus own cioser to 1 ns
0 — modulation
08 0 05 ) 15 e Attempts to provide an ‘arbitrary voltage source’ as the gate-

Time (:S) driver
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Output Stage Board

Isolated Pow er
Supplies Sub
Gate-Drivers

MEV151205SC

N == A LMG1020 (x2) l
e | | d__‘
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_:ZLEEEI:E:_ — ﬁ'_
: : . SP=[EHs]s > '
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|

10mm
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Control Board
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Experimental Setup
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Automated Profiling

Update Pattern over,

Optical UART Link Serial Com. To

Labview Controller,

Matlab <\
o

Remote control and
data acquisition

AN using VISA interface




THE UNIVERSITY of EDINBURGH

School of Engineering

Drain-Source Voltage
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Gate Source Voltage
VG‘S
10— Programmad Gate Pattem | |
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0 — —_
i ]
. | | | | | |
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XM34 XM3p XM3¢c XM3y

Four-leg Silicon Carbide
MOSFET Bridge Design

. FPGA based Model Predictive Controller implemented on an
Opal-RT Simulator
. 200 kHz Control Frequency -> ~50 kHz Switching
Frequency -> ~5 kHz Converter Bandwidth
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Grid Emulator System

50 KUA Wind Ambition is to be capable of performing advanced
"ot e Mode o v AC experimental testing of these hybrid converter

— J%} ) E% J%} ZS _@_@ topologies: | | |

Tansmssion ( Q . ~ . Grid Interaction studies.

ystem Simulation

J—j @ A e . Fault ride through testing.
o = ﬁ [ Fr— . Harmonic interaction studies.
OP4510 RCP Simulator Re-Configurable
Filter

DC & AC Emulation for Converter Fault-Ride Through Testing
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Thank You — Any Questions?




