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The Problem A Solution
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*  We need new Multi-physics Design Tools, Design for AM, Material Property Studies, Post:
Processes (Heat, Surface), Insulation Coatings, Cross-Discipline Academic Underpinning



The Electrical Machine Works

Metal AM Process
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The Electrical Machine Works Team
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Piya Munagala, PDRA

¢ ' George Yiannakou, PDRA Suzie Collins, PhD Student Jamie Williams, PhD Student (MDL)
* Material Science + Additive Manufacturing + Electrical Machine Design * Electrical Machine Design
* Metallurgy + Electromagnetic and Process modelling + Composite Materials *+ Large-scale Cloud Simulation

* Computational Frameworks

€

Harry Felton, PDRA

Ty . Dominic North, PhD Student Francis Tocher, PhD Student (GKN) Angus Cameron, PhD Student
* Additive M.anufactux: ing + Electrical Machine Design * CFD and Heat Transfer - Electrical Machine Design
* Computational Design +  Multi-physics Modelling * Mechanical Design

* Integrated Power Electronics
* Automation and Robotics

Lead Academic, collaborating academics, 3 x Post Doctoral Researchers, 5 x PhD Students

Expertise spanning electrical machine design and manufacture, power electronics, multi-physics analysis,
additive manufacturing, material science, experimental testing, automation, computational design

Provide support to other EEMG projects, new academics and activities.



Loss Minimisation — Shaped Profile Windings

Consider a conductor subject to an external time-varying flux:
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o Thin conductors (w << h ) shaped to remain perpendicular to the external S ) s e
magnetic field will exhibit minimal loss y \;\\, /] Slot
o Hence desirable edge-wound conductors - Air- gawp boundary

o Effectively laminating the winding in the direction of flux
o Rotor effects alter the flux pattern — no longer perpendicular to slot wall
o Particularly evident in open-slot stators

Magnetic flux within an open slot

How do we shape the conductors? = Field Driven Design



Loss Minimisation — Shaped Profile Windings
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Loss Minimisation — Shaped Profile Windings
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Loss Minimisation — Shaped Profile Windings

o e o A 2D time-harmonic finite element (THFE) model accounting for the rotor flux is
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Loss Minimisation — Shaped Profile Windings
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Loss Minimisation — Shaped Profile Windings

‘ Start
Design
L Data
Setup THFE model
Distribute conductors
(uniformly at first)

Calculate A field

o Convert conductor cross-sections into a helical winding structure

F e s

End-
Winding with
profile transition

Active-
winding

Sample A at conductor

bounds, extract contours

and form shaped
conductors

e .
g2 Terminals
£8
£2
23
8% :
£z . :
e End- g
£d winding ¥ Slot 2
profile
- ~
Slot 1
profile

o Shaped profile winding with asymmetric cross-section
o Operating quadrant dependent loss characteristics
o Well suited to generators, propulsors and electric vehicles

Conductor shaping algorithm



Confidential — under NDA ETC02536

Loss Minimisation — Shaped Profile Windings

o Three winding variants compared — 80% high fill, 50% low fill, and shaped profile
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Loss Minimisation — Shaped Profile Windings

o Winding loss prediction for I = 100A
o Continuous operating envelope for 180°C average winding temperature
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Winding Loss Continuous current at 180°C average
o Low AC loss winding while maximising slot fill 2 increasing electric loading capability by ~20%

Field Driven Design - Automatically Apply a Design Rule

N. Simpson, D. J. North, S. M. Collins and P. H. Mellor, "Additive Manufacturing of Shaped
Profile Windings for Minimal AC Loss in Electrical Machines," in IEEE Transactions on
Industry Applications, May-June 2020



Loss Minimisation — Hybrid Strand Windings

o Conformal windings with balanced strand currents through end-winding
transposition
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Loss Minimisation — Hybrid Strand Windings

o Comparison of loss minimisation techniques
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Simpson, N. and Mellor, P., 2021, October. Additive Manufacturing of a Conformal Hybrid-
Strand Concentrated Winding Topology for Minimal AC Loss in Electrical Machines. In

2021 |EEE Energy Conversion Congress and Exposition (ECCE) IEEE.
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Power loss comparison at 1 kHz

o Targeted loss minimisation strategies = 40 % reduction in loss

Field Driven Design - Automatically Apply a Design Rule

Heat, Fluid Flow, Parasitics?




Enhanced Thermal Management — End Winding

o Direct cooling of coils

Reduced
package

Minimum
bend radii

N

Conductor
aspect ratio

S

Normalised 1.0
[ -

Splayed end-winding heat sinking

====Fixed temperature

N. Simpson, C. Tighe and P. Mellor, "Design of High Performance Shaped Profile
Windings for Additive Manufacture," 2019 IEEE Energy Conversion Congress and
Exposition (ECCE), 2019, pp. 761-768, doi: 10.1109/ECCE.2019.8912923.
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Enhanced Thermal Management — Infill

A few KB
o Boundary Representation — Functional Representation sin(kyz)cos(kyy) + sin(kyy)cos(kyz)+
g g g g
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S. Catchpole-Smith, R.R.J. Sélo, A.W. Davis, I.A. Ashcroft, C.J. Tuck, A. Clare,

Thermal conductivity of TPMS lattice structures manufactured via laser powder bed fusion, F—Rep 9 Re qu_i_l’es MeShjng' Me th Ods

Additive Manufacturing,Volume 30,2019,




Power Electronics Integration

o Integration of Inverter and Electrical Machine

Power devices

Gate Driver

o Extension of previous phase module to AM
o Integrated cooling
o Design for AM (DfAM) rules
o Design for Assembly
o Naive in terms of layout

Non-conductive +ve railﬂ Current
fasteners -ve rail output shunt

o Feasibility study funded by EPSRC Future
Electrical Machines Manufacturing Hub

Non-conductive https://electricalmachineshub.ac.uk/

fasteners

Pyramid +ve rail

features / J

Fluid cooling . \ Fluid
channel Fixing boss -ve rail port



Manufacturing Challenges — Orientation/Supports

<€=Terminals

o Safe build angle for most materials ~45°to build plate
o Unsupported overhang ~1 mm

o Supports needed thereafter
o Minimum feature size ~0.5 mm

o Minimum separation ~1 mm Build supports

o Surface finish/build speed trade-off Example AM windings built 45° to build plate
o Over-size if post-processing
o Build supports
o Minimise post-processing

o Manage residual stress

o DfAM rules are process driven — e.g. powder bed, binder jetting

o

Design tools must account for DfAM

Manufactured in an expanded state



Manufacturing Challenges — Electrical Conductivity

Casting
(not covered here)

Up to 99%
IACS

Negligible build
orientation
dependence

Note: surface
finish

Copper Based

Standardised serpentine samples — time/cost efficient, sized

according to ASTM B193-02

Aluminium Based
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2-10% Build Pure aluminium under

orientation investigation
dependence
Improvement

possible
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Fig. 10. Porosity calculated from CT cylindrical ROI (highlighted) across ~ Fig. 7. Electrical conductivity (IAC) as a function of applied laser energy
the interface between prescribed conductivities. during the LPBF manufacturing process.




Manufacturing Challenges — Surface Roughness

65 mm

Standard serpentine sample — time/cost efficient,
sized according to ASTM B193-02

o Surface roughness depends on build
parameters

o Layer height/build speed/applied energy
o Surface roughness post-processing

o Chemical etching

o Electropolishing

o Mechanical abrasive

Chemical Etching Example

b4

| )
0 z [um] 110

0 z [um) 55
Sample surface prior Sample surface after
to etching etching
Advantages

o Smooth surfaces — no high-spots
o Edge radii

o Removes build support artefacts



Manufacturing Challenges — Electrical Insulation

Post-manufacture application of electrical insulation

o Conventional o High-performance Composite Coatings
o Dolph Synthite AC-43 Class H Polyester Varnish o Ceramic based nanocomposite up to 500°C
o Dip coated on 2-axis rotary tool o Electro-deposition/dip coated
o Air dried - oven cured o Hot air dried — oven cured
Bare

terminals

Insulation Removable
slot wedge
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800
600
400
200

Breakdow

Insulatic
coating

As-made 450°C 500°C 550°C
Heating Temperature /°C

Slot liner

Dip varnished AM coil AM coil installed in stator Composite coated AM sample  Breakdown vs. Temperature

a

i

l’liVCI'Sity Of ! Vi’ Teesside Pang, Y.X. and Hodgson, S.N., 2020. Ceramic/inorganic-organic nano-hybrid composites

r&@ % ST L UniVETSitu for thermally stable insulation of electrical wires. Part I: Composition and synthetic

parameters. IEEE Transactions on Dielectrics and Electrical Insulation, 27(2), pp.395-402.



Manufacturing Challenges — Electrical Insulation

CNC Powder Coating
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Conclusion

o AM significantly increases available design space
o Shape, topology, material properties, integral cooling & other

functions
« minimise loss (conduction, wound passives) =TT—,

* enhance heat extraction (to dissipate loss) g

* raise temperature ratings

Enabled
by AM
v

o Multiphysics design methodologies/tools are required
o DifAM must be considered as early as possible
o Design tools must account for 3D design space
o Combine analytical and numerical methods to constrain

computational cost?
Aluminium (AlSiMg) AM winding

Additive Manufacturing has the potential to overcome power-
density limitations of conventional manufacturing methods.

University Research Groups - Bristol, Bath, Nottingham, Leeds etc
Compound Semiconductor Applications Catapult (CSA)
Manufacturing Technology Centre (MTC)



Thank you.

Dr. Nick Simpson
nick.simpson@bristol.ac.uk
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