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Background WARWICK
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Requirements to curb the global carbon emissions include:
* Improved electrical efficiency
* More green electricity in the energy mix

The objectives can only be achieved with the utilization of energy
efficient power semiconductor devices - building blocks of any
power electronics technology.




Background: Power Semiconductor Devices WARWICK
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Electric Vehicle Power Conversion WARWICK

On-board
DC-DC

Applications for Power Electronics ?!
converter

On-board Drivetrain
Charger Inverter
Off-Board Charger AC-DC converter DC-AC
AC-DC converter 9-22 kW 80-300+ kW

50-350 kw 400-900 V



Automotive Applications Requirements
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Automotive Applications Requirements WARWICK

From the device perspective:

* High Power/ Efficiency

* Reliability (high vibrations, high humidity and ambient
temperature variations)

* Cost

* Controllability and High Integration/Intelligence
(integrated temperature and current sensors and shunt
resistors, Drive-IC)



Enabling 800 V Architectures

* Automotive industry drive to move from 400V towards a battery DC link 800V.

» With the same power, the lower the current through the cables, the lower the
power loss
> reduce the diameter of the power cables,
» save installation space, reduce the cost of cables,
» reduce the overall mass.
» Smaller, lighter motors due to the reduction of copper windings, and thus the
efficiency of the motor drive is improved.
» When charging, the charging system needs to provide a voltage that matches

the battery. When the battery voltage goes up, the charging power will be
increased and thus shortening the charging time.

Therefore, to satisfy the high battery DC link voltage requirement, 1200V devices need
to be employed.
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Automotive Applications Requirements
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Si IGBT Developments W
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* Si IGBTs:
* High Power Density
* Highly reliable technology
* Cost effective

* Potential Improvements

* Better material/wafer utilisation (wafer thinning and
larger wafer sizes up to 12inch)

* Controllability through structure optimisation
e Reverse Conducting IGBT



The conventional Si Trench IGBT
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* Very narrow mesa structure results to very high injection efficiency and lower switching losses

*  Short circuit capability has to be considered.
A. Nakagawa, Toshiba, ISPSD 2006



The conventional IGBT — narrow mesa technology
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Fig.2 Schematic 3D view of a PNM-IGBT

* Very narrow 30nm mesa opening offering
point injection enhancement

* Contact area remains sufficient for
fabrication purposes.
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The p-ring IGBT
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* p-ring achieved by implantation and diffusion and requires no additional masks
* The p-n regions help to distribute the field more uniformly across the cathode side

breakdown rating at both RT and 125 °C

20% reduction in on-state losses without compromising the switching performance or the

M. Antoniou, F.Udrea et al. IEEE EDL 2017



The IGBT Electric Field Distribution @Va=240V W
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The p-ring IGBT Electric Field Distribution @1.2kV W
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SEM Images of the p-ring IGBT W
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On state characteristics of the IGBT and the p-ring IGBT
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Up to 15% improvement
in the on-state device
performance



Si Superlunction IGBT W
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* The disconnected p column acts as deep collector of holes from the anode end of the drift
region, thus increasing the turn-off speed.

* The SJ IGBT offers minimal drift length ( for 1.2 kV this is just below 100 um) - 20% cut from the
conventional structure.

M. Antoniou et al. IEEE Trans of Electron Devices 2010



The technology curve: 1.2kV SuperJunction IGBT WARWICK

Cathode side Anicde side
=4 id= E
& Temperature=400K Ymid=125um S, 6E+16 ;
—e—SPT+ IGBT Eseetsly 000 A
~©~SPT+ SJ IGBT p-pillar=1015 cm ™ -
50¢ ~0-8PT+ SJ IGBT p—pillar=5e15 cm™? S 4E+16 ‘
~E-SPT+ SJ IGBT p-pillar=7e15 em™ E [ doping conc. increases
40- ~4=SPT+ SJ IGBT p-pillar=1e16 cm™ E 3E+16 4
2 § SPT+SJIGBT N
= 30¢ O 2E+16
& : -‘;; 1e15cm— :
20+ . §
: S
L = 1E+1
L i g =t - SPT+IGBT
: [} i i A - P | ’
14 15 16 1.7 18 19 2 21 2.2 0 20 40 63 fum] 80 100 120
Von (V)

* The device can cut the on-state losses by 20% and the turn-off losses by almost
50% compared to a conventional structure.



Reverse Conducting IGBT
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Properties of SiC compared to Si
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Why Silicon Carbide? W
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+ 9x Higher Ciritical Electric Field can be used to:
* Produce high voltage solutions
« Drive up switching speeds, reducing converter size
« Drive up converter efficiency
« Or a combination of all three.

« 2.5x greater thermal conductivity and 3x wider bandgap
* Improved thermal performance
* High maximum operating temperature (packaging allowing)

- Like Silicon:
* Freestanding SiC substrates can be produced.

* It can be oxidised to form SiO, All figures compared to Si
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Performance of SiC MOSFETs WARWICK

For the 1.2kV rating, the channel resistance contributes 40% of the Rdson

SiC MOSFET have strong positive temperature coefficient
SiC MOSFET have a good body diode

* E,.areverylow and don’t increase much with temperature.

Challenges
* Low channel mobility
* No suitable HT package materials
* Gate Oxide reliability issues
* Short circuit Performance



Silicon Carbide MOSFET W

* Commercial planar SiC Power MOSFET WARWICK
Source ~
G
Li]p plLi Many planar SiC MOSFETs are available today,

Such as the STMicroelectronics structure.
* The channel is horizontal and quite resistive
* Body diode operation

iC n-drift |
SiC n- drift layer e JFET effect

SiC n* substrate

Drain
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Silicon Carbide MOSFET WARWICK
Infineon CoolSiC Trench MOSFET ST G?“

e The channel is vertical with better mobility values.

* The trench MOSFET removes JFET region, however one
side conduction channel along the trench wall.

* Deep P-regions on every trench to lower the electric field
strength across the gate oxide.

SiC n- drift layer

SiC n* substrate

s

Drain
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Silicon Carbide MOSFET WARWI|CK

Rohms Double Trench MOSFET

 The trench MOSFET removes JFET

Source Gate

t 1 region, and two side conduction
channels along the trench wall.
- e * Deep p-layers to protect the gate oxide
P U P * Source connected trench every other
) trench to enhance short-circuit
”—‘_f L ruggedness and to protect the gate
SiC - drift layer oxide.
SiC " substrate * On-state resistance improved by 50%

)\ and input capacitance down by 35%.

Drain



Silicon Carbide FIN MOSFET
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* The FinFET effect can overcome the low channel
mobility.

* The structure is limited by the need for
ultranarrow bodies between ~ 150 and 30 nm.

* This effect is more prominent for voltage ratings
below ~ 1 kV where the drift resistance is
relatively low compared to Rch; its impact fades
away above 1.8 kV.

F.Udrea et al. ISPSD 2022



SJ SiC MOSFET
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Fig. 3: Cross-sectional SEM micrograph and
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* SJconcept is applied in the drift
of the SiC MOSFETs

* The RonA at HT is decreased by
the SJ structure due to small drift

s resistance

1.2kV devices demonstrated.
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Fig. 4: [+—Va characteristic for V= 20V at RT
and 175°C.

M. Sometani, AIST, Japan,ISPSD 2022



Semi-SJ SiC structures with angled side wall
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the trench sidewalls and trench bottom

83 8.4

P-pillars are created through implantation into both

Improved Process robustness against breakdown and

performance improvement.

Widens the implantation window by 34%, while
maintaining a VBD and a R , sp comparable to a

vertical full-SJ.

Reduces the peak Iz by 50%
G. Baker et.al IEEE TED 2022



Hybrid-Channel SiC Trench MOSFET W

WARWICK

* The trench IGBT removes JFET region,
and two side conduction channels
along the trench wall.

* Deep p-layers to protect the gate oxide N-dnit N- drift
from high electric fields

* On-state resistance improved by 30%
for the same blocking capability.

1000

0.0 05 1.0
Va(V)

L.Zhang, ECPE 2022



The Power of Silicon Carbide W
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SiC MOSFETs run hotter, switch faster and waste less power than Si IGBTSs.

All of which lead to Smaller, lighter converters

Utilizing SiC SBD
Hybrid module

VENTURI - 2kg uzing
FORMUL A-E TEAM weiah Full SiC Module
* s 4k ‘
= e (5 = 1 9 % *Weight:13kg \:/eightg
Max.200KW S Max. 200KW . 30%

size
(Oct.2016) :
*Weight:9kg
Max. 220KW
0/ Season 4
= 6kg = 43 (0) (Dec.2017)

weight size of inverter

Source: Rohm

ROHM supplies Full SiC Power Modules to Formula E racing team Venturi



Driving down SiC costs W
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SiC costs remain high compared to Si technology

Four key factors will drive down costs in the coming decade:

* Larger area substrates: adopting 8” / 200 mm wafers.

* Incremental device/process improvement: driving die size reduction.

* Incremental yield improvements: reducing substrate defect densities;
improving fabrication methods.



Conclusions

* The automotive industry is shifting towards the 800V
battery DC link Voltage

* Si IGBTS and SiC MOSFETS and the current two competing
technologies to deliver this power.

* IGBTs are continually improving despite the Si material
limitations and absence of body diode

* SiC MOSFET is establishing its self as the device of choice.
However the device reliability issues and cost still limit its
full potential.
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Thank you!



