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First principles: understanding nature
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• The first big result in systems theory
was Newton’s gravitational law in 1686.

• He linked two things which were until 
then considered to be objectively 
separate:

- The fundamental laws of physics; and

- The world of mathematics.
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Differential equations

• In many cases, processes are described by sets of 
differential or difference equations:

Differential: 𝑹𝟎𝒘+ 𝑹𝟏
𝒅
𝒅𝒕
𝒘+⋯+ 𝑹𝑵

𝒅𝑵

𝒅𝒕𝑵
𝒘 = 𝟎 .

Difference: 𝑷𝟎𝒘 𝒌 + 𝑷𝟏 𝒌 + 𝟏 +⋯+ 𝑷𝑵𝒘 𝒌 + 𝑵 = 𝟎 ,
𝒌 = 𝟏, 𝟐, 𝟑, …



State space

• State space systems are sets of first order differential 
equations:

Linear: 𝒅
𝒅𝒕
𝒙 = 𝑨𝒙 + 𝑩𝒖; 𝒙 𝒌 + 𝟏 = 𝑭𝒙 𝒌 + 𝑮𝒖 𝒌 .

Nonlinear: 𝒅
𝒅𝒕
𝒙 = 𝒇 𝒙, 𝒖 ; 𝒙(𝒌 + 𝟏) = 𝒈 𝒙 𝒌 , 𝒖 𝒌 .

Differential Difference



Modeling: stand-alone systems

• Modelling from first principles and model-based 
control is a suitable practice:
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Modeling: stand-alone systems

• Modelling from first principles and model-based 
control is a suitable practice:

Dynamics are fairly predictable and the system order is 
manageable.
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Distributed power systems
• Complex dynamical 

interactions

• Very high system order

• Excessive number of 
variables

• First principles not 
available: e.g. mechanical 
loads
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Distributed power systems

DC-DC Converter 
Output
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𝑉&' 𝑉()*

Power converters are not as modular as we would like 
them to be…

+

−

+
−

𝑉()*

Ideal voltage 
source

Equivalent?
+

−



Distributed power systems
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Output capacitor of DC-DC converter

𝑉()*

Resistive load

+

−
𝑖(𝑑) 𝑖()*

𝐶 𝑅



Distributed power systems
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Output capacitor of DC-DC converter

𝑉()*

Resistive load

+

−
𝑖(𝑑) 𝑖()*

𝐶 𝑅

𝑑
𝑑𝑡
𝑉()* = 𝑖 𝑑 −

𝟏
𝑹
𝑽𝐨𝐮𝐭



Distributed power systems
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Output capacitor of DC-DC converter

𝑉()*

Resistive load

+

−
𝑖(𝑑) 𝑖()*

𝐶 𝑅

𝐶
𝑑
𝑑𝑡
𝑉()* = 𝑖 𝑑 −

𝟏
𝑹
𝑽𝐨𝐮𝐭

Negative feedback: self-stabilising mechanism



Distributed power systems
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Output capacitor of DC-DC converter

𝑉()*

Controlled 
converter as load

+

−

𝑖(𝑑) 𝑖()*
𝐶

Constant 
Input/Output 
Power “P”



Distributed power systems
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Output capacitor of DC-DC converter

𝑉()*

Controlled 
converter as load

+

−

𝑖(𝑑) 𝑖()*
𝐶

Constant 
Input/Output 
Power “P”

𝐶
𝑑
𝑑𝑡 𝑉()* = 𝑖 𝑑 −

𝑷
𝑽𝐨𝐮𝐭

Nonlinear output 
current



Distributed power systems
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Output capacitor of DC-DC converter

𝑉()*

Controlled 
converter as load

+

−

𝑖(𝑑) 𝑖()*
𝐶

Constant 
Input/Output 
Power “P”

𝐶
𝑑
𝑑𝑡
Δ𝑉()* = Δ𝑖 𝑑 +

𝑷
𝑽𝐨𝐮𝐭𝟐 Δ𝑉()*

Small-signal 
analysis



Distributed power systems
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Output capacitor of DC-DC converter

𝑉()*

Controlled 
converter as load

+

−
𝑖(𝑑) 𝑖()*

𝐶

Positive feedback! à Unstable equilibrium



Distributed power systems

• Stand alone models do not predict issues due to dynamic interactions.
• “Resistive load” assumption is not advised.
• Example: Constant power load (CPL).
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Distributed power systems

• In real life, dynamical models of devices interconnected at the input and 
output are unknown!
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New concept: Data-Driven Control
• A model is a mathematical description that provides information about 

the system dynamics.
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New concept: Data-Driven Control
Model-based approaches typically assume that:

• Parameters are about constant. This is far from true in the case of magnetics, 
converter loads, input voltages, etc.
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New concept: Data-Driven Control
Model-based approaches typically assume that:

• Parameters are about constant. This is far from true in the case of magnetics, 
converter loads, input voltages, etc.

• We are able to isolate the observed phenomena. Not true: thermal phenomena, 
EMI.

• The influence of parasitic elements, leakage currents/voltages and other 
unmodelled components is negligible. Not true: stray capacitances, leakage to 
ground paths (common mode currents), electromechanical loads.

• We trust that a controller will compensate all the unknown influences and 
uncertainty. Not true: a controller can only guarantee stability by extending the 
assumptions on parameter deviations and disturbances.
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New concept: Data-Driven Control
Data-driven approaches assume that:

• The system is observable and controllable. (Also assumed by model-
based approaches BTW)

• The data is informative. Data must capture dynamics of the system 
(constant voltages/currents are not useful).
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New concept: Data-Driven Control
• Data-driven control replaces models by data.

• Goal: guaranteeing performance specifications such as stability without 
a model in a deterministic way.
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New concept: Data-Driven Control
• System identification + model-based 

control is a two-step procedure.

• Data driven control is a  model-free 
approach. 

• It does not require, at any point, the 
explicit realization of a model.

• Control synthesis is purely driven by 
matrices constructed from 
experimental data. 
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New concept: Data-Driven Control
• Data-driven control is based on information of the real-life device, not 

on an ideal abstraction. 
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Beautiful abstraction!



New concept: Data-Driven Control
• Data-driven control is based on information of the real-life device, not 

on an ideal abstraction. 
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Real imperfect world!



New concept: Data-Driven Control

“Truth is not what you want 
it to be; it is what it is. 

And you must bend to its 
power or live a lie.”

― Miyamoto Musashi
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Model-based control (discrete-time)
• System of difference equations (plant dynamics):

• Introducing a shift operator: 𝜎 𝑤 𝑘 = 𝑤(𝑘 + 1) we can simply write:

• The shift operator can be taken as an algebraic element:
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𝑃*𝑤(𝑘) + 𝑃+ 𝑤(𝑘 + 1) +⋯+ 𝑃,𝑤(𝑘 + 𝑁) = 0 .

𝑃*𝑤 + 𝑃+𝜎𝑤 +⋯+ 𝑃,𝜎,𝑤 = 0 .

𝑃* + 𝑃+𝜎 +⋯+ 𝑃,𝜎, 𝑤 = 0 .

𝑃 𝜎



Control by interconnection
• Consider a plant modelled as a linear differential system:

𝑃 𝜎
𝐶 𝜎 𝑤 = 0 .

• A controller 𝐶(⋅) is a restriction rule.
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Willems, Jan C., and Jan W. Polderman. Introduction to mathematical systems theory: a behavioral
approach. Vol. 26. Springer Science & Business Media, 1997.



Stabilisation
• The existence of a stabilising controller 𝐶 ⋅ is equivalent to the

existence of a Lyapunov function 𝑄/ ≥ 0 such that

𝜎𝑄/ 𝑤 − 𝑄/ 𝑤 < 0 for	all		𝑤 generated	by
𝑃 0

01

𝐶 0
01

𝑤 = 0 .
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Rapisarda, Paolo, and Chiaki Kojima. "Stabilization, Lyapunov functions, and dissipation." 
Systems & control letters 59, no. 12 (2010): 806-811.



Stabilisation
• The same condition can be expressed as

𝜎𝑄/ 𝑤 − 𝑄/ 𝑤 + 𝑤2 𝑃 𝜎 2 𝐶 𝜎 2 𝑉 𝜎 𝑤 + 𝑤2𝑉 𝜎 2 𝑃 𝜎
𝐶 𝜎 𝑤 < 0 ;

In	words,	a	trajectory	𝑤 that	satisfies	 𝑃 𝜎
𝐶 𝜎 𝑤 = 0 will	zero-out	the	green	

green tail.
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Stabilisation
• Then the condition:

When factorising, the condition can be numerically implemented using linear matrix
inequalities (LMIs):

034×4 JΨ
04×4 04×34

−
04×34 04×4
JΨ 034×4

+ L𝑃2 M𝐶2 L𝑉 + L𝑉2 L𝑃
M𝐶
< 0 .

• Given a matrix %𝑃 The matrices 'Φ , 'Ψ , %𝑉 and +𝐶 can be computed using Yalmip.
• +𝐶 implements the stabilising controller.
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𝜎𝑄! 𝑤 − 𝑄! 𝑤 + 𝑤" 𝑃 𝜎 " 𝐶 𝜎 " 𝑉 𝜎 𝑤 + 𝑤"𝑉 𝜎 " 𝑃 𝜎
𝐶 𝜎 𝑤 < 0 ;



Stabilisation
• The matrix %𝑃 is associated to the plant dynamics and can be obtained by factorising a

matrix of data

%𝑃
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.𝑷

Singular Value 
Decomposition (SVD)



Data-driven control algorithm
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Input-data

Matrix Factorisation J𝑷

Lyapunov condition (LMI)Controller 



Example: Boost converter
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Ruiz-Martinez, O. F., Mayo-Maldonado, J. C., Escobar, G., Valdez-Resendiz, J. E., Maupong, T. 
M., & Rosas-Caro, J. C. (2020). Data-driven stabilizing control of DC–DC converters with unknown 
active loads. Control Engineering Practice, 95, 104266.



Example: Boost converter
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Example: Boost converter
• Model-based design with resistive load
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Example: Boost converter
• Model-based design when swapping to a constant power 

load
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Example: Boost converter
• Measurement data:
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Example: Boost converter
• Data-driven controller activation
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Example: Boost converter
• Data-driven controller performance
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Example: LVDC Network
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Ruiz-Martinez, O. F., Mayo-Maldonado, J. C., Escobar, G., Frias-Araya, B. A., Valdez-Resendiz, J. E., 
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Example: LVDC Network
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• Renewable energy
intermittency

• Load variation

• CPL stabilisation

• Power sharing



Example: Modular DC Microgrid
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Example: Modular DC Microgrid
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Data from new converter



Example: Modular DC Microgrid
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Voltage variations



Example: Modular DC Microgrid
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Load variations



Small phase angle 𝛿 between different locations
on the grid, drives AC power flow.

• High penetration of renewables:

Ø Bidirectional power flow (false fault tripping)

Ø Short distances (smaller X/R ratio)

Ø Low inertia (high inttermitency)

Ø Harmonic distortion (inverter influence)

Ø Congestion (peak-hour/load-demand mismatch)

Ø Faults (open circuit, short circuit, etc.)
Micro PMU: 0.001° Resolution for Phase angles, 
voltages and currents

Distribution AC Systems



• Micro PMU deployment

Phasor Measurement Units

ü Monitoring 
(network
observability)

ü Fault detection
algorithms
(resilience)

ü Hosting capacity 
(planning)

ü Dynamic phasor 
estimation
(harmonics)

ü Control of distributed
generation (microgrid
concept)

ü uPMU algotithm
validation
(laboratory)

ü uPMU placement
algorithms (artificial 
intelligence)

ü uPMU installed on the
real grid.



Phasor Measurement Units



Example: Fault Detection in AC Distribution Network

05/07/2022 © The University of Sheffield

57

The laws of the system change depending on the fault. 



Example: Data-driven control of STATCOM
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Rotor angle during faults



Conclusions
• Data-driven control permits to generate controllers purely from 

measurement data.

• It is advisable for those cases where a full model specification is 
not available.

• Stability can be deterministically guaranteed.

• Smart grid technologies such as Micro Phasor Measurement 
Units permit data driven control implementation in large scale AC 
systems.
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Thank you!


