

Data-Driven Control of Power Converters

Dr. Jonathan C. Mayo-Maldonado Electrical Machines and Drives Group University of Sheffield

First principles: understanding nature

- The first big result in systems theory was Newton's gravitational law in 1686.
- He linked two things which were until then considered to be objectively separate:
 - The fundamental laws of physics; and
 - The world of mathematics.

First principles: understanding nature

Kirchhoff's Laws

• For *n* voltages (loop): $\sum_{i=1}^{n} V_i = 0.$

• For *m* currents (node):
$$\sum_{j=1}^{m} I_j = 0.$$

First principles: understanding nature

Newton's Second Law

•
$$\vec{F} = M \frac{d^2}{dt^2} \vec{q}$$
; where $(\vec{F}, \vec{q}) : \mathbb{R} \to \mathbb{R}^3 \times \mathbb{R}^3$.

Newton painted by William Blake

Differential equations

 In many cases, processes are described by sets of differential or difference equations:

Differential:
$$R_0 w + R_1 \frac{d}{dt} w + \dots + R_N \frac{d^N}{dt^N} w = 0$$
.

Difference: $P_0 w(k) + P_1 (k + 1) + \dots + P_N w(k + N) = 0$, $k = 1, 2, 3, \dots$

State space

• State space systems are sets of first order differential equations:

Differential Difference
Linear:
$$\frac{d}{dt}x = Ax + Bu;$$
 $x(k+1) = Fx(k) + Gu(k).$
Nonlinear: $\frac{d}{dt}x = f(x, u);$ $x(k+1) = g(x(k), u(k)).$

Modeling: stand-alone systems

• Modelling from first principles and model-based control is a suitable practice:

Modeling: stand-alone systems

 Modelling from first principles and model-based control is a suitable practice:

Modeling: stand-alone systems

• Modelling from first principles and model-based control is a suitable practice:

Dynamics are fairly predictable and the system order is manageable.

- Complex dynamical interactions
- Very high system order
- Excessive number of variables
- First principles not available: e.g. mechanical loads

Power converters are not as modular as we would like them to be...

11

Output capacitor of DC-DC converter

Resistive load

Output capacitor of DC-DC converter

Output capacitor of DC-DC converter

Output capacitor of DC-DC converter

Constant Input/Output Power *"P"*

Output capacitor of DC-DC converter

Output capacitor of DC-DC converter

Output capacitor of DC-DC converter

Positive feedback! → Unstable equilibrium

- Stand alone models do not predict issues due to dynamic interactions.
- "Resistive load" assumption is not advised.
- Example: Constant power load (CPL).

 In real life, dynamical models of devices interconnected at the input and output are unknown!

• A model is a mathematical description that provides <u>information</u> about the system dynamics.

- A model is a mathematical description that provides <u>information</u> about the system dynamics.
- **Data-driven control** substitutes the requirement of a model by measurement data:

22

- A model is a mathematical description that provides <u>information</u> about the system dynamics.
- **Data-driven control** substitutes the requirement of a model by measurement data:

🥘 rands	- Notepad									
File Edit	Format	View Help	p							
63935	68696	3192	63335	8265	69027	67618	61570	82907	13175	
99822	80005	55599	4978	8890	66457	51728	94011	13687	91057	
6078	93482	8563	69609	87187	61694	83817	85699	44048	85593	
37735	60378	71540	69138	34711	47383	93128	77257	62507	82748	
49937	95121	1891	6937	68744	15528	50866	10757	47697	90935	
52139	48940	68572	5504	91292	61442	40316	39191	59841	63643	
43650	50427	59258	3287	87004	719	3295	65168	85387	95986	
64016	19126	43955	29563	1252	79639	14052	68259	73054	77689	
20557	26705	4034	4351	90716	54411	49057	97885	98215	31832	
5649	78402	94646	16020	68414	36254	59150	98010	44016	15062	
95349	88506	17933	14825	47528	70505	69870	26984	70827	86820	
90763	61885	7376	57781	87721	48275	56519	26358	11118	76622	
2940	5297	87894	23632	76909	88677	41759	48968	80156	89659	
73974	1443	58338	51315	85625	85612	55131	76660	15207	66000	
33310	28758	66588	99444	35080	26647	46830	69022	91689	50915	
27075	26892	65084	91615	98134	95358	59093	95782	80958	72268	
70035	51205	90186	88940	68042	12902	50032	81758	69245	19596	
83589	68884	25482	58338	92739	97745	6140	76601	82666	70108	
31654	6461	65785	31903	46773	89287	27359	79978	78804	89956	
46686	66550	65869	89436	21127	56359	37347	26710	37268	26805	
25035	93588	64472	38140	86341	66574	77206	9472	17573	58568	
OFACE	2000	1/025	00310	8013	52010	35001	08636	07055	50168	
								Ln 1, Co	11	100%

$$rac{dy}{dx} = f(x)$$
 $rac{dy}{dx} = f(x,y)$

$$x_1rac{\partial y}{\partial x_1}+x_2rac{\partial y}{\partial x_2}=y$$

Model-based approaches typically assume that:

• Parameters are about constant. This is far from true in the case of magnetics, converter loads, input voltages, etc.

24

Model-based approaches typically assume that:

- Parameters are about constant. This is far from true in the case of magnetics, converter loads, input voltages, etc.
- We are able to isolate the observed phenomena. Not true: thermal phenomena, EMI.

Model-based approaches typically assume that:

- Parameters are about constant. This is far from true in the case of magnetics, converter loads, input voltages, etc.
- We are able to isolate the observed phenomena. Not true: thermal phenomena, EMI.
- The influence of parasitic elements, leakage currents/voltages and other unmodelled components is negligible. Not true: stray capacitances, leakage to ground paths (common mode currents), electromechanical loads.

Model-based approaches typically assume that:

- Parameters are about constant. This is far from true in the case of magnetics, converter loads, input voltages, etc.
- We are able to isolate the observed phenomena. Not true: thermal phenomena, EMI.
- The influence of parasitic elements, leakage currents/voltages and other unmodelled components is negligible. Not true: stray capacitances, leakage to ground paths (common mode currents), electromechanical loads.
- We trust that a controller will compensate all the unknown influences and uncertainty. Not true: a controller can only guarantee stability by extending the assumptions on parameter deviations and disturbances.

Data-driven approaches assume that:

 The system is observable and controllable. (Also assumed by modelbased approaches BTW)

• The data is informative. Data must capture dynamics of the system (constant voltages/currents are not useful).

• Data-driven control replaces models by data.

 Goal: guaranteeing performance specifications such as stability without a model in a <u>deterministic</u> way.

Replacing models by data with guaranteed stability.

- System identification + model-based control is a two-step procedure.
- Data driven control is a model-free approach.
- It does not require, at any point, the explicit realization of a model.
- Control synthesis is purely driven by matrices constructed from experimental data.

Replacing models by data with guaranteed stability.

• Data-driven control is based on information of the real-life device, not on an ideal abstraction.

Beautiful abstraction!

$$egin{aligned} &rac{dy}{dx} = f(x)\ &rac{dy}{dx} = f(x,y)\ &x_1rac{\partial y}{\partial x_1} + x_2rac{\partial y}{\partial x_2} = y \end{aligned}$$

• Data-driven control is based on information of the real-life device, not on an ideal abstraction.

Real imperfect world!

rands	- Notepad									
File Edit	Format	View Help	D							
63935	68696	3192	63335	8265	69027	67618	61570	82907	13175	
99822	80005	55599	4978	8890	66457	51728	94011	13687	91057	
6078	93482	8563	69609	87187	61694	83817	85699	44048	85593	
37735	60378	71540	69138	34711	47383	93128	77257	62507	82748	
49937	95121	1891	6937	68744	15528	50866	10757	47697	90935	
52139	48940	68572	5504	91292	61442	40316	39191	59841	63643	
43650	50427	59258	3287	87004	719	3295	65168	85387	95986	
64016	19126	43955	29563	1252	79639	14052	68259	73054	77689	
20557	26705	4034	4351	90716	54411	49057	97885	98215	31832	
5649	78402	94646	16020	68414	36254	59150	98010	44016	15062	
95349	88506	17933	14825	47528	70505	69870	26984	70827	86820	
90763	61885	7376	57781	87721	48275	56519	26358	11118	76622	
2940	5297	87894	23632	76909	88677	41759	48968	80156	89659	
73974	1443	58338	51315	85625	85612	55131	76660	15207	66000	
33310	28758	66588	99444	35080	26647	46830	69022	91689	50915	
27075	26892	65084	91615	98134	95358	59093	95782	80958	72268	
70035	51205	90186	88940	68042	12902	50032	81758	69245	19596	
83589	68884	25482	58338	92739	97745	6140	76601	82666	70108	
31654	6461	65785	31903	46773	89287	27359	79978	78804	89956	
46686	66550	65869	89436	21127	56359	37347	26710	37268	26805	
25035	93588	64472	38140	86341	66574	77206	9472	17573	58568	
05066	2000	1/025	00210	8013	52010	35001	08636	07055	50168	
								Ln 1, Co	11	100

"Truth is not what you want it to be; it is what it is. And you must bend to its power or live a lie."

- Miyamoto Musashi

Model-based control (discrete-time)

System of difference equations (plant dynamics):

 $P_0w(k) + P_1w(k+1) + \dots + P_Nw(k+N) = 0.$

• Introducing a shift operator: $\sigma w(k) = w(k + 1)$ we can simply write:

$$P_0w + P_1\sigma w + \dots + P_N\sigma^N w = 0.$$

• The shift operator can be taken as an algebraic element:

$$\underbrace{(P_0 + P_1\sigma + \dots + P_N\sigma^N)}_{P(\sigma)} w = 0.$$

Control by interconnection

• Consider a plant modelled as a linear differential system:

$$\begin{bmatrix} P(\sigma) \\ C(\sigma) \end{bmatrix} w = 0.$$

• A controller $C(\cdot)$ is a restriction rule.

Willems, Jan C., and Jan W. Polderman. Introduction to mathematical systems theory: a behavioral approach. Vol. 26. Springer Science & Business Media, 1997.

• The existence of a stabilising controller $C(\cdot)$ is equivalent to the existence of a Lyapunov function $Q_{\Psi} \ge 0$ such that

$$\sigma Q_{\Psi}(w) - Q_{\Psi}(w) < 0 \text{ for all } w \text{ generated by} \begin{bmatrix} P\left(\frac{d}{dt}\right) \\ C\left(\frac{d}{dt}\right) \end{bmatrix} w = 0.$$

Rapisarda, Paolo, and Chiaki Kojima. "Stabilization, Lyapunov functions, and dissipation." Systems & control letters 59, no. 12 (2010): 806-811.

36

• The same condition can be expressed as

 $\sigma Q_{\Psi}(w) - Q_{\Psi}(w) + w^{\top} [P(\sigma)^{\top} \quad C(\sigma)^{\top}] V(\sigma) w + w^{\top} V(\sigma)^{\top} \begin{bmatrix} P(\sigma) \\ C(\sigma) \end{bmatrix} w < 0;$

In words, a trajectory *w* that satisfies $\begin{bmatrix} P(\sigma) \\ C(\sigma) \end{bmatrix} w = 0$ will zero-out the green green tail.

Rapisarda, Paolo, and Chiaki Kojima. "Stabilization, Lyapunov functions, and dissipation." Systems & control letters 59, no. 12 (2010): 806-811.

OP 100 NIVERSITY

• Then the condition:

$$\sigma Q_{\Psi}(w) - Q_{\Psi}(w) + w^{\mathsf{T}} [P(\sigma)^{\mathsf{T}} \quad C(\sigma)^{\mathsf{T}}] V(\sigma) w + w^{\mathsf{T}} V(\sigma)^{\mathsf{T}} \begin{bmatrix} P(\sigma) \\ C(\sigma) \end{bmatrix} w < 0;$$

When factorising, the condition can be numerically implemented using linear matrix inequalities (LMIs):

$$\begin{bmatrix} 0_{Nq \times q} & \widetilde{\Psi} \\ 0_{q \times q} & 0_{q \times Nq} \end{bmatrix} - \begin{bmatrix} 0_{q \times Nq} & 0_{q \times q} \\ \widetilde{\Psi} & 0_{Nq \times q} \end{bmatrix} + \begin{bmatrix} \widetilde{P}^\top & \widetilde{C}^\top \end{bmatrix} \widetilde{V} + \widetilde{V}^\top \begin{bmatrix} \widetilde{P} \\ \widetilde{C} \end{bmatrix} < \mathbf{0} \, .$$

- Given a matrix \tilde{P} The matrices $\tilde{\Phi}$, $\tilde{\Psi}$, \tilde{V} and \tilde{C} can be computed using Yalmip.
- \tilde{C} implements the stabilising controller.

38

The matrix *P* is associated to the plant dynamics and can be obtained by factorising a matrix of data

🥘 rands	- Notepad									
File Edit	Format	View Help	D							
63935	68696	3192	63335	8265	69027	67618	61570	82907	13175	
99822	80005	55599	4978	8890	66457	51728	94011	13687	91057	
6078	93482	8563	69609	87187	61694	83817	85699	44048	85593	
37735	60378	71540	69138	34711	47383	93128	77257	62507	82748	
49937	95121	1891	6937	68744	15528	50866	10757	47697	90935	
52139	48940	68572	5504	91292	61442	40316	39191	59841	63643	
43650	50427	59258	3287	87004	719	3295	65168	85387	95986	
64016	19126	43955	29563	1252	79639	14052	68259	73054	77689	
20557	26705	4034	4351	90716	54411	49057	97885	98215	31832	
5649	78402	94646	16020	68414	36254	59150	98010	44016	15062	
95349	88506	17933	14825	47528	70505	69870	26984	70827	86820	
90763	61885	7376	57781	87721	48275	56519	26358	11118	76622	
2940	5297	87894	23632	76909	88677	41759	48968	80156	89659	
73974	1443	58338	51315	85625	85612	55131	76660	15207	66000	
33310	28758	66588	99444	35080	26647	46830	69022	91689	50915	
27075	26892	65084	91615	98134	95358	59093	95782	80958	72268	
70035	51205	90186	88940	68042	12902	50032	81758	69245	19596	
83589	68884	25482	58338	92739	97745	6140	76601	82666	70108	
31654	6461	65785	31903	46773	89287	27359	79978	78804	89956	
46686	66550	65869	89436	21127	56359	37347	26710	37268	26805	
25035	93588	64472	38140	86341	66574	77206	9472	17573	58568	
05066	2000	1/075	00310	8015	50010	25001	08636	07055	50168	
								Ln 1, Co	11	100%

Data-driven control algorithm

Input-data

	rands -	Notepad
_		

Fills Francisk Minus High

File Luit	ronnat	view rieip	,							
63935	68696	3192	63335	8265	69027	67618	61570	82907	13175	
99822	80005	55599	4978	8890	66457	51728	94011	13687	91057	
6078	93482	8563	69609	87187	61694	83817	85699	44048	85593	
37735	60378	71540	69138	34711	47383	93128	77257	62507	82748	
49937	95121	1891	6937	68744	15528	50866	10757	47697	90935	
52139	48940	68572	5504	91292	61442	40316	39191	59841	63643	
43650	50427	59258	3287	87004	719	3295	65168	85387	95986	
64016	19126	43955	29563	1252	79639	14052	68259	73054	77689	
20557	26705	4034	4351	90716	54411	49057	97885	98215	31832	
5649	78402	94646	16020	68414	36254	59150	98010	44016	15062	
95349	88506	17933	14825	47528	70505	69870	26984	70827	86820	
90763	61885	7376	57781	87721	48275	56519	26358	11118	76622	
2940	5297	87894	23632	76909	88677	41759	48968	80156	89659	
73974	1443	58338	51315	85625	85612	55131	76660	15207	66000	
33310	28758	66588	99444	35080	26647	46830	69022	91689	50915	
27075	26892	65084	91615	98134	95358	59093	95782	80958	72268	
70035	51205	90186	88940	68042	12902	50032	81758	69245	19596	
83589	68884	25482	58338	92739	97745	6140	76601	82666	70108	
31654	6461	65785	31903	46773	89287	27359	79978	78804	89956	
46686	66550	65869	89436	21127	56359	37347	26710	37268	26805	
25035	93588	64472	38140	86341	66574	77206	9472	17573	58568	
05066	2000	1/025	00310	2013	50010	35001	08636	07055	50169	
								Ln 1, Co	1	

100%

Lyapunov condition (LMI)

Ruiz-Martinez, O. F., Mayo-Maldonado, J. C., Escobar, G., Valdez-Resendiz, J. E., Maupong, T. M., & Rosas-Caro, J. C. (2020). Data-driven stabilizing control of DC–DC converters with unknown active loads. Control Engineering Practice, 95, 104266.

IOP 100

Model-based design with resistive load

 Model-based design when swapping to a constant power load

44

Measurement data:

🔳 rands ·	- Notepad									
File Edit	Format	View Help								
63935	68696	3192	63335	8265	69027	67618	61570	82907	13175	
99822	80005	55599	4978	8890	66457	51728	94011	13687	91057	
6078	93482	8563	69609	87187	61694	83817	85699	44048	85593	
37735	60378	71540	69138	34711	47383	93128	77257	62507	82748	
49937	95121	1891	6937	68744	15528	50866	10757	47697	90935	
52139	48940	68572	5504	91292	61442	40316	39191	59841	63643	
43650	50427	59258	3287	87004	719	3295	65168	85387	95986	
54016	19126	43955	29563	1252	79639	14052	68259	73054	77689	
20557	26705	4034	4351	90716	54411	49057	97885	98215	31832	
5649	78402	94646	16020	68414	36254	59150	98010	44016	15062	
5349	88506	17933	14825	47528	70505	69870	26984	70827	86820	
0763	61885	7376	57781	87721	48275	56519	26358	11118	76622	
940	5297	87894	23632	76909	88677	41759	48968	80156	89659	
73974	1443	58338	51315	85625	85612	55131	76660	15207	66000	
33310	28758	66588	99444	35080	26647	46830	69022	91689	50915	
27075	26892	65084	91615	98134	95358	59093	95782	80958	72268	
70035	51205	90186	88940	68042	12902	50032	81758	69245	19596	
83589	68884	25482	58338	92739	97745	6140	76601	82666	70108	
31654	6461	65785	31903	46773	89287	27359	79978	78804	89956	
16686	66550	65869	89436	21127	56359	37347	26710	37268	26805	
25035	93588	64472	38140	86341	66574	77206	9472	17573	58568	
< <	8000	1/075	00310	8013	52010	35001	08636	07055	50168	
								In 1 Col	1	10

Data-driven controller activation

Data-driven controller performance

Example: LVDC Network

Ruiz-Martinez, O. F., Mayo-Maldonado, J. C., Escobar, G., Frias-Araya, B. A., Valdez-Resendiz, J. E., Rosas-Caro, J. C., & Rapisarda, P. (2019). Data-driven control of LVDC network converters: Active load stabilization. IEEE Transactions on Smart Grid, 11(3), 2182-2194.

05/07/2022 © The University of Sheffield

A WORLD

Example: LVDC Network

- Renewable energy
 intermittency
- Load variation
- CPL stabilisation
- Power sharing

J. Loranca-Coutiño, J. C. Mayo-Maldonado, G. Escobar, T. M. Maupong, J. E. Valdez-Resendiz and J. C. Rosas-Caro, "Data-Driven Passivity-Based Control Design for Modular DC Microgrids," in IEEE Transactions on Industrial Electronics, vol. 69, no. 3, pp. 2545-2556, March 2022.

Data from new converter

05/07/2022 © The University of Sheffield

WORLD

05/07/2022 © The University of Sheffield

WORLD

Distribution AC Systems

• High penetration of renewables:

- > Bidirectional power flow (false fault tripping)
- Short distances (smaller X/R ratio)
- Low inertia (high intermitency)
- > Harmonic distortion (inverter influence)
- > Congestion (peak-hour/load-demand mismatch)
- > Faults (open circuit, short circuit, etc.)

Small phase angle δ between different locations on the grid, drives AC power flow.

Micro PMU: 0.001° Resolution for Phase angles, voltages and currents

Phasor Measurement Units

• Micro PMU deployment

- ✓ Monitoring (network observability)
- ✓ Fault detection algorithms (resilience)
- Hosting capacity (planning)
- ✓ Dynamic phasor estimation (harmonics)

- ✓ Control of distributed generation (microgrid concept)
- ✓ uPMU algotithm validation (laboratory)
- ✓ uPMU placement algorithms (artificial intelligence)
- ✓ uPMU installed on the real grid.

Phasor Measurement Units

Example: Fault Detection in AC Distribution Network

The laws of the system change depending on the fault.

57

Example: Data-driven control of STATCOM

Conclusions

- Data-driven control permits to generate controllers purely from measurement data.
- It is advisable for those cases where a full model specification is not available.
- Stability can be deterministically guaranteed.
- Smart grid technologies such as Micro Phasor Measurement Units permit data driven control implementation in large scale AC systems.

59

Thank you!

