Research Trends in Modular Multilevel Cascade Converters

Hirofumi (Hiro) Akagi Tokyo Institute of Technology 13th July 2021

Terminology Issue of Cascade Multilevel Converters and Modular Multilevel Converters

H. Akagi, "Multilevel Converters: Fundamental Circuits and Systems," *The Proceedings of the IEEE*, vol. 105, no. 11, pp. 2048-2065, Nov. 2017. (invited paper)

Terminology Issue of Cascade Multilevel Converters

Single-Star Bridge Cells (SSBC)

Three Different Technical Terms

"Cascade Multilevel Converter" F. Z. Peng and J. S. Lai, *IEEE Trans. Ind. Appli.*,1997

"Cascaded H-Bridge Converter" Y. Fukuta and G. Venkataramanan, *IEEE IAS Annual Meeting*, 2002

"Chain-Link Converter" C. Oates, *EPE*, 2009

"Modular" structure and "Multilevel" voltage waveforms

One of Modular Multilevel Converters

Terminology Issue of Modular Multilevel Converters

Technical Term

"Modular Multilevel Converter" R. Marquardt and A. Lesnicar, *EPE* 2003

"Cascade" structure and "Multilevel" voltage waveforms

One of Cascade Multilevel Converters

Double-Star Chopper Cells (DSCC)

The two original names may cause confusion or misunderstanding.

Classification and Terminology of the MMCC Family

Family name: MMCC (Modular Multilevel Cascade Converter)

5

Medium-Voltage SSBC-Based SATCOM with Phase-Shifted-Carrier PWM

SSBC: Single-Star Bridge Cells

H. Akagi, S. Inoue, and T. Yoshii, "Control and performance of a transformerless cascade PWM STATCOM with star configuration," *IEEE Trans. Ind. Appli.*, vol. 43, no. 4, pp. 1041-1049, Jul./Aug., 2007.

Staircase Modulation and Phase-Shifted-Carrier PWM

Single-Star Bridge Cells (SSBC)

- F. Z. Peng and J. S. Lai, *IEEE Trans. Ind. Appli.*, 1997
 - The use of GTO thyristors: Staircase modulation (SCM)
 - Capacitor-voltage balancing: Swapping control
- H. Akagi, S. Inoue, and T. Yoshii, *IEEE Trans. Ind. Appli.*, 2007
 - The use of IGBTs:
 - Phase-shifted-carrier PWM
 - Capacitor-voltage balancing: Hierarchy control

200-V 10-kVA 50-Hz STATCOM for Experiment

Power Electronics Lab.

What Brought both Phase-Shifted-Carrier PWM and Hierarchy Control to the STATCOM?

SSBC: Single-Star Bridge Cells Easy expansion to any bridge-cell count per cluster for any SSBC-based STATCOM.

H. Akagi, "What led to success in academic research on the family of modular multilevel cascade converters," ECCE-Asia/IPEC-Niigata, pp. 2353-2359, 2018.

H. Akagi, "A review of developments in the family of modular multilevel cascade converters," IEEJ (IEE of Japan) Transactions, vol. 13, pp. 1222-1235, 2018. (invited paper)

Control Block Diagram for the STATCOM

Top Layer in Hierarchy Control

Overall Voltage Control and Reactive-Power control

Middle Layer in Hierarchy Control

The single capacitor voltage in each bridge cell: Arithmetic average of all the capacitor voltages in each cluster

Effect of Inter-Cluster-Balancing Control

Power Electronics Lab.

Bottom Layer in Hierarchy Control

Intra-Cluster-Balancing Control

Voltage balancing inside each cluster, independent of the three clusters

Effect of Intra-Cluster-Balancing Control

DSCC-Based BTB(Back-To-Back) System with Phase-Shifted-Carrier PWM

DSCC: Double-Star Chopper Cells Key Concept: "Circulating Current"

K. Sekiguchi, P. Khamphkdi, M. Hagiwara, and H. Akagi, "A grid-level high-power BTB (back-toback) system using modular multilevel cascade converters without dc-link capacitor," *IEEE Trans. Ind. Appli.,vol. 50, no. 4, pp. 2648-2659,* Jul./Aug. 2014

Downscaled Model Rated at 400 Vdc and 10 kW

Neither DC-Link Capacitor nor DC Voltage Sensor

Carrier Frequency f_C : 450 Hz

Phase-Shifted-Carrier PWM in Eight Chopper Cells per Arm

Steady State at 8.7 kW and 5.0 kvar (Capacitive)

Transition State: $p^* = \pm 10$ kW and $q^* = 0$

What Brought the Concept of Circulating Currents to the DSCC Converters with Phase-Shifted-Carrier PWM?

DSBC: Double-Star Chopper Cells Similarity and Analogy between a Line-Commutated Cycloconverter with Circulating-Current Mode and a DSCC Converter

H. Akagi, "What led to success in academic research on the family of modular multilevel cascade converters," ECCE-Asia/IPEC-Niigata, pp. 2353-2359, 2018.

H. Akagi, "A review of developments in the family of modular multilevel cascade converters," IEEJ (IEE of Japan) Transactions, vol. 13, pp. 12222-1235, 2018. (invited review paper)

Two Independent Loop Currents $\dot{i}_{\rm P}$ and $\dot{i}_{\rm N}$

DSCC inverter per leg Applying KCL at point M $i_L = i_P - i_N$ Two independent currents among i_L , i_P , and i_N

Selecting a pair of i_P and i_N failed in capacitor-voltage balancing.

Two Independent Loop Currents, i_Z and i_L

Selecting a pair of i_Z and i_L succeeded in capacitorvoltage balancing.

What triggered off this selection?

A Cycloconverter with Circulating-Current Mode

One pair of i_P and i_{N_i} and the other of i_Z and i_L

Reversible Linear Transformation

The relation between a pair of i_P and i_N and that of i_Z and i_L

$$\begin{bmatrix} i_{\rm L} \\ i_{\rm Z} \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0.5 & 0.5 \end{bmatrix} \begin{bmatrix} i_{\rm P} \\ i_{\rm N} \end{bmatrix}$$

The determinant of the two-dimensional matrix is unity.

$$\begin{bmatrix} i_{\rm P} \\ i_{\rm N} \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0.5 & 0.5 \end{bmatrix}^{-1} \begin{bmatrix} i_{\rm L} \\ i_{\rm Z} \end{bmatrix}$$
$$= \begin{bmatrix} 0.5 & 1 \\ -0.5 & 1 \end{bmatrix} \begin{bmatrix} i_{\rm L} \\ i_{\rm Z} \end{bmatrix}$$

Tomorrow's AC-Link Multi-Drive System

Y. Okazaki and H. Akagi,

"Feasibility Study of a Modular Multilevel DSBC Conversion System Equipped With Medium-Frequency Isolation Transformers for Driving Multiple Medium-Voltage Motors," IEEJ Transactions on Industry Applications, vol. 136, no. 12, pp. 1005-1014, Dec. 2016. (in Japanese)

How to Reduce the Capacitor Size in MMC or DSCC

Making the ac frequency f_{ac} higher is accompanied by reducing the capacitor size.

Tomorrow's AC-Link Multi-Drive System

Line-side DSBC converter

Each motor is galvanically isolated from the others as well as the ac mains.

A Basic System Configuration for Simulation

Simulation Conditions

Switching devices: 1.7-kV IGBTs Each triangular carrier frequency: 1 kHz Equivalent carrier frequency: 48 kHz

Simulated Waveforms of the three DSBC Converters

"Decoupled control" was confirmed among the three DSBC converters.

Simulated Waveforms of DC Capacitor Voltages

Unit capacitance constant: 20 ms

The capacitor size can be reduce practically to 1/10 or more, compared to that of an ac-link frequency of 50 Hz.

Conclusion

What has led to success in research on the modular multilevel cascade converters?

- 1. Phase-Shifted-Carrier PWM: Actual switching frequency equal to carrier frequency.
- 2. Hierarchy Control:

Easy expansion to any bridge-cell or chopper-cell count.

Tomorrow's AC-Link Multi-Drive System: Capable of galvanic isolation and voltage matching

33