High Speed Sensing and Monitoring around GaN devices

bernard.stark@bristol.ac.uk

m.hedayati@bristol.ac.uk

Bristol Electrical Energy Management Research Group bristol.ac.uk/engineering/research/em/

iMAPS-UK Research Showcase: Recent Advances in Reliability and Gate driving of Wide Bandgap Power Electronics 11-12 Jan 2021

Outline

- How do you figure out if it's worth moving from Silicon to GaN?
- New product or modify existing one?
- How get the best from GaN in your power circuit
- Do you need new measurement equipment?
 Maybe. Contact measurement gets harder.
- Does anything get easier?
 Yes! Field-based measurement (e.g. current, voltage, temperature)
- Research into better gate drivers for GaN

How do you figure out if it's worth moving from Silicon to GaN?

New product or modify existing one?

- ⇒ Core needs adapting, incl. gate driving
- ⇒ Probably also fundamental behaviour such as switching frequency

- Crucial: Layout, packages, pinouts, com. mode transient immunity CMTI.
- For same voltage overshoot, loop inductances need to reduce $10\times$.
- For same current overshoot, parasitic capacitances need to drop $10\times$.
- Resonances are now 100s of MHz.

Do you need new measurement equipment?

Using slower **SiC** as an example:

Current measurement

- With GaN, the slopes and ringing frequencies are 10× higher
- 1 GHz single-ended probes for the low side, optically isolated measurement for the high side, due to common mode voltages
- Consider switching from contact sensing to field sensing.

Measurement of V and I

Some options shown here ———
Cut down parasitic coupling

Don't stretch power loop to make space for current probes

Optical isolation: 120 dB rejection of common mode

Infinity current sensor

10×3mm

Around 200 mV per A/ns 500+ MHz (work in progress) 0.2 nH insertion inductance

More info at

Infinity Sensor: Temperature Sensing in GaN Power Devices using Peak di/dt, 2018 IEEE Energy Conversion Congress and Exposition (ECCE)

For samples, contact bernard.stark@bristol.ac.uk

Junction temperature monitoring using di/dt sensor

Turn-on di/dt measured at different junction temperatures

Over-temperature protection, experimental results

Demo

How fast does the protection circuit act?

Demonstration of safe shutdown on highly overloaded GaN bridge-leg converter, operating at 10 A, 2 kW, and 500 kHz.

More info in **Over-Temperature Protection Circuit for GaN Devices Using a di/dt Sensor**, in IEEE Transactions on Power Electronics, 2021.

Voltage and temperature sensing using E-field (dV/dt)

More info in

Fast temperature sensing for GaN power devices using E-field probes, 2020 IEEE Workshop on Control and Modelling for Power Electronics (COMPEL)

Ongoing research in gate driving: Gate driver output options

Arbitrary waveform driver

Approximate capability:

Steps every time light travels 3cm!

⇒ Useful tool for developing gate drivers.

More info in

Gen 3: Full custom design of an arbitrary waveform gate driver with 10 GHz waypoint rates for GaN FETs, in IEEE Transactions on Power Electronics, 2021

Gen 2: A 6.7-GHz Active Gate Driver for GaN FETs to Combat Overshoot, Ringing, and EMI, IEEE Trans. Power Electronics, 2018.

Demonstrated on hardswitched GaN at 100 V/ns

18

High Speed Sensing and Monitoring around GaN devices

bernard.stark@bristol.ac.uk

m.hedayati@bristol.ac.uk

Bristol Electrical Energy Management Research Group bristol.ac.uk/engineering/research/em/

iMAPS-UK Research Showcase: Recent Advances in Reliability and Gate driving of Wide Bandgap Power Electronics 11-12 Jan 2021

