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►Aalborg University, Denmark
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Denmark

PBL-Aalborg Model 

(Problem-based 

learning)

Established in 1974

22,000 students 

2,300 faculty 

Aalborg

Copenhagen

H. C. Andersen

Odense

USNEWS 2019 

Engineering 

No. 4 globally

No. 1 in Europe

No. 1 in normalized citation 

impact globally

Source: 

https://www.usnews.com/education/best-

global-universities/engineering
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►Where are We Now?
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►Energy Technology Department at Aalborg University
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40+ Faculty, 120+ PhDs, 30+ RAs & Postdocs, 20+ Technical staff, 80+ visiting 

scholars

60% of manpower on power electronics and its applications



Power Electronics and Components
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►Transition of Energy System 

Source: http://electrical-engineering-portal.com

Source: www.offshorewind.biz

Source: http://media.treehugger.com

from Central to De-central Power Generation

(Source: Danish Energy Agency)

(Source: Danish Energy Agency)

from large synchronous generators to

more power electronic converters

Towards 100% Power 

Electronics Interfaced

Integration to electric grid

Power transmission

Power distribution

Power conversion

Power control 



Renewable Electricity in Denmark
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Proportion of renewable electricity in Denmark (*target value)

Key figures 2016 2017 2027 2035

Wind share of net generation in year 44.2% 50.2% 60%*

Wind share of consumption in year 37.6% 43.4%

RE share of net generation in year 61.6% 71.4% 90%* 100%*

RE share of consumption in year 52.4% 61.9%

2017 RE Electricity Gener. in DK

Wind 

Dominated

70.2%

https://en.energinet.dk/About-our-reports/Reports/Environmental-Report-2018

https://ens.dk/sites/ens.dk/files/Analyser/denmarks_energy_and_climate_outlook_2017.pdf



Energy Production | Distribution | Consumption | Control

Power Electronics in all aspects of Energy

9



100+ Years of Power Electronics

Reliability becomes one of the key application-oriented challenges
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Wide-bandgap Semiconductors: Application ranges

Sources

Yole Developpement, ECPE Workshop 2016

G. Meneghesso, “Parasitic and Reliability issues in GaN-Based Transistors”, CORPE Workshop 2018, 

Aalborg, Denmark
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Wide-bandgap Semiconductors

Physical parameters of common wide-bandgap semiconductors in comparison with Silicon

Sources

Joachim Würfl, “GaN Power Devices (HEMT): Basics, Advantages and Perspectives”, ECPE Workshop 

2013

G. Meneghesso, “Parasitic and Reliability issues in GaN-Based Transistors”, CORPE Workshop 2018, 

Aalborg, Denmark



Typical Capacitors in Power Electronic Applications

Aluminum Electrolytic Capacitor

Sandwich

(Source: 

http://www.jhdeli.com/Templates/Cold_Sandwich.html) 
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Al-Caps Aluminum Electrolytic Capacitors

MPPF-Caps  Metallized Polypropylene Film Capacitors

MLC-Caps Multilayer Ceramic Capacitors

Capacitors might be a bottleneck in modern power electronics



Concept of a Two-terminal Active Capacitor

Active Capacitor

§ Two-terminals only

§ Impedance characteristics equivalent to 

passive capacitors
A B

Active switches

Passive elements

Sampling and conditioning

Micro-controller

Gate drivers

ABi

ABv

Self-power Supply

Feature

 No signal connection to main circuit

 No auxiliary power supply

 Only two-terminal ”A” and ”B” connected to external main circuit

 Retain the same level of convenience as a conventional passive capacitor

 Application independent

 Lowest apparent power processed by the auxiliary circuit

Source: H. Wang, H. Wang and F. Blaabjerg, ¨A two-terminal active capacitor device¨



Proof-of-Concept of a Two-terminal Active Capacitor

An implementation of the two-terminal active capacitor concept

Internal auxiliary power from MOSFET

Source: Haoran Wang and Huai Wang, “A two-terminal active capacitor,” IEEE Transactions on Power Electronics, 2017
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Active capacitor
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High pass filter with cut 

off frequency of 10 Hz

Impedance characteristics of active capacitor



Key waveforms of the system with 110uF active capacitor

Key waveforms of the system with 1100uF passive capacitor

: [100V/ div]DC linkV 

: [100V/ div]ACv

: [10A/ div]ACi

: [20ms/ div]t

Ripple ratio 4.1 %

: [100V/ div]DC linkV 

: [100V/ div]ACv

: [10A/ div]ACi

: [20ms/ div]t

Ripple ratio 4.8 %

Single-phase system with active capacitor

ACv

gL

Active 

Capacitor

A

Resistive 

load

ACi
+ -

DC linkV 

+

-
B

Experimental Results of Active Capacitor

Top side

Bottom sideC1 Self-power supply

Micro-controller

GaN based 

full-bridge

Low voltage DC-link 

capacitor in full-bridge

High frequency 

filter inductor

High frequency 

filter capacitor



Duality of Active Capacitor and Inductor

+

-

ihh

-vlh+vhh

(a) The active capacitor concept. (b) The proposed active inductor concept.

ilh

A

B B

A

-ilh+ihh

vhh

vlh

vAB=vmain+vhh

iAB=ilh+ihh iAB=imain+ihh

vAB=vlh+vhh

vmain+vlh

imain+ilh

Minimum apparent power ≈ Vlh × Ilh

Two-terminal active capacitor Two-terminal active inductor

 it has two terminals only same as a conventional passive components without 

any external feedback signal and power supply, and

 the auxiliary circuit processes the minimum apparent power, which is the 

theoretical minimum limit.

Features:

Source: H. Wang and H. Wang, ¨A two-terminal active inductor device¨



Circuit Diagram of Active Inductor Device

1L

2L

1C

1 ,C refV

-
+

1Cv

+-

1(s)G

(s)HPFG

(s)LPFG

1coni
2coni

1Li

2Li
+

-

1Cv

2LiA

Sampling and conditioning

MCU controller

Gate driver

1Li

B

1Li1Cv
2Li

ABv

2(s)G

fL

Self-

power 

circuit

s

Features:
• Current control based on internal voltage 

and current information of the auxiliary 

circuit

• Same impedance with passive inductor in 

frequency of interest

Source: Haoran Wang and Huai Wang, “A Two-terminal Active Inductor with Minimum Apparent Power for the Auxiliary Circuit,” IEEE Transactions on Power 

Electronics, 2018
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 Power Electronics devices driving the power electronics

 WBG on fast move – Silicon still a player.. – base material critical

 Reliability needs to be more proven for WBG

 New packaging technique developed

 Lower volume, higher power density, more critical

 Radical change in equipment design – x10 in switching frequency

 New skills are needed – eg from antenna domain

 3D/4D/5D/6D design methods are necessary

 Technology will develop fast – lack of models

 Passive components can be a bottle-neck

 Active passive components give flexibility

 Curriculums have to be updated

Power Electronics and Components – Quo Vadis

19



Renewable Energy Systems



Worldwide Installed Renewable Energy Capacity (2000-2017)

1. Hydropower also includes pumped storage and mixed plants;

2. Marine energy covers tide, wave, and ocean energy

(Source: IRENA, “Renewable energy capacity statistics 2018”, http://www.irena.org/publications, March 2018)

State of the Art – Renewable Evolution

21

http://www.irena.org/publications


Global RES Annual Changes
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Global Renewable Energy Annual Changes in Gigawatt (2001-2017)

1. Hydropower also includes pumped storage and mixed plants;

2. Marine energy covers tide, wave, and ocean energy

(Source: IRENA, “Renewable energy capacity statistics 2018”, http://www.irena.org/publications, March 2018)

http://www.irena.org/publications


Share of the Net Total Annual Additions

23

RES and non-RES as a share of the net total annual additions

Chapter 01 in Renewable energy devices and systems with simulations in MATLAB and ANSYS, Editors: F. Blaabjerg 

and D.M. Ionel, CRC Press LLC, 2017

IRENA, REN 21 



§ Higher total capacity (+50% non-hydro renewables).

§ Larger individual size (average 1.8 MW, up to 6-8 MW, even 12 MW).

§ More power electronics involved (up to 100 % rating coverage).

Global installed wind capacity (until 2017): 539 GW, 2017: 52.3 GW

State of the Art Development – Wind Power

24
http://gwec.net/wp-content/uploads/vip/GWEC_PRstats2017_EN-003_FINAL.pdf

1980 1985 1990 1995 2000 2005 2018

50 kW

D 15 m

100 kW

D 20 m

500 kW

D 40 m

600 kW

D 50 m

2 MW

D 80 m

5 MW

D 124 m

10 MW

D 164 m

2019/20 (E)

12 MW

D 220 m

Soft Starter
Rotor 

Resistance

Control

Rotor 

Power 

Control

Generator Power Control

  0% 10% 30% 100%

Function:

Rating 

Coverage:Power

Electronics

Rotational 
Speed 

Fixed Partially 

variable
Variable

Roles in 
Power Grid

Trouble Maker Self Organizer Active Contributor and Stabilizer



DFIG: Doubly-Fed Induction Generator

PMSG: Permanent Magnet Synchronous Generator

SCIG: Squirrel-Cage Induction Generator

WRSG: Wound Rotor Synchronous Generator

Top 5 Wind Turbine Manufacturers & Technologies

25

Manufacturer Concept Rotor Diameter Power Range

Vestas (Denmark)
DFIG

PMSG

90 - 120 m

105 - 162 m

2.0 - 2.2 MW

3.4 – 9.5 MW

Siemens Gamesa (Spain)

SCIG

PMSG 

DFIG

154 – 167 m

120 – 142 m 

114 -145 m

6.0 – 8.0 MW

3.5 – 4.3 MW 

2.1 – 4.5 MW

Goldwind (China) PMSG - 2.0 – 6.0 MW

GE (USA)
DFIG

PMSG

116 – 158 m

150 m

2.0 – 5.0 MW

6.0 MW

Enercon (Germany) WRSG 82 – 138 m 2.0 – 4.2 MW

Top 10 Wind Turbine Manufacturers in the World (2018); https://www.bizvibe.com/blog/top-10-wind-turbine-manufacturers-world/



State of the Art – PV Cell Technologies

26
National Renewable Energy Laboratory, http://www.nrel.gov/pv/assets/images/efficiency_chart.jpg



Top 10 Solar PV Manufacturers to Watch in 2018

Damon Lapping, Top 10 Solar PV Manufacturers to Watch in 2018, https://www.disruptordaily.com/top-10-solar-pv-

manufacturers-watch-2018/27

Manufacturer Global Installation Remarks

Canadian Solar 24 GW High power output

Trina Solar 11 GW Focusing on panel efficiency

First Solar 17 GW Thin film tech

Jinko Solar 18 GW Monocrystalline tech, 23.5% η

JA Solar 23 GW

Mass production about 5 to 10 watts 

above industry average, floating PV 

form supplier

Sun Power Corp 18 GW
Residential, commercial, utility;

Cradle to grave certified

LG Energy - Energy production from both sides

Winaico - Mono-/polycrystalline tech for harsh 

conditions, e.g., salt spray

Hanwha Q Cells - Patented Q.ANTUM tech enhancing 

panel energy yield in low light

Mitsubishi Electric -
No lead solder, re-usable, 

biodegradable materials



State of the Art Development – Photovoltaic Power

§ More significant total capacity (29 % non-hydro renewables).

§ Fastest growth rate (42 % between 2010-2015).

Global installed solar PV capacity (until 2017): 405 GW, 2017: 102 GW

SolarPower Europe, http://www.solarpowereurope.org/home/ 

REN21, Renewables 2016, http://www.ren21.net/wp-content/uploads/2016/10/REN21_GSR2016_FullReport_en_11.pdf

https://en.wikipedia.org/wiki/Growth_of_photovoltaics28



Top 5 PV Inverter Supplier

Global Market Share (%) of Top Five PV Inverter Suppliers by 

Shipments (MWac) in 2017

Figure Adapted according to the GTM Research report

PV Europe, https://www.pveurope.eu/News/Solar-Generator/Solar-inverter-ranking-Huawei-Sungrow-and-SMA-leading
29



Grid Codes for Wind Turbines

Conventional power plants provide active and reactive power, inertia 

response, synchronizing power, oscillation damping, short-circuit 

capability and voltage backup during faults.

Wind turbine technology differs from conventional power plants 

regarding the converter-based grid interface and asynchronous 

operation

Grid code requirements today

► Active power control

► Reactive power control 

► Frequency control 

► Steady-state operating range 

► Fault ride-through capability

Wind turbines are active power plants.

30



Grid-connected PV systems ranging from several kWs to even a few 

MWs are being developed very fast and will soon take a major part of 

electricity generation in some areas. PV systems have to comply with 

much tougher requirements than ever before.

Requirements today

► Maximize active power capture (MPPT)

► Power quality issue

► Anti Islanding

► Ancillary services for grid stability

► Communications

► High efficiency

Large-scale system 

► Frequency control 

► Virtual Inertia

► Fault ride-through capability

► …

Grid Codes for Photovoltaic Systems

31



PV Inverter System Configurations

32

Module Converters | String Inverter | Multi-String Inverters | Central Inverters



Grid-Connection Configurations

33

LF

DC

AC

DC

AC

DC

DC AC

HF

PV

PV

DC

Cp

Cp

DC

DC AC

PV

DC

Cp

optional 

optional 

C

C

C

Transformer-based grid-connection

Transformerless grid-connection  Higher efficiency, Smaller volume



1500-V DC PV System

34

 Decreased requirement of the balance of system (e.g., combiner boxes, DC 

wiring, and converters) and Less installation efforts

 Contributes to reduced overall system cost and increased efficiency

 More energy production and lower cost of energy

 Electric safety and potential induced degradation

 Converter redesign – higher rating power devices

Becoming the mainstream solution!



1500-V DC PV System

35

Becoming the mainstream solution!

Sungrow five-level topology

https://www.pv-tech.org/products/abb-launches-high-power-1500-vdc-central-inverter-for-harsh-conditions

https://www.pv-tech.org/products/sungrows-1500vdc-sg125hv-string-inverter-enables-5mw-pv-power-block-designs

ABB MW Solution



Wind turbine concept and configurations 

36

► Variable pitch – variable speed

► Doubly Fed Induction Generator

► Gear box and slip rings

► ±30% slip variation around 

synchronous speed 

► Power converter (back to back/ 

direct AC/AC) in rotor circuit

 State-of-the-art solutions

► Variable pitch – variable speed

► Generator

Synchronous generator 

Permanent magnet generator

Squirrel-cage induction generator

► With/without gearbox 

► Power converter

Diode rectifier + boost DC/DC + inverter

Back-to-back converter

Direct AC/AC (e.g. matrix, 

cycloconverters)

 State-of-the-art and future solutions

Partial scale converter with DFIG

Full scale converter with SG/IG



Converter topologies under low voltage (<690V)

37

Back-to-back two-level voltage source converter

§ Proven technology

§ Standard power devices (integrated)

§ Decoupling between grid and generator 

(compensation for non-symmetry and other 

power quality issues)

§ High dv/dt and bulky filter

§ Need for major energy-storage in DC-link 

§ High power losses at high power (switching 

and conduction losses)  low efficiency

 
Transformer

2L-VSC

Filter Filter

2L-VSC

Transformer

Filter Filter

Boost

2L-VSCDiode rectifier

Generator

Diode rectifier + boost DC/DC + 2L-VSC

§ Suitable for PMSG or SG.

§ Lower cost

§ Low THD on generator, low 

frequency torque pulsations in 

drive train.

§ Challenge to design boost 

converter at MW.

Medium voltage for large Wind Turbines seen



A 400 MW off-shore Wind Power System in Denmark

38

Anholt-DK (2016) – Ørsted
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Wind Farm with AC and DC Power Transmission

HVAC power transmission

HVAC grid 
 

AC

DC

DC

AC

AC

DC

DC

AC

MVAC grid

…
 

AC

DC

DC

AC

AC

DC

DC

AC

HVAC grid

MVAC grid

HVDC grid

…
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+
-

AC

DC

MVAC grid
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DC
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DC
 

 DC

AC

HVDC grid

+
-

AC

DC

Solid state transformer

or DC/DC transformer 

MVDC grid

HVDC power transmission 

Partial-scale converter system Full-scale converter system

DC transmission grid DC distribution & transmission grid
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Active/Reactive Power Regulation in Wind Farm 

MVAC 

Grid

AC

DC

DC

AC

DC

DC

AC

DC

DC

AC

 
 

DC

DC

Distributed energy 
storage system

Centralized energy 
storage system

Distributed energy 
storage system

DC

AC

HVAC 

grid

 
 

AC

DC

DC

AC

AC

DC

DC

AC

MVAC grid

DC

AC

DC

AC

Reactive power 
compensator 

connected to MVAC grid

Reactive power 
compensator 

connected to HVAC grid

 Advanced grid support feature achieved by power converters and controls

 Local/Central storage system by batteries/supercapacitors

 Reactive power compensators 

§ STATCOMs/SVCs

§ Medium-voltage distribution grid/High-voltage transmission grid
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Grid-forming & Grid-feeding Systems (examples)

PCCv*
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Power control 
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Ed

Ed

× 
÷

÷

× 

PLL θ

§ Voltage-source based inverter

§ Control reference: voltage amp. & freq.

 Current-source based inverter

 Control reference: active & reactive power



Virtual Inertia Emulation in PMSG based Wind System

GSCSVM
ugαβ

*

1je 

abc

αβ

ugabc

igabc

ugαβ
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PLL

1je 

ugdq

igdq
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ω1
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gdi
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GSC controller

PI

gdi
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Power 

calculation

Pg

Qg

Virtual Inertia Control

Based on Vdc

PI

ωr
MPPT
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＋
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d/dtKw
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*
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θr dt ωr
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Power 

calculation

Ps

Qs

ω1

Virtual Inertia Control

Based on Ps

SVM
usαβ

*

PI

＋
－

＋

－

*

sdi

*

sqi

MSC controller

PI

sdi

sqi

＋

－

Ps
*

Qs
*

Ps

Qs

PI

PI

＋

－

1je 

1je 

*

sdu

*

squ

Two virtual inertia solutions:

1) Virtual inertia control based 

on Ps in MSC controller;

2) Virtual inertia control based 

on Vdc in GSC controller;
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 Solar power fully competitive with fossil today

 Large pressure on reducing CoE for wind

 WBG might reduce converter technology size and cost !?

 All types of PV inverters will evolve – but not major cost in PV..

 Grid codes will constantly change – improve technology

 More intelligence into the control of renewables

 Grid-feeding/Grid forming – how to do in large scale systems ?

 Storage is coming into system solutions

 Black start of systems (Inrush currents – how to do it)

 Protection coordination in future grid ?

 Stability of PE-Dominated grid

 Other energy carriers will be a part of large scale system balance

 Renewables 100 % competitive in 10 Years………. Power 
electronics is enabling 

Renewable energy systems – Quo Vadis
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Reliable Power Electronics
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Field Experience Examples 1/2
Failure frequency of different components in PV systems

Data source: PV System Reliability — An owner’s perspective” SunEdison 2012

Failure frequency and energy impact Example of failure rate of PV inverter (string 

inverter) in field operation

Data source: Greentech Media Webinar “How to Reduce Risk in Commercial Solar,” July 2015
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Field Experience Examples 2/2

350 onshore wind turbines in varying length of time (35,000 downtime events)
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Contribution of subsystems and assemblies 

to the overall failure rate of wind turbines.

Contribution of subsystems and assemblies 

to the overall downtime of wind turbines.

Data source: Reliawind, Report on Wind Turbine Reliability Profiles – Field Data Reliability Analysis, 2011.
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Availability Impact on Cost-of-Energy (COE)

(source: MAKE Consulting A/S)




CAPEX OPE
COE

X

AEP

CAPEX – Capital cost

OPEX – Operation and maintenance cost

AEP – Annual energy production

Lower downtime 

Lower OPEX and higher AEP

Higher reliability and better maintenance

Lower COE
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The Reliability Challenges in Industry

Customer 

expectations

 Replacement if 

failure

 Years of warranty

 Low risk of 

failure

 Request for 

maintenance

 Peace of mind

 Predictive maintenance

Reliability target
 Affordable returns 

(%)
 Low return rates  ppm return rates

R&D approach
 Reliability test

 Avoid catastrophes

 Robustness 

tests

 Improve weakest 

components

 Design for reliability

 Balance with field load

R&D key tools Product operating tests
 Testing at the 

limits

 Understanding failure 

mechanisms, field load, 

root cause, …

 Multi-domain simulation

 …

Past Present Future

Reliability at CONSTRAINED cost is a challenge
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Lifetime Targets in Power Electronics Intensive 

Applications

Applications Typical design target of Lifetime

Aircraft 24 years (100,000 hours flight operation)

Automotive 15 years (10,000 operating hours, 300, 000 km)

Industry motor drives 5-20 years (60,000 hours in at full load)

Railway 20-30 years (73,000 hours to 110,000 hours)

Wind turbines 20 years (120,000 hours)

Photovoltaic plants 30 years (90,000 hours to 130,000 hours)
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Stress-Strength Analysis
The essence of reliability engineering is to prevent the creation of failure

Stress or strength

F
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Load distribution L Strength distribution S

Tim
e 

in
 s
er
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ce

Ideal case without 

degradation

Ideal case without 

degradation

Strength 

degradation

with time

Failure

End-of-life

(with certain 

failure rate 

criterion)Failure

Extreme 

load

Nominal 

load

Stress analysis; Strength analysis

Stress control; Strength derating

Design at end-of-life; Consider the variations
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The Scope of Reliability of Power Electronics
A multi-disciplinary research area

Analytical 

Physics

Power 

Electronics 

Reliability

Physics-of-
failure

Component
physics

Paradigm Shift
► From components to failure mechanisms

► From constant failure rate to failure level with time

► From reliability prediction to also robustness validation

► From microelectronics to also power electronics
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Component-level to System-level Reliability 

System reliability 

metrics

· Reliability/

unreliability

· Failure rate

· Warranty period

· Bx lifetime

· Lifecycle

· Cost

· …

Reliability of 

component A

Weibull (β,η)

Reliability of 

component B

Normal (µ ,σ)

Reliability of 

component C

Exponential (λ)

Reliability of 

component D

Lognormal (µ ,σ)

Mission profile

Converter design
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Data source: S. Lee, D. Zhou, and H. Wang, "Reliability assessment of fuel cell system - A framework for 

quantitative approach," in Proc. of  ECCE 2016, pp. 1-5, 2016.

From Constant Failure Rate to Failure Level with Time
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Reliability-Oriented Product Development Process

Design

?
Concept

· Mission profile

· Topology and system 

architecture

· Risk assessment 

(e.g. new technology, 

new components)

· Existing database

Validation

· System level 

functionality testing

· CALT

· HALT

· MEOST

· Robustness 

validation

Production

· Process control

· Process FMEA

· Screening testing 

(e.g. HASS)

Release

· Customer usage

· Condition monitoring

· Field data

· Root cause analysis 

data

· Corrective action

    data

(HALT – Highly Accelerated Limit Testing, CALT – Calibrated Accelerated lifetime testing, MEOST – Multi Environment Overstress Testing, 

FMEA – Failure Mode and Effect Analysis, HASS – Highly Accelerated Stress Screening)

(Source: PV Powered Inc.)

How to design for power electronic systems? 
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Design for Reliability with Artificial Intelligence - workflow

► A surrogate reliability model of converter is created

► It provides same results as detailed model, but 8 orders of magnitude faster
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 A mind-set change is important in power electronics circuit design –
also in curricula of engineers

 Physics of failure models need to be developed further

 Go beyond temperature – challenge Miners rule

 Models can also be used effective in condition monitoring

 Reliability is also useful in service and new business

 Highly need for better life time models

 Highly need for smart testing methods to reduce testing time and 
thereby cost

 IoT and other will make oceans of possibilities

 Better integrated design tools to assess systems

 Design automation eg. with AI

Reliable Power Electronics – Quo Vadis

55
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IEEE Design Automation for Power Electronics
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 Electricity creates the modern (and efficient) world 

 Power Electronics – key technology for modern society – super scaling 

 Cost of Energy go more down incl low failure-rate in renewables –

 Paradigm shift in power system operation with renewables and storage

 WBG will radical change power circuit design – few new power converters will be invented…

 Components need to be further developed – and modelled

 Passive components are a challenge

 Reliability engineering continue its development – complex

 Better reliability – more income on service for manufacturers

 Stability issues in solid state based power grid as well as conventional power system 

 More stringent grid codes will still be developed – new demands

 Electrification of transportation – the large application for next two decades

 AI can assist in design, control and condition monitoring

 Rewrite our curriculums

 And much more..

Power Electronics Technology – Summary

58
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