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• Hardware-in-the-Loop testing of cooperative spectrum sensing is 
performed using RF channel emulator and RFSoC 4x2 for different 
levels of shadow fading. The measured probability of detection gets 
worse as the shadow fading increases.

• Future work includes the diversification of sensor nodes and 
investigation of collaborative spectrum sensing in a complex 
spectrum sharing scenarios.

Evaluating Cooperative Spectrum Sensing:
 A Hardware-in-the-Loop Approach

 

• HIL testing of co-operative spectrum sensing:

• Keysight radio channel emulator 

• AMD RFSoC 4x2 wideband transceiver 

• Keysight DSO-X 92004A oscilloscope 

• NI PXIe-8880 embedded controller

• Monte-Carlo simulations are performed at each transmit power level 

        of the RFSoC 4x2

• The test statistic of each SU in the static scenario shows less variation as compared to dynamic scenario

• The probability of detection decreases as the shadow fading increases from 3 dB to 6 dB

With the increasing demand for wireless connectivity for both personal use and the internet of things, the demand for spectrum access 
is driving the need for more flexible and efficient management. This is driving innovation in technologies to support spectrum sharing, 
with regulators such as the FCC and Ofcom incentivizing adoption. There is also a growing interest to complement geographical 
databases governing access to provide a more real-time or dynamic  view of spectrum utilization. Here the use of Co-operative 
Spectrum Sensing is considered as a key component for reliable Dynamic Spectrum Access.

Mir Lodro, Simon Armour, Mark Beach

Observing spectrum occupancy from a single location is susceptible to an obscured measurement 
due to blockages and antenna orientation – the hidden node problem. Spatial diversity through 
spatially distributed sensors circumvents this problem, and when combining with appropriate 
signal conditioning can enhance reliability of detection.

Spectrum Sensing Flowchart
• Variety of methods for sensing
➢ Eigenvalue detection
✓ No PU information

• Spectrum sensing a binary 
hypothesis problem:

Summary

Motivation and Background

Hardware-in-the-Loop

• Channel model for all the 
secondary users is 3GPP 
EPA channel with 5 Hz 
Doppler

Results and Discussions

Boxplot of MME test statistic of SUs for dynamic 
scenarios with lognormal shadowing of 3dB.

Probability of detection versus threshold for 
each SU at two transmit power levels.

Probability of detection vs PU transmit power at 
3 dB and 6 dB lognormal shadow fading.

Conclusion and Further Work
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Are You Being Spoofed by a UAV?

Supervisors: Dr. Andrew Austin, Dr. Simon Armour & Prof. Mark Beach
Evangelos Xenos

Aims & Objectives:
Ø Obtain, process and analyze real-measured and simulation data to model airborne activity threats.
Ø Enhance understanding of A2G propagation characteristics in urban scenarios and apply knowledge 

in future deployments.
Ø Find a quick and easy way to determine if a ground receiver is being spoofed by an airborne 

adversary (e.g., a drone).

1. Introduction 
Drones are becoming very easy to acquire 
and deploy and lack of regulations enforced 
make them a cheap way to disrupt sensor 
networks.

2. Methodology
Ø Simulate realistic environments for 

Bristol with Ray Tracing and follow-up 
the simulation with real measured data. 

Ø Tx @HH Wills, FR3 5.7GHz, sectored, 
and mobile Rx with omni and directional 
antennas, sampled every 0.25m.

Ø Compare outcomes over a LoS terrain 
accounting for buildings, elevation and 
clutter, both statistically and analytically.

Ø Determine properties that could 
distinguish the legitimate signal from a 
malicious one. 

4. Conclusions & Future Work
Ø RT indicates fading envelopes can be 

used to identify UAV spoofing.
Ø Drone deployment and measurement of 

channel and fading characteristics in 
suburban scenarios and free space.

Ø Investigation of additional PHY properties 
exploitation to identify malicious signals 
over legitimate on Rx end.

3. Analysis & Results

Ground measurements of signal 
propagation, from an elevated Tx 
(h=126m) to a mobile Rx across the city of 
Bristol. 
Properties such as Pathloss, Received 
power, Rx ground elevation and GPS 
coordinates were extracted to create 
comprehensive relations between PL and 
elevation difference between Tx & Rx. 

Ground Measurements were conducted in collaboration with Richard 
Rudd (Plum consulting), on urban propagation and slant clutter 
modelling for Recommendation ITU-R P.2108 in Bristol 20-22 Jan. 2025.

Tx elevation creates a similar scenario 
to flying a drone within an urban 
scenario providing detail on 
propagation and fading channel 
characteristics (measured data).

Investigation to identify mutual 
characteristics between RT simul. and real 
measurements. Understand fading 
envelopes with elevation relation and mask 
malicious signal as the expected legitimate.

Increasing TX height: increases power 
(expected) and decreases fade depth - harder 
to identify legit. signal at higher altitude

Ray Tracing 
Simulation result
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Assessing Wireless Standards for IoT Security Using 
Deep Learning-Based Radio Frequency Fingerprinting

Introduction：

Radio Frequency Fingerprinting (RFFI), a physical-layer authentication method, utilizes hardware-specific 

features such as Carrier Frequency Offset (CFO), IQ Imbalance, and Power Amplifier Nonlinearity for device 

identification. Unlike cryptographic methods, RFFI requires no modifications to the transmitter and is well-

suited for resource-constrained IoT devices. Existing RFFI research primarily focuses on single protocols, 

lacking systematic comparison across multiple protocols. This study addresses this gap by evaluating the 

preambles of  WiFi, LoRa, and Bluetooth using a unified USRP X310 platform and a standardized 

Convolutional Neural Network (CNN) architecture, revealing significant differences in classification accuracy 

and robustness across protocols.

The experiment was conducted on a 

USRP X310 platform, consisting of six 

USRP X310 devices, with one as the 

receiver and five as transmitters, forming 

10 transmission channels connected via 

cables.

Conv-1

convolution + BN + ReLU

max pooling

attention

fully connected + ReLU

softmax

Conv-2

Conv-3

7 x 7 x 64

5 x 5 x 128

2 x 2

2 x 2
1 x 1

3 x 3 x 256 

Global Avg
1 x 1 x 128 

1 x 1 x 

64 1 x 1 x 10 

Category WiFi LoRa Bluetooth

Bandwidth 20 MHz 812.5 kHz 1 MHz

Samples per Symbol 80 128 8

Total Samples 7,200 2,450 1,600

Resampling Rate 200 samples/symbol

Training Samples 200 per device/protocol

Test Samples 100 per device/protocol

• WiFi: Achieved the highest classification accuracy at 

80%

• LoRa: Demonstrated strong robustness despite fewer 

samples, with an accuracy of 78%, comparable to WiFi.

• Bluetooth: Showed lower performance due to its simple 

preamble structure and limited feature dimensions, with 

an accuracy of only 62%.
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Platform：

Experiment：

Results：

Future work：

• Design signal patterns to highlight hardware fingerprints.

• Develop channel-robust models and data processing 

techniques.

• Enhance real-time channel awareness and training 

through edge computing.

• Modify hardware to enhance fingerprint distinguishability.

Mr. Hao Li, Dr. Jiteng Ma, Dr. Shuping Dang, Prof. Robert Piechocki, Prof. Mark Beach
hao.li@bristol.ac.uk
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Complex Valued Neural Network

                 

      

    
     

    

       

    
      

    

    

    

 

 

 

      

    

     

    

       

          

    

    

 

    

              

                 

                               

Radio Frequency Signal Identification 
using Machine Learning Techniques 
(ML for PHY)
Charles Khoury

          

      
    

     
    

       
    

      
    

    

    

 

 

 

      
    

     
    

       
          

    

    

 

    

Radio Frequency Fingerprinting

Continuation on Self Organising Maps

Introduction and Motivation

BLE Sensors (authorized UE)

Replay Attacker

Data Logger

A new dataset is developed to evaluated the accuracy of RF 
Fingerprinting algorithms. Firstly, data from 4 genuine transmitter is 
recorder using a Software Defined Radio (SDR). This capture is then 
replayed using another SDR and the results are recorded. 

A novel unsupervised learning is created to address the need for 
dynamic address fingerprinting. The algorithm is trained on the data 
captured from the legitimate transmitter. 
Then, unsupervised learning is used to distinguished between the 
legitimate transmitters and the replay attacker. 

Machine learning enhances RF fingerprinting by leveraging unique hardware signatures for secure authentication, making it 
valuable for keyless entry systems and wireless security. It also improves modulation classification for robust signal 
recognition. Unlike traditional methods, ML adapts to real-world RF conditions, offering higher accuracy, resilience, and 
efficiency in dynamic and low-SNR environments.

Complex-Valued Neural Networks (CVNNs) have emerged as 
a promising field of research in machine learning for the 
physical layer (PHY), particularly in RF signal processing. 
Unlike traditional real-valued networks, CVNNs natively handle 
complex-valued signals, preserving phase and amplitude 
information critical for modulation classification, RF 
fingerprinting, and channel estimation.  

Introduced for MECOM is a Hybrid Complex Convolutional 
Recurrent Network based on split LSTM cell. The results show 
that complex networks are improve on their real counterpart 
achieving optimality in less epochs.

Research also shows that split architecture offer a 
compromise between accuracy and implementation 
compared to natively complex architecture. 

Figure: Complex Split LSTM Cell

Figure: Complex Hybrid Network

Figure: Confusion Matrix for 0dB SNR 
(Top) and 18dB SNR (Bottom)

RC2 started with the work on LoRa. The following shows a list 
of improvements: 

• Auto-Splicing, meaning that future capture can 
automatically translated into datasets

• Direct SOM to Neural Network Pipeline, previously 
SOMs we saved as images for the datasets

• SOMs for both I and Q data respectively

Figure: Capture Setup

Figure: Confusion Matrix SODAQ and ARB

Capture data Auto Splice

Compute 

SOM  I

Compute 

SOM  Q

Light CNN

Figure: New SOM Workflow

Legitimate Data Undisclosed 

unsupervised 

learning network
Discriminator 

Replay Data

Trains
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Radio Frequency Fingerprinting

Continuation on Self Organising Maps

Introduction and Motivation

BLE Sensors (authorized UE)

Replay Attacker

Data Logger

A new dataset is developed to evaluated the accuracy of RF 
Fingerprinting algorithms. Firstly, data from 4 genuine transmitter is 
recorded using a Software Defined Radio (SDR). This capture is then 
replayed using another SDR and the results are recorded. 

A novel unsupervised learning is created to address the need for 
dynamic address fingerprinting. The algorithm is trained on the data 
captured from the legitimate transmitter. 
Then, unsupervised learning is used to distinguished between the 
legitimate transmitters and the replay attacker. 

Machine learning enhances RF fingerprinting by leveraging unique hardware signatures for secure authentication, making it 
valuable for keyless entry systems and wireless security. It also improves modulation classification for robust signal 
recognition. Unlike traditional methods, ML adapts to real-world RF conditions, offering higher accuracy, resilience, and 
efficiency in dynamic and low-SNR environments.

Complex-Valued Neural Networks (CVNNs) have emerged as 
a promising field of research in machine learning for the 
physical layer (PHY), particularly in RF signal processing. 
Unlike traditional real-valued networks, CVNNs natively handle 
complex-valued signals, preserving phase and amplitude 
information critical for modulation classification, RF 
fingerprinting, and channel estimation.  

Introduced for MECOM is a Hybrid Complex Convolutional 
Recurrent Network based on split LSTM cell. The results show 
that complex networks are an improvement over their real 
counterpart achieving optimality in less epochs.

Research also shows that split architectures offer a 
compromise between accuracy and implementation 
compared to natively complex architecture. 

Figure: Complex Split LSTM Cell

Figure: Complex Hybrid Network

Figure: Confusion Matrix for 0dB SNR 
(Top) and 18dB SNR (Bottom)

RC2 started with the work on LoRa. The following shows a list 
of improvements: 

• Auto-Splicing, meaning that future capture can 
automatically translated into datasets

• Direct SOM to Neural Network Pipeline, previously 
SOMs we saved as images for the datasets

• SOMs for both I and Q data respectively

Figure: Capture Setup

Figure: Confusion Matrix SODAQ and ARB

Capture data Auto Splice

Compute 

SOM  I

Compute 

SOM  Q

Light CNN

Figure: New SOM Workflow

Legitimate Data Undisclosed 

unsupervised 

learning network
Discriminator 

Replay Data
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RF STRIDE
Stephen Wales (Roke), Mark West (Roke

• Describes a set of generic threats 

and examples

• Applied to compute systems and 

networks

• Adopted by Microsoft in 2002

• Popularised through a set of 

playing cards

Threat Property 

Violated

Threat Definition

S Spoofing identity Authentication Pretending to be something or someone other than yourself

T Tampering with data Integrity Modifying something on disk, network, memory, or elsewhere

R Repudiation Non-repudiation Claiming that you didn’t do something or were not responsible; 

can be honest or false

I Information disclosure Confidentiality Providing information to someone not authorised to access it

D Denial of service Availability Exhausting resources needed to provide service

E Elevation of privilege Authorisation Allowing someone to do something they are not authorised to 

do

SWAN has taken the STRIDE Framework and applied to RF Cyber

Threat Property Violated RF Example

S Spoofing identity Authentication Base Station or Access Point appearing as legitimate device

T Tampering with data Integrity Man in the Middle Attack – receiving and manipulating signal or its 

contents before re-transmitting

R Repudiation Non-repudiation Rogue device not responding correctly to wireless protocols

I Information disclosure Confidentiality In Wireless Systems more commonly known as Eavesdropping – 

listening and decoding information

D Denial of service Availability In Wireless Systems more commonly known as Jamming, which can 

be unsophisticated, but can extend to exhaust resources through 

flooding of control messages

E Elevation of privilege Authorisation In computer systems an example is gaining admin rights. There is a 

weaker relevance to wireless systems, but loading malware onto 

devices is an example

• A set of playing cards developed

• Each Suit corresponds to a type of 

threat

• The Number represents severity

https://www.swan-partnership.ac.uk/
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STAR – Simultaneous 

Transmit and Receive

• Collaborative work between University of Bristol and Roke

• Focus has been achieving high depths of cancellation over wide 

bandwidths

• UoB has developed analogue cancellation techniques

• Roke has developed digital cancellation techniques

• Brought together in a number of demonstrations

• Figure of Merit in dBm-MHz due to Kolodziej

• System Isolation: ISO – 102dB

• Receiver Sensitivity Degradation: RSD

• Bandwidth (MHz): BW – 80MHz

• Transmit Power (mW): PTX – 30dBm

• FOM= (ISO/RSD)xBWxPTX

• FOM: 138.5 dBm-MHz
K. E. Kolodziej, "In-Band Full-Duplex Wireless Systems Overview," ICC 2021 - IEEE 

International Conference on Communications, Montreal, QC, Canada, 2021, pp. 1-6, doi: 

10.1109/ICC42927.2021.9500649 
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• Analogue Canceller: 4 tap analogue delay line with cable delays

Usually -76dB rising to -74dB when close proximity

Around -71dB
-77dB maximum 

due to movement

• Channel Characterisation Measurements

• Determine best tap delays

• Develop algorithm for setting amplitude/phase weights

• Digital Canceller implemented on FPGA of Ettus X310 SDR

• Multi-tap canceller operating at 100Msamples/s • Analogue Canceller Required to Reduce 

Self-Interference to within Dynamic 

Range of SDR

Analogue Canceller Performance

Digital Canceller Performance

Test System

Analogue Canceller

Performance in Context

Stephen Wales (Roke,) Geoffrey Hilton (UoB), Mark Beach (UoB) 
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Reconfigurable Microwave Filter for Tunable Transceiver

Ruipeng Zhang (MSc student), Jiteng Ma, Hao Li, Sean Gu, Gavin Watkins, Andrew Austin, 

and Shuping Dang  (A conference paper from this work has been submitted to 2025 IEEE 

Wireless Power Technology Conference and Expo)

Introduction:

As the demand for wireless connectivity continues to grow, radio spectrum resources are becoming increasingly crowded, making efficient 

and secure communications a top priority. As a key component in modern wireless communication systems, tunable filters play an important 

role in enabling dynamic spectrum access and enhancing communication security. The proposed design enables a tunable frequency range 

(1.44-2.7 GHz), adjustable bandwidth (110-400 MHz) and the measured insertion loss is 4.1-7.2 dB, which can enable a wider tuning range 

and improving spectrum utilization. This enables a tunable transceiver that suppresses interference and achieves spectrum agility and will 

greatly improve the security of wireless systems.

Resonator Analysis:

According to the symmetrical structure of the resonator, we 

can analyze the structure by Odd-even mode analysis in Fig.1:

 
𝑌1

2𝜋𝐶1
= 𝑓𝑜𝑑𝑑 tan

2𝜋𝑓𝑜𝑑𝑑𝐿1

𝑣𝑝
,    (1)

  𝑓𝑒𝑣𝑒𝑛 =
𝑌1

2𝜋𝐶1

𝑌𝑟+𝑌𝑠 tan
2𝜋𝑓𝑜𝑑𝑑𝐿1

𝑣𝑝

𝑌𝑠−𝑌𝑟 tan
2𝜋𝑓𝑜𝑑𝑑𝐿1

𝑣𝑝

, (2)

where

    𝑌𝑟 = 𝑌2𝑌3 𝑤𝑒𝑣𝑒𝑛𝐶2 + 𝑌3 tan 𝛽𝐿3 +
𝑌𝑟

2

2
      

tan 𝛽𝐿2 𝑌3 − 𝑤𝑒𝑣𝑒𝑛𝐶2 tan 𝛽𝐿3 ,         (3) 

  𝑌𝑠= 𝑌1 tan 𝛽𝐿1 𝑌2 𝑌3 − 𝑤𝑒𝑣𝑒𝑛 tan 𝛽𝐿3 ,  (4)

There are two resonance points in this structure, which are 

controlled by capacitors 𝐶1 and 𝐶2 respectively, as shown in 

Fig. 2. Therefore, it is necessary to adjust the values of 𝐶1 and 

𝐶2 at the same time.

Figure 1 Structure of the proposed T-shape resonator and 

the Odd/Even mode.

Figure 2 Illustration of resonance point shift.

Figure 5 The configuration and photograph of the designed 

fabrication (39.3 x 28.7 mm)

Results:

Conclusion and future work:
• The designed filter provides enhanced frequency and bandwidth 

flexibility through the dual resonance points of the T-shaped resonator, 

thereby improving the security of wireless systems .

• The discrepancy between the EM simulations and the measured results 

may be attributed to limitations in machining accuracy or in accuracies in 

the SPICE models of certain components, which is worth further 

investigating and mitigating.

• Machine learning may be employed to train the system, enabling it to 

rapidly adjust to the desired operating frequency and bandwidth, thereby 

minimizing energy loss.

Figure 3 EM simulation (S21 and S11).

Motivation:
• Spectrum resources are becoming increasingly crowded, 

and fixed frequencies cannot meet with dynamic spectrum 

environments. 

• Fixed frequency communications are difficult to resist 

certain interference and attacks.

• The development of cognitive radio requires spectrum 

sensing and dynamic spectrum access.

Figure 4 Measured S-parameters and bandwidth tuning.

By adjusting the bias voltages V1 and V2 of the diodes, the bandwidth and 

the centre frequency of the filter can be changed.

In EM simulations, the adjustment range of the center frequency is 1.6–2.7 

GHz and 3-dB bandwidth can be tuned within 110–400 MHz. The measured 

center frequency can be adjusted within 1.44–2.7 GHz. The EM simulation 

insertion is 1.2-2.5 dB, and the measured insertion loss is 4.1-7.2 dB.
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Theoretical Background (Polarisation Diversity) : 
➢ Polarisation mismatch arises from 
1. the tilt angle in between Transmitting and the receiving 

antennas
2. relative position; antennas are at different planes 

➢ Single pair of Transmitting and receiving antenna shows 
polarisation mismatch loss  as;

➢ Composite antennas will make the scenario more 
complicated; hence critical to get aligned with both 
polarization simultaneously.

➢ Only a particular direction with a limited angle span will 
facilitate the proper alignment.

Covert Communication through Orthogonal 
Polarisation using Composite Antennas

PhD Scholar - Sanchita Kayal
Supervisor -  Dr. Geoffrey Hilton, Prof. Mark Beach

Main Aim : 
Investigation of RF mechanisms for covert communication, 
enabling transmission through selective time-polarisation 
while embedding within innocuous RF signals.

Leveraging two key concepts;

❑ Physics of Polarisation Diversity.
❑ Embedding secret data through modulation –

Watermarking.

➢ This the key idea of this work towards secured 
communication posing in the physical layer channel. 

➢ Data reception is only possible, when both the channels 
are available to pick up.

Tx Pattern
Rx PatternChanging θ

Changing 
both Φ θ

Transmitter is 
Invisible to the 
receiver

𝑷𝒐𝒍𝒂𝒓𝒊𝒔𝒂𝒕𝒊𝒐𝒏 𝑳𝒐𝒔𝒔 𝑭𝒂𝒄𝒕𝒐𝒓 = 𝑪𝒐𝒔𝟐𝜽
Future Work : 
➢ Measurements will be undertaken in the anechoic 

chamber; analysis will be applied in further processing.
➢ It will then focus on multipath environments.
➢ This implications in multipath scenarios will become 

more complicated.

Baseband Processing : 

Example shown for Line of Sight

Tx1

Tx2

Rx1

Rx1

Rx2

Polarisation plane of the transmitting composite 
antennas w.r.t. Receiving one

Methodology : 

➢ Deploying RF Composite Channel for simultaneous 
independent data transmission.

➢ The fundamental modulation scheme for both channels 
will be Quadrature Phase Shift Keying (QPSK).

➢ One channel will serve as a reference signal for the 
intended receiver, carrying general data as a decoy for 
potential eavesdroppers.

➢ While other hiding secret data- manipulating reference 
baseband symbols.

➢ The concealment hinges on the phase difference and 
amplitude of the two individual signals.

➢ Composite channels are not viable from all angles/ 
positions.

➢ Thus, secured data retrieval is associated with three main 
operations.

1. Receiver must be aware of dual channel transmission.
2. It should receive composite channels with precise 

polarization alignment.
3. Receiver should posses the knowledge of post-

reception bit processing scheme.
Secured communication lies in;
 Anti-Reception: Concealing the communication channel 
itself.
 Anti-Detection: Watermarking the secret data to avoid 
detection.
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Distorted and the corrected signal

Setup including FPGA board and Analogue RF chain 

Resilient receivers:
Waveform cancellation and Linearisation 

for High Dynamic Range front-end

Resilient receivers leveraging analogue waveform cancellation and digital linearization are pivotal for enhancing the 
performance of high-dynamic range (HDR) front-end systems. These techniques mitigate distortion, improve signal 
integrity, and extend the receiver's operational range. By combining analogue waveform cancellation with digital 
linearization, this approach effectively addresses non-linearities, ensuring robust reception in complex, high-
interference environments, and optimizing overall system efficiency. 

Francesco Raimondo (UoB), Steve Wales (Roke), Mark Beach (UoB)

• The integration of analogue waveform cancellation and digital 
linearization within an RF system-on-chip shows potential in 
improving receiver performance in high-interference environments.

• Future work focus on further developing adaptive filtering algorithms 
for quicker responses, optimizing for real-time performance with 
minimal latency, and expanding the RF-SoC to support multi-channel.

Summary

Motivation and Background

Methodology and Results

[1] Marttila et Al. Reference receiver enhanced digital 
linearization of wideband direct-conversion receivers.
[2] Peng et Al. Design and implementation of software-
defined radio receiver based on blind nonlinear system 
identification. 
[3] Morgan et Al. A generalized memory polynomial model 
for digital predistortion of rf power amplifiers.

Conclusions and Future work References

• The system isolates blockers and generates a cancellation 
signal  merging it with the input signal to reduce blocker levels.
• The digital domain handles blocker detection, synthesis, and 

distortion correction. 
• The complexity is shared among the CPU performing model 

parameter computations and the FPGA executing real-time 
operations.
• Polynomial models are evaluated for nonlinearity, balancing 

computational load, energy efficiency and FPGA resources.

• Receivers that can maintain high signal fidelity are crucial for wireless 
communications, military radar, and medical imaging.

• Waveform cancellation and digital linearization can process weak 
signals amidst stronger, interfering signals while preserving accuracy 
and reliability.

• The trend toward integrating entire receiver architectures onto a single 
system-on-chip (SoC) offers advantages in power efficiency, size, and 
cost. 

IQ constellation degradation

• The increasing complexity of modern communication systems necessitates 
receivers capable of handling high-dynamic range, in the presence of malicious 
or unwanted interference. 

Model parameters search
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This research has been developed to help support a number of collaborative 
projects between the University of Bristol and Roke Manor Research.

1. Introduction

3. Monitoring vehicle movement

6. Conclusions

2. Antenna configurations and environments 
• Two different antenna configurations 
• Two different outdoor environments and one 

indoor environment
• Static and moving vehicle-based measurements

Wideband sensing can be used to accurately determine the location of 
close-proximity scatters within a constantly changing local environment, 
but the bandwidth that is available will be limited to the operating band 
of the communications systems (i.e. 80MHz for the 2.4GHz ISM band).  
The range resolution, which is a function of the operating frequency 
bandwidth, is therefore impacted by this. 

Here, the experimental development of a sensing system that (most 
importantly) operates within the bandwidth of the communications 
system, but with the range resolution close to that of a system operating 
with around 10 times the bandwidth, is described. 

Examples of indoor and outdoor environments with mobile and fixed 
platforms are presented with comparisons shown for both wideband 
operation and the 80MHz operation around 2.4GHz. 

• Can identify fixed environment features and movements within the 
environment to at least 30m range with only 10dBm power level

• Reduced bandwidth processing is used to identify propagation paths 
within field of view of the Tx and Rx antennas

• Further RF and image processing will remove ‘spurious’ clutter
• Current work uses a VNA and future work will be developed on RFSoC 

technology making the system more compact and versatile.

5. Moving vehicle-based outdoor measurements

This antenna configuration comprised a directional transmit 
antenna and monopole receive antenna placed 1.2m apart on 

the test rig connected to a Vector Network Analyser (VNA)

Direct

Buildings

Close vehicle movement

8.5 m

Houses

Road

UoB

Position 
of test rig

9 m

Movement of 
vehicle within 

this zone Wall

The ability to sense both fixed and 
dynamic changes in the RF characteristics 
of the environment that are local to the 
transmitter and/or receiver is key to 
optimising communications systems.  
Furthermore, there is a push towards 
developing combined sensing and 
communications platforms. 

Tx

Rx

Object

Direct

4. Cluttered indoor environment (static antennas)

80MHz processed data:
• Key propagation features  

identifiable to around 0.2m
• Can now apply image 

processing techniques to 
improve the visualisation 
quality of the data

This algorithm is processing 
frame-by-frame variations to 

monitor the local environment

File: dmeas4

Extended 
corridor

Operation with 
reduced bandwidth

File: rmeas3

RF data processing to 
improve resolution with 
the reduced bandwidth

• Key features resolved to 
around 0.2m in 30m range

• ‘Fixed residual’ masking some 
details but improved earlier 
processing will remove this 

Sampled for only the 80MHz 
ISM band:
• Resolution now 3.8m
• More difficulty in identifying 

movement at longer distance

Movement 
through door & 
door shutting

Fixed
Residual

Movement

Coupling in the frequency 
domain between transmitter 
and receiver are monitored 
over time to determine the 
direct antenna path, local 
‘fixed’ multipath and local 

movement. 

However, low-level details 
are masked by the high 
direct coupling and the 

mathematical processing 

Long range 
artifacts

Vehicles

Buildings

Hedging

V
e

h
ic

le
 s

ta
ti

c

Wideband response:
• Most obstacles within 10m of 

moving vehicle
• Longer range visible (~50m 

distance) when no local clutter 
• Fixed residual levels visible 

with vehicle static

• Indoor environment and two directional 
antennas (Tx power of 10dBm)

• Movement from and towards the 
antennas (including far-end corridor)

• Total delay shown (twice object distance)

Indoor Laboratory

Directional Antennas located 40cm apart 
for measurements shown on the right

The vehicle movement in 
the zone by the car park 

entrance is monitored and 
frequency-domain data 

processed (shown as the 
signal delay distance)

Extended corridor 
through door

Sensing the Local RF Environment
Geoff Hilton, Andrew Austin & Mark Beach

Wideband operation:
• Most of fixed coupling 

between Tx and Rx now 
removed, though some very 
low-level residual still present

• 16.5m to door (plus cabling) 
& corridor beyond

• Resolution of 0.38m
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Factory IoT

• Manufacturing IoT data collection and utilisation

• The connected factory

• Sensitive to delays and interruptions

• Needs to be protected on all communication layers 

• Benefits from SWAN: 

• Spoofing and jamming

Autonomous Warehouses

• Reduced time spent looking for goods

• Reduced risk of injuries and fatigue of workers

• Optimised shelf position and route selection

• IoT network needs to be protected

• Benefits from SWAN:

• RF fingerprinting and authentication 

Wireless Sensor Networks

• UMBRELLA is one of the largest, 

world-leading open programmable 

Industrial Internet of Things (IIoT) 

networks covering parts of South 

Gloucestershire.

• A unique platform which connects 

several testbeds, bridging the gap 

between the physical and laboratory 

worlds, and evolving ideas past the 

boundaries of the lab and closer to 

market.

• But as an open platform, its wireless 

interface is susceptible to interference 

(intentional or otherwise)

• Benefits from SWAN:

• Intrusion detection and fidelity

Autonomous Hunting Drone

• A drone which autonomously captures target drones with its net 

guns

• Eliminates dangerous drones physically, safely towing them to a 

safe location

• Need to be robust against attacks on its control signals and 

sensors

• The Physical Layer communication needs to be protected

• Benefits from SWAN:

• Jamming detection and avoidance

RF Power Amplifiers
• Novel Digital Power Amplifier 

architecture under development 

1.Characteristics can be "tuned" to 

frequency bands of interest

2.Offers improved frequency agility

3.Maintains energy efficiency

• Researching techniques to enhance 

resilience of RF frontends (receivers) 

against intentional and nonintentional 

jamming

• Benefits from SWAN :

• RF agility for spectrum 

management

Magnus Sandell, SWAN Business Lead
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WP4: RF Transmitter and Receiver Development
Dr. Jiteng Ma

Wireless access is essential to the networks that underpin modern life, but many networks which rely on 
radio frequency (RF) interfaces are especially vulnerable to cyber-attacks or other failures. Developing agile 
and intelligent RF front-end is essential to enhance the security of the wireless communication system.

Digitally-controlled transmitters Reconfigurable receivers

Selected designs on PCB and MMIC

What artificial intelligence (AI) can do Conclusion

SWAN RF 
transceivers

Reconfigurable 
Circuits

AI/ML

Linearity 
Technologies

Digital PA

AI/machine learning (ML) can be used to design passive circuits such as 
RF filter, matching network, and coupler.

AI/ML can be used to model the behaviour of active devices and optimize 
the PA linearity based on the input signal (predistortion) or circuit design. 

3-bit digital PA: 

Peak PAE: 64.3% 

Peak output power: 45.2dBm

7.5dB backoff efficiency: 47.3%

Gate switching PA:

Peak efficiency: 76% 

Peak output power: 39.5dBm

3dB backoff efficiency: 76%

Inverse-class F MMIC PA:

Peak efficiency: 43%-52%

Peak output power: 40.6dBm 

Bandwidth: 8.5GHz to 11.5GHz

Tuneable MMIC notch filter

Range: 8GHz to 12GHz

2dB bandwidth: 

Insertion loss: less than 1dB

Proper RF transceivers to align with 
SWAN targets should include the 
following characters:

▪ Enhance the analogue RF PA using 
digital techniques.

▪ High-performance GaN LNA to 
enhance the linearity implications of 
the receiving signals

▪ Reconfigurable filter is important to 
reject the jamming signals.

▪ AI/ ML can make significant 
contributions to the performance and 
intelligence of the RF transceivers

Linearity

Efficiency

Traditional low-noise amplifiers (LNAs) struggle to deliver the required 

performance due to limitations in noise figure, robustness, and 

efficiency. Gallium Nitride (GaN)-based monolithic microwave 

integrated circuits (MMICs) provide a groundbreaking solution by 

leveraging high electron mobility to achieve LNA superior performance.

Digitally controlled RF power amplifiers (PA) ensure high performance through adaptive power 

management, fast switching, and efficient signal processing while enhancing secure 

communication by enabling encryption, jamming resistance, and precise modulation control.

We developed a fast gate-switching PA achieving rise 

and fall times of 750ps and 950ps.

The amplifying linearity can be enhanced 

by properly quantize the modulated signal.

We developed 3-bit DPA to achieve very high 

backoff efficiency.
We developed a pre-

training ML method for 

digital pre-distortion (DPD) 

using self-defined random 

data to enhance PA 

nonlinear estimation and 

adaptability across 

operating conditions.

We developed a tuneable X-band filter that enhances cyber-secure RF design 

by enabling fast, accurate frequency agility with high selectivity to suppress 

out-of-band and broadband interference.

We developed multiple LNAs at L-band, S-band, and X-band using WIN 

Semiconductors GaN MMIC 120nm and 240nm processes. These designs 

outperform most state-of-the-art LNAs developed using other processes. 

Inverse Class-E PA:

Peak efficiency: 82% 

Peak output power: 41dBm

Operating frequency: 2.4GHz
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