Power-Efficient DPD Linearization

G. Jindal^{1,2}, K. Morris¹, G. Watkins², T. Cappello¹

¹CSN Lab, Bristol University ²Toshiba Europe Limited

<u>Aim</u>: Provide simple, low power, and effective solutions for the linearization of RF transmitters and power amplifiers.

Low-Complexity DPD with Temperature Feedback

DPD and Hardware Architecture

 The DPD is based on a conventional memory-less polynomial correction with the thermal memory removed successively.

• PA with current sensing and thermal network:

DPD Operation in the Time Domain

The DPD architecture dynamically adapts the PA input to maintain a fixed linear gain G_{lin}.

DPD Power Consumption

- DPD mapping on FPGA
- PA + DPD linearity charact.

N-bit fixed-point I/Qs

 DPD power characterization vs. number of bits and clock frequency

Communication Systems & Networks (CSN) Research Group Merchant Venturers Building, Woodland Road, Bristol, UK BS8 1TR

TOSHIBA