

HYDRA – Hydrogels for Aerosol Capture

James Summers

1. Motivation

- Airborne pathogens are a major issue for animal and plant survival and flourishment.¹ ²
- Hence, we need more sensitive, autonomous and integrated collection and detection methods.
- Electrostatic Precipitator (ESP) aerosol samplers meet the needs given above, but sometimes suffer from low collection efficiencies.³

Figure 1: A portable electrostatic precipitator aerosol sampler in development at The University of Hertfordshire

3. Objectives

- 1. To synthesize a library of acrylate- and methacrylate-based hydrogels (figure 3, left) that is diverse with regards to conductivity, charge and acidity.
- 2. To evaluate the ability of these hydrogels to capture aerosols and identify the properties that result in optimal capture.
- 3. To develop a library of sustainable hydrogels (e.g. saccharide-based hydrogels figure 3, right) that are optimised for aerosol capture.
- 4. To develop and evaluate an ESP incorporating a sustainable hydrogel collection plate (figure 4).

Figure 3: Chemical structure of acrylate (left, $R_1 = H$, $R_2 = sidegroup$), methacrylate (left, $R_1 = Me$, $R_2 = sidegroup$), and saccharide (right) monomers.

Figure 4: Proposed structure of portable electrostatic precipitator aerosol sampler incorporating a novel hydrogel collection plate.

2. Hypothesis

Inspired by the ability of mucus to capture and sustain some airborne pathogens,⁴ this project aims to quantifiably test the hypothesis that hydrogels can be applied to develop a novel collection plate for an ESP to:

- 1. Enhance their collection efficiency.
- 2. Better protect the sample from factors that would result in pathogen death, such as osmotic shock.

Figure 2: Public domain images of persons suffering from excessive mucus production.

4. Methods

This project aims to develop novel aerosol capture materials through use of the following main experimental techniques:

- 1. Synthesis
 - a) Photo-initiated free radical polymerisation.
- 2. Characterisation
 - a) Infrared Spectroscopy.
 - b) Solid-state Nuclear Magnetic Resonance spectroscopy.
 - c) Oscillatory rheology.
 - d) Pycnometry.
 - e) Volumetric analysis.
- 3. Evaluation of Aerosol Capture Efficiency
 - a) Fluorescent microscopy.
 - b) Solid-state Nuclear Magnetic Resonance spectroscopy.

5. Challenges

- Determining the best method to evaluate aerosol capture given that microscopy of aerosol within a hydrogel substrate may be difficult.
- 2. Determining the optimal conditions inside the adapted ESP given that the high electrical current (10 kV) and flow rate (10 L/min) may have ramifications for hydrogel state and hydration, respectively.

6. References

- 1. O. f. N. S. G. Britain, Deaths due to COVID-19 registered in England and Wales. 2021, Office for National Statistics: Newport.
- 2. Hemadri, D., et al., Emergence of a new strain of type O foot-and-mouth disease virus: its phylogenetic and evolutionary relationship with the PanAsia pandemic strain. Virus Genes, 2002. **25(1)**: p. 23-34.
- 3. Coudron, L., et al., Fully integrated digital microfluidics platform for automated immunoassay; A versatile tool for rapid, specific detection of a wide range of pathogens. Biosensors and Bioelectronics, 2019. 128: p. 52-60.
- 4. Reid, J. P., et al., Mucin transiently sustains coronavirus infectivity through heterogenous changes in phase morphology of evaporating aerosol, Viruses, 2022, 14(9), p. 1856.