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Interfacial Photochemistry in Aerosol Droplets: The Impact of Surfactants
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Background Methodology

The relationship between atmospheric aerosols and cloud formation are crucial for climate

modelling, however, currently are not well understood®. -

° g Small-angle X-Ray Scattering (SAXS)
Aerosols can serve as cloud condensation nuclei (CCN) after reaching a critical saturation SAXS allows for the analysis of structural 3-D rearrangements of surfactant
point defined by the Kohler equation, which relates hygroscopicity and relative humidity films and droplets. By changing the surrounding RH, structural changes of
(RH)0- This is very sensitive to surface tension, which is lowered by surfactants. surfactant rearrangement can be analysed. Chemical changes can also be

e - - e ' monitored with acoustically levitated droplets where Raman spectroscopy is
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Figure 4. (a) Experimental set up combining SAXS and Raman spectroscopy analysis of an

acoustically levitated droplet. Examples of (a) structural data and (c) chemical data from this set-up

Figure 1. (a) Example Kohler curve in the blue, with the dot at the critical supersaturation point, the over time.”

Raoult (red dotted line) and Kelvin effect (green dotted line)'2. (b) Resulting Kohler curves for two salt
solutions (ammonium sulfate and sodium chloride) and five biosurfactants®.

Because of the complexities of studying the relationship of aerosol composition and surface
tension, most climate models assume aqueous aerosols have the surface tension of

water'!. This potentially underestimates CCN formation, having climactic and radiative B . Ly - bl L
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G T|m1eo((r)nin)150 200 - ﬁmlo(omin)wo 200 collected using the optical tweezer by (A) having two droplets coalesce, collecting (B) elastic

backscattering and (C) Raman backscattered light, and lastly (D) getting surface tension datas.

Optical tweezers allow the determination of droplet size, refractive index and
- . surface tension, as well as monitoring droplet chemistry. This is done by
ObjeCtlveS steering droplets held by two optical traps (continuous wave 532nm laser),
driving their coalescence.’.%38
There are three main stages to this project, each aiming at studying different properties of
aerosol chemistry: Raman backscattered light is used to determine droplet size, refractive index,
and information on the droplet’s chemistry.

« Structural Properties: Using small-angle X-ray scattering

. Physiochemical Properties: Using optical tweezers Elastic backscattering light (paired with size information from Raman data)
 Chemical Properties: Using single droplet mass spectrometry are used to determine the droplets surface tension.
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10%] 1 4-Butanetriol ¢ f * Prioritizing analysis of droplets in
ot water¥ levitated/suspended state. Solutions display Field-induced droplet ionization mass spectrometry (FIDI-MS), suspends a
R Isioum??iity7/o % . different properties when comparing bulk to droplet betv_veen two _charged plate electrod_es. When a criti_cal field Is applied,
Figure 3. Viscosity vs RH plot for sucrose, citric micron-sized droplets (example In Fig. 3). the droplet is forced into a prolate shape with two symmetrical jets of progeny
acid and 1,4-Butanetriol. Note that for citric acid, droplets (Fig. 6). The charged progeny droplets are then analyzed with MS>.

aerosol measurements can be performed in a
range inaccessible to bulk measurements.’

 EXxposing droplets/solutions to

photochemistry. Pending work in the Bzdek group, a quadrupole will suspend and apply the
necessary electric field to micron sized droplets. Comparing the MS results
with the presence and absence of photochemistry will provide insight into

Res p OnSible In n Ovati on chemical changes that occur with different solutions of suspended droplets.
The work from this project will be freely accessible to the public when published. There are @ VOAG’ (b)
no potential harmful ethical, political, or social consequences to this work. o o
O

The goal of the study is to better understand how aerosol composition affects their ability to - S
act as CCN, and therefore an outcome of this work would be to improve current climate e Figure 6. (a) Example of a FIDI-MS set-up
models. - l L using a vibrating orifice aerosol generator as the

0 0 = gem 0 aerosol source, and (b) an image of a prolate
POI Icy and SCIentlfl C I n nOvathn Il 170 um methanol droplet and two jets emitting
From a policy perspective, improving climate models can help better inform policy that aims :| 1 progeny droplets. ®
at tackling climate change. The work done in this study will use a range of innovative tools to
perform single droplet analysis. The work from this study could set a new standard to 6IPCC,Climate Change 2013 : The Physical Science Basis : Working Group | Contribution to the Fifth
examine aerosol properties and their changes with photochemistry. Assessment Report of the Intergovernmental Panel on Climate Change
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