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Why is measuring and controlling particle morphology important?

In-flight Measurement of Nanoparticle Surface Area and Volume

Annual Aerosol Science Conference / 4th Nov - 5th Nov 2021

Particle morphology has a pivotal role in Science and Industry:

▪ It contributes to the radiative forcing and overall air pollution 

(> 4 millions death/year, WHO), by dictating many underlying properties

(light absorption and diffusion, transport…)

▪ Industrial processes also rely on morphology, e.g., chemical vapour

depostion applied to carbon nanotubes manufacturing1

▪ A better understanding can unlock new battery technologies2

▪ It can affect the accuracy of aerosol instrumentation3

Build a new approach to detect, control, and measure particle growth and pave the way

for new instrumentation designs and regulations

IPCC

▪ Limited instrumentation resolution may prevent detection of slight changes in properties

▪ Current growth techniques cannot provide precisely targeted liquid addition (ex: via BET)

▪ Unwanted evaporation/condensation may take place in instruments and tubing

▪ Surface energy is highly variable and not a real-time measurement, additional experiments

in conjunction with semi-empirical models are necessary

▪ Multi-scale modelling requires an accurate and efficient approach

Innovations

Challenges
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▪ Aggregates dynamics is affected by their shape and 

compactness4

▪ Properties such as surface area and volume are not readily

accessible with conventional techniques:

⌐ A complete heterogeneous condensation cycle, e.g., in the 

atmosphere, includes embryo nucleation, partial wetting, 

and full encapsulation

⌐ Full encapsulation prevents any surface area measurement
Jet engine soot via SEM imaging4

Perspectives

▪ 3D CFD simulations including both condensation and liquid redistribution

▪ (Un)coated aggregates database from the stochastic model

▪ Unified analytical model for the kinetics of condensation on aggregates

▪ Molecular Dynamics (MD) simulations to model early stages of 

condensation on complex surfaces 

▪ Exploration of multi-scale integrated simulations based on the

Hybrid Atomistic Continuum (HAC) model HAC sketch

Liquid bridge formation with MD6Modelling

Experimental setup

▪ Experimental simulations of particle enlargement in the chamber

▪ Chamber design, manufacturing, and preliminary tests

▪ Instrumentation line setup and sensitivity analysis

How can we recover these properties?

▪ Current growth chambers include cloud chambers and CPCs5

▪ Preliminary results (Tsheath = Tsample = 10°C, Twalls =  35°C, Qsheath = 2.5 lpm, Qsample = 0.2 lpm) 

Experimental methodology

▪ Concept: add material to the surface of nanoparticles and record the changes of properties in 

real-time to deduce the initial morphology

▪ The physico-chemical mechanisms involved include: surface adsorption/condensation, 

liquid redistribution, heat and mass transfers with the surroundings

▪ Methodology: use a forward-backward concept combining both experiments and modelling

⌐ The forward approach consists in determining the coated aggregate properties knowing the bare

aggregates ones

⌐ The surface area SA and volume VA of the bare soot are the properties of interest that should be

recovered by the backward approach

▪ Need to characterise the capillary condensation regime in an aggregate-liquid system with specific

wetting properties

▪ Requirement: build a growth chamber (saturator) for precisely controlled growth of nanoparticles

Saturation ratio field and profiles

(collaboration with Julie Pongetti, Cambridge)

▪ Integration within a three-stages instrumentation line: generation, processing, and measurement

Water-based CPC5 (WCPC)
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Background and current limitations

Modelling results and perspectives

Liquid redistribution

▪ The equilibrium shapes are determined by solving the 

conservation laws - including a surface tension term -

in the finite elements framework

▪ Condensation/evaporation flux set to zero

▪ Monomer radius, R0 = 5 nm

▪ Spherical ring for a dimer

▪ Spherical encapsulation for the aggregate

(3D) Mesh and water redistribution 

on a four monomers aggregate (θs = 80°)

(2D-a) Water redistribution on a dimer (θs = 80°)

Aggregate generation

▪ The two-dimensional axisymmetric pendular ring 

evolution is described by the Young-Laplace theory

Heterogeneous condensation

Capillary condensation (necking)

▪ Sequential stochastic approach:

⌐ Generation

⌐ Saturation condition (necking, radial)

⌐ Calculation of intermediate properties

(projected area, hydrodynamic radius)

⌐ Ouput properties: mobility, volume, mass

Radial growth

Dimer sketch (left) and saturation v. filling angle (right)

Water pendular ring evolution on a small aggregate

(N = 18, Df = 1.78, k = 1.3, R0 = 5 nm, θs = 80°) 

▪ Monte Carlo simulation

▪ Quasi-fractal aggregate: N = k(Rg/R0)
Df

Aggregate compactness

Aggregate polydispersity

▪ Meniscii representation using MATLAB

▪ The mobility parameter ratio B* decreases

linearly (log-log) with the increase of 

monomer size until the full encapsulation

▪ Both mass and mobility are affected by the coating process: Gfm slowly increases up to Ff = 0.25 and 

rapidly grows afterwards, while B* shows a plateau followed by a prompt decrease

▪ The growth factor by mass Gfm and B* are plotted against the filling fraction Ff

▪ The equilibrium saturation S curve is also shown for reference

Proposed instrumentation line
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