In-flight Measurement of Nanoparticle Surface Area and Volume

C. Jourdain, Dr. A. Boies, Prof. S. Hochgreb (University of Cambridge) – Prof. J. Reid, Dr. R. Miles (University of Bristol) – Dr. J. Symonds (Cambustion Ltd) Annual Aerosol Science Conference / 4th Nov - 5th Nov 2021

UNIVERSITY OF CAMBRIDGE	University of BRISTOL		CAMBUSTION	Er	ngineering and Physical Sciences	
Why is measuring and controlling particle morphology important?			Background and current limitations			
 Particle morphology has a pive It contributes to the radiative A millions death/year, M (light absorption and diffus Industrial processes also redeposition applied to carbo A better understanding car It can affect the accuracy of 	votal role in Science and Industry: ve forcing and overall air pollution VHO), by dictating many underlying properties sion, transport) rely on morphology, e.g., chemical vapour on nanotubes manufacturing ¹ n unlock new battery technologies ² of aerosol instrumentation ³		 Aggregates dynamics is affected by their shape and compactness⁴ Properties such as surface area and volume are not readily accessible with conventional techniques: ¬ A complete heterogeneous condensation cycle, e.g., in the atmosphere, includes embryo nucleation, partial wetting, and full encapsulation ¬ Full encapsulation prevents any surface area measureme	re	20 m The soot via SEM imaging ⁴	
How can we recover these properties?			Modelling results and perspectives			
 Concept: add material to the surface of nanoparticles a real-time to deduce the initial morphology The physico-chemical mechanisms involved include: liquid redistribution, heat and mass transfers with the su Methodology: use a forward-backward concept combin The forward approach consists in determining the consigned approach consists in determining the consigned approach consists in determining the consigned approach consists in determining the construction. 	and record the changes of properties in surface adsorption/condensation, irroundings hing both experiments and modelling bated aggregate properties knowing the bare		Liquid redistribution The equilibrium shapes are determined by solving the conservation laws - including a surface tension term - in the finite elements framework Condensation/evaporation flux set to zero Monomer radius, $R_0 = 5$ nm Spherical ring for a dimer	,P)		

The surface area S_A and volume V_A of the bare soot are the properties of interest that should be recovered by the backward approach

• Need to characterise the capillary condensation regime in an aggregate-liquid system with specific wetting properties

Experimental methodology

- **Requirement:** build a growth chamber (saturator) for precisely controlled growth of nanoparticles
- Current growth chambers include cloud chambers and CPCs⁵
- Preliminary results ($T_{sheath} = T_{sample} = 10^{\circ}C$, $T_{walls} = 35^{\circ}C$, $Q_{sheath} = 2.5$ lpm, $Q_{sample} = 0.2$ lpm)

Spherical encapsulation for the aggregate

Quasi-fractal aggregate: $N = k(R_{o}/R_{o})^{Df}$

k = 1.7

Df = 2.9N = 1000N = 100N = 200k = 1.5 k = 1.8 d = 10 nmd = 10 nmd = 10 nm

Aggregate compactness

20- $\theta_{e} = 80$ () 1. $\Psi_2 \Psi_c$ 100 Dimer sketch (left) and saturation v. filling angle (right)

KKKKK

Meniscii representation using MATLAB

Integration within a three-stages instrumentation line: generation, processing, and measurement

The mobility parameter ratio B* decreases linearly (log-log) with the increase of monomer size until the full encapsulation

Water pendular ring evolution on a small aggregate $(N = 18, Df = 1.78, k = 1.3, R_0 = 5 nm, \theta_s = 80^\circ)$

The growth factor by mass G_{fm} and B^{*} are plotted against the filling fraction F_{f}

The equilibrium saturation S curve is also shown for reference

Liquid bridge formation with MD⁶

Both mass and mobility are affected by the coating process: G_{fm} slowly increases up to $F_f = 0.25$ and

Innovations and challenges

Innovations

Build a new approach to detect, control, and measure particle growth and pave the way for new instrumentation designs and regulations

Challenges

- Limited instrumentation resolution may prevent detection of slight changes in properties
- Current growth techniques cannot provide precisely targeted liquid addition (ex: via BET)
- Unwanted evaporation/condensation may take place in instruments and tubing
- Surface energy is highly variable and not a real-time measurement, additional experiments in conjunction with semi-empirical models are necessary
- Multi-scale modelling requires an accurate and efficient approach

Perspectives

Experimental setup

- Experimental simulations of particle enlargement in the chamber
- Chamber design, manufacturing, and preliminary tests
- Instrumentation line setup and sensitivity analysis

Modelling

References **Sponsorship and contact** This project is funded by Cambustion Ltd, Cambridge, UK 1. S. Sinnott et al., *Chem. Phys. Lett.* 315, 1 (1999) 4. A. Boies et al., *Aerosol Sci. Tech.* **49**, 9 (2015) 5. S. Hering et al., *Aerosol Sci. Tech.* **39**, 7 (2005) 2. K. Griffith et al., *Nature* 559, 556-563 (2018) Email: <u>amb233@cam.ac.uk</u> (AB), <u>cj443@cam.ac.uk</u> (CJ) 3. W. Hinds, Aerosol Technology (1999) 6. J. Laube et al., *Langmuir* **31**, 41 (2015)