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Background and current limitations

: ~IPCC | Particle morphology has a pivotal role in Science and Industry: Aggregates dynamics is affected by their shape and

2 B | = It contributes to the radiative forcing and overall air pollution compactness?

% N T i‘—# . (> 4 millions death/year, WHO), by dictating many underlying properties = Properties such as surface area and volume are not readily

_ oy u : . (light absorption and diffusion, transport...) accessible with conventional techniques:

5 e ** - I*'ﬂ' : | " Industrial processes also rely on morphology, e.g., chemical vapour ~ A complete heterogeneous condensation cycle, e.g., in the
il B F S depostion applied to carbon nanotubes manufacturing? atmosphere, includes embryo nucleation, partial wetting,
Ozone  Albedo £t | = Abetter understanding can unlock new battery technologies? and full encapsulation
- : = |t can affect the accuracy of aerosol instrumentation? ~ Full encapsulation prevents any surface area measurement &

How can we recover these properties?

= Concept: add material to the surface of nanoparticles and record the changes of properties in LIQUId redistribution T
real-time to deduce the initial morphology = The equilibrium shapes are determined by solving the ’\\§¥
» The physico-chemical mechanisms involved include: surface adsorption/condensation, conservation laws - including a surface tension term - ;
liquid redistribution, heat and mass transfers with the surroundings in the finite elements framework A
= Methodology: use a forward-backward concept combining both experiments and modelling = Condensation/evaporation flux set to zero
~ The forward approach consists in determining the coated aggregate properties knowing the bare = Monomer radius, Ry =5 nm
aggregates ones = Spherical ring for a dimer
— The surface area S, and volume V, of the bare soot are the properties of interest that should be = Spherical encapsulation for the aggregate
recovered by the backward approach solid
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Heterogeneous condensation

= Seguential stochastic approach:
~ (Generation
— Saturation condition (necking, radial)
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(3D) Mesh and water redistribution
on a four monomers aggregate (6, = 80°)

~ Calculation of intermediate properties | Capillary condensation (necking)
l l (projected area, hydrodynamic radius) | | | _ |
S v BACKWARD 1 s -~ Quput properties: mobility, volume, mass = The tV\_/o-d_lmensm_naI axisymmetric pendular ring
v Va < m> Sas 5 evolution is described by the Young-Laplace theory

Aggregate generation

= Need to characterise the capillary condensation regime in an aggregate-liquid system with specific

wetting properties = Monte Carlo simulation 25/ — =
= Quasi-fractal aggregate: N = k(Ry/Ry)" 201 —_@a=85
215 _ E;E

Experimental methodology o 10
= Requirement: build a growth chamber (saturator) for precisely controlled growth of nanoparticles M * 05 / /
0.0

= Current growth chambers include cloud chambers and CPCs®
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= Preliminary results (T, = =10°C, T,,.,..= 35°C, = 2.5 lpm, = 0.2 lpm pf=11 Df=2.0 Df=2.9 i W)
Y (sear sample wals Qsteath P Qsample Pm) E ;11_(;0 E :_1220 1111:_11200 Dimer sketch (left) and saturation v. filling angle (right)
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Saturation ratio field and profiles

S =1.36, 9.9° S=1.18, 46.2°
Water-based CPC® (WCPCQC) (collaboration with Julie Pongetti, Cambridge) V= .

= |ntegration within a three-stages instrumentation line: generation, processing, and measurement

5 MEASUREMENT E :
1 | 1 | |
------------ MFC — | '
| | l 1t 12
Nebuliser MFC rumidiierT] et MFC R* ; S=1.08,{ =89.8° S=1.05y=179°
= The mobility parameter ratio B* decreases Wat dular v Ut | t
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‘_ | = The growth factor by mass Gy, and B* are plotted against the filling fraction F;
1 T T | = The equilibrium saturation S curve is also shown for reference
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e e —— = Both mass and mobility are affected by the coating process: G;,, slowly increases up to F; = 0.25 and
Proposed instrumentation line rapidly grows afterwards, while B* shows a plateau followed by a prompt decrease
Innovations and challenges Perspectives
Innovations Experimental setup
= Experimental simulations of particle enlargement in the chamber
Build a new approach to detect, control, and measure particle growth and pave the way = Chamber design, manufacturing, and preliminary tests
for new instrumentation designs and regulations * Instrumentation line setup and sensitivity analysis
Challenges Modelling Liquid bridge formation with MD®
= Limited instrumentation resolution may prevent detection of slight changes in properties = 3D CFD simulations including both condensation and liquid redistribution ,— Continuum
= Current growth techniques cannot provide precisely targeted liquid addition (ex: via BET) = (Un)coated aggregates database from the stochastic model
= Unwanted evaporation/condensation may take place in instruments and tubing = Unified analytical model for the kinetics of condensation on aggregates __Overlap region
= Surface energy is highly variable and not a real-time measurement, additional experiments * Molecular Dynamics (MD) simulations to model early stages of ® o 0 04
in conjunction with semi-empirical models are necessary condensation on complex surfaces :.. : %°
= Multi-scale modelling requires an accurate and efficient approach = Exploration of multi-scale integrated simulations based on the o ° .| ~Atomistic
Hybrid Atomistic Continuum (HAC) model s33s8o00ssssssafted  HAC sketch
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